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ABSTRACT. Four infinite lower-triangular matrices, each of whose entries count
lattice paths or random walks, are presented and denoted as P, Co, C and.4.f where
,vI is a \Iotzkin triangie. C and C6 are Catalan triangles. and P is Pascal's triangle.
By matrix muÌtiplication. another infinite lower-triangu,lar matrix denoted as À is
defined by Co . R: LI. Then, the following results are proved about .R:

I) lvI . R: C.

2) The entries in the left most column of -R count the number of RNAsecondarv
structures of length n (from molecular biology).

3) A combinatorial interpretation of ,R is given in terms of lattice paths.

4) There is a one-to-one correspondence between r?N,4 secondary structures and
these lattice paths.

5) The first moments of ,? are every other Fibonacci number.

Results related to the Narayana numbers and noncrossing partitions are also dis-
cussed.

1. Introduction
we consider four infinite lower-trianguiar matrices denoted x cg, M, c and p, where

the first few terms of each trianele are Listed below:

L/0:

I
01
101
02 01
20301

iî

, and P-

1

11
221
4 5 31
9 12 9 41

1

2I
5.1 1

14 14 6 1

12.182781

1

t1
121
IJJI

1.1641
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P is the rvell known-Pascal triangle. ,4u1 is calìed a Motzkin triangle since its left mostcolumn contains rhe À4orzkin,r-L"rr, rn, : f*>o *rf;Ìfúil Simiiarty, Cs and C are

i'%f"':lT lltTttut since their left m;st columns contain-tie catatan numbers. c, :
ffi \;" )' 1'he entries of Cs are sometimes referred. to as the aerated Catalan numbers sincezeros are betneen each number. These triangies often arise in combinatorial appiications.For instance' the Motzkin triangle has interpretations as random walks [4], and. as inte^,algraphs [8]' The Catalan triangles have interpretations as ballot sequences [1], and aslattice paths (or waiks) with 

'arious restriciions [6], [7]. Most of the interpretarions
mentioned in this paper are reiated to combinatorial'objàcts called lattice paths. lVhatwe rnean by a lattice pathis a sequence ofcontiguous unifsteps ofiength n which traversean integer lattice. The lattice paths are in the (r. y) plane .,rJ ,rrut a1 paths begin atthe origin, (0,0), and never go berow the x-azis. The length of each path is the numberof 'rnit-steps and the height corresponds to the y value oTthe point (r,y) atthe end ofthe path' The symbois N, s, E and w denote unit-steps in túe north, south, east andwest directions, iespectively. Thus, from the set of lattice paths, we have the followinginterpretation. The (n, k)thenjrl 

9f co (M 
""1c, respectivjy) is ttre number of unit_stepNS (NSE and NSE'v,.respecriverv) raitìce paths of length n and height A;.

.^ 
tfT 

9. frr::::r:ble, 
anorher infinite iower_triangutar marrix .R can be defined byuo . Ìt : M. 'L'he first few terms of À and (C6)-1 are 

-

R-
1

51

1

1

I
2
tl

8

:

1

21
331
664
13 13 10

, and (Cs)-l :

1

01
-1 01
0 -2 0 1

10-30
030-4

1
I

01

'B can also be defined. b.v fi : (co)-t p'co since M : p .co.These rerations and othermatrix relations involving À are defined in section 2. A surprising fact about ,R is thatthe entries in the left most column, sequence {1, 1, 1, 2,4,g:li: .-.-.} , count ribonucreic acid(R]\rA) secondary structures of length n. As a result of the sequence, we summarize someof the combinatorial aspects of RNA secondary structures in section 3. Then, a latticepath interpretation of -R is defined in section 4. Given the interpretation, a one-to-onecorrespondence betwee^n RNA secondary structures and lattice paths is constructed insection 5. Then. the fi.rst moments of .R are computed and shown to be equar to thealternating Fibonacci numbers in section 6. We then conclude with applications of theNarayana numbers and noncrossing partitions in section 7.

2. Matrix Relations
Relations invoiving all of the above triangles are defined in this section. An outline ofa proof of the relations is mentioned.. The invertibility of c6 is arso mentioned.
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lllultipl.ving b1'l?, the matrix relations M .R: c and c.R:1/ are defined. In the
latter reiation. -FI is another infinite lower-triangular matrix rvhere the first few rerms are

ft

1

2r

1061
362991
r37 132 57 12 1

The entries in the teft most coiumn' sequence {1,3, 10,36, 132, 548, . ..}, count edge rooted
polyhexes with n hexagons [9], 114]. These are graphs rvhich are constructed. by connecting
n hexagons with certain restrictions. However, to remain within the context of lattice
paths' we define the (n, À)th entry of 11 as the number of unit-step NSEWF lattice paths
of length n and height È. The F denotes a forward unit-step. Thur" lattice pathì are
3-dimensional and they correspond to integer points (r,a,r) such that a1 paths begin attheorigin, (0,0,0),andnevergoberowthe(r.g) prane. lr,érstepsarearongthe y-axis,
and the height corresponds to the z,r.alue of (r,E,z) at theend of the path.

From all lattice path interpretations mentioned above and. the associated matrix rela-
tions' we observe that right multiplication by fi takes NS paths to NSE paths. NSE paths
to NSEW paths, and NSEW paths to NSEWF paths. These path relations are illustrated.
as Cs + M - C --+ I/ rvhere the arrow means "goes to." In a combinatorial sense, .R
acts as a matrix transformation which transforms a selected set of unit-step lattice paths
of length n and height A from 1-dimension to 2-dimensions to 3-dimensions. Likewise by
left multiplication by P, the same transformation emerges since p co - lvI , p.M : c,
and P 'C : H' The following proposition arises as a resuit of the matrk relations.

2.1. Proposition. Gi.uen infinite lower-triangurar matrices co, c, M, p and, H, the
following matrir relations are sati,sfr,ed:

(o) (Co)-t .p Co : R
(ò) Cs.R:M : PCo
(c) M.R:C : p.M
(d) C.R:H : P.C

Since the matrices are infinite it may not be obvious that the proposition is true. Oneway to prove the proposition is to consider that all of the matrices mentioned above are
Riordan' Riordan matrices are infinite lower-triangular matrices made up of columns of
the form s @) ' U (r)]' where s @) : r + grr + s2;2 * gsr3 * . . . corresponds to the left
most column' For i > 0, 

!h"^ expression s @) ' {f (r)lo corresponds to the iúà column
where f @) : Lr * fzr2 -f fsr3 -f f +ra * ' ' '. These columns are characterized as column
generating functions (GFs) with integer coeffi.cients fi and gi, and I's along the maindilsonal' 

1,1.:11 property of fuordan matrices is that they are invertible. Thus, the
exrstence of (c's) ' follows since Cs is Riordan. Appìying the Riord.an matrix enumeration
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we can prove that the column GF associated with the left most column of Fr equals theGF associated with ed.ge rooted. polyhexes rvith n hexagons.In the next tw'o sections, the notions that moti'vate the correspond.ence between latticepaths and RNA secondary structures are menrioned. The reievant combilatoriai aspectsof R-ltrA seconda^' structures are summarized.. and then a combinatorial inrerpretation ofÀ is given in terms of lattice parhs.

3. RNA Secondary Structure
The singie-stranded RNA moiecule consists of a chain of base pairs d.erived. from oneof four bases (nucleotides): A (adenine), c (cyrosine), G (guanine), and. u (uracii) rvhereA bonds with u, and G bonds ',virh c.'írre io"u, ,ú;il;;a*ch bases aiong the chainis defined as the primary stn-tcture. when an RNÀ moiecule folds back ou itself andfotms 

.''ew hydrogen bonds which form rr"u""r regions, the sequence is referred to as thesecondarlr structure' As an example of secondar| structure, -"-grlru the following rìNAsequence s denoted as

s : C AGC AU C AC AU C C G C GG G GU AAAC GCT].

This sequence is rerèrred to as a c.l.o'erleaf, in the biologicai literature; and is the secondarystructure assumed bv transfer RNA molecures. Two ;pr;"l;;ion" or s appear below inFig' 1' In the o*"":" ignore rrr" c. a, à*a r, *i"r""i, 
"lr'in" 

,u"orràu,ry strucru.re.

"Ò"

Fig. L Tso rcprdeotluotr! oí rendaiv rtMuae.

In Fig- 1(a) the base pairs are ind.icated by dashes. In Fig. r(b), the primary structure isgiven along the horizontai a-.cis and the base pairs are shoirn *'i"r. The above example.description and figure comes from schmitt and lvaterman lto1. The enumeration ofsecondary structures was sty{ied, from a $aph theoretic point'of view, by waterman [2bJ.He gives a graph theoretic definition of sàondary stntctureas a planar graph defined on aset of ru labeled poiats i.1,.2,. .., ni. Thus, if .s (À) denotes trr*ii"i number of second.a.-structures defined on n labeled points. then the associated recurrence relation is
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n_7
s(n+1):sln)+\-,us\J_rjs(n_-r)

;-l

forn > 2,ands(0) :,s(1) :s(2) :i. Thefirstfewvaiuesof s(n) forn:0,1,...,6
are 1,1,1,2,4,8, and 17. Donaghey [3] notes that these numbers can also be computed
by the foiiorving sum

\- I ln-fr\/n_,t\
fit"-;)\ r )\r-')

We call these numbers the RNA numbers. It turns out that these numbers are the same
nuuibers as the entries in the left most column of À. The generating function d.erived
from the recuuence relation is

(2) s(r) :

Proofs of the recurrence relation, and generating function ca.n be found. in [10], llal and
[25]

4. Lattice Path Interpretation
Recursions for -R are defined in this section by using the rule of formation of -R. Whar

we mean by rule of formation is a recursion which defines the way the entries of ,R are
formed or computed. _fto* the recursions, a combinatorial a^rgument is proved showing
that the entries of -R denote the number of unit-step NSE* lattice paths of length n and
height A' These NSE" lattice paths are explicitly dÀfined later in tÀis section. ihen, the
GF associated with the left most column oi R is derived. and shown to be equaì to s (c).

As examples of the way the elements of ,R are formed., we observe that the second.
column entry 6 is comp-uted ft'om 2 * 3 * 1, and the left most column entry E is computed
from 4 + 3 + 1. The foilowing illustrations:

(1)

(b)(")
4
j

t8l

23
\t!+

[6]

depict the rule of formation of the entries shown in the above examples. These patterns
continue to form all of -R. In general, the (n, È)th entry of rB is formed or computed
recursively by the following recursions. For n ) 0 and h ) I

(3) r(n*I,k) =r(n,lr - 1) *r(n,k) +r(n- 1,k+ 1)+..., and

(1-r-r*2)-
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(1) r(n*I.0) : r(r.,.0) +r(n - 1,1) *r(n-2,2) +...
where r(0,0) : 1, and r(n+I,È) :0 if À > n+I. Recursion 4 is defined for the left
most column of "R, and the associated. column GF is denoted as r(z). Recursion 3 is
defined for the rest of the coiumns of À, and the associated Àlà column GF is denoted. as

'-(') lf (,)lk fot k ) 0. These associated. GFs follow since -R is a Riord.an matrix. The
GFs r (e) and / (r) are derived later in this sectron.

The NSE* Iattice paths are now defined.. These paths are also 2-dimensionaì and. they
have the same path restrictions as the NSE paths, mentioned in section 1, except for the
additional restriction that consecutive N and S steps are not allowed. That is, a NSE*
lattice path is a unit-step NSE lattice path which does not have any consecutive pair of
NS steps' We combinatoriaJly interpret the recursions in terms of these paths by ietting
r (n' k) denote the number of unit-step NSE* lattice paths of length n and height À. Gi.,"r,
the recursions and the interpretation, we can prove the foltowing proposition.

4.1. Proposition. For r(0,0) :1, n) 0 and,È > 1, r(n-tl,Ìc) satisfy thefollowing
eeuat'ions:

Proof. Suppose we have a unit-step NSE* lattice path of length n and height È. Then,
to form a new path of length (n + 1) a.nd height À consider thé foilowing .u^r'"r. Case (i):if we have a path of ìength n and height lc - 1, then on the last step there is 1 choice
for height k - 1 (the.N step)- In this case, ail paths whose last step is N are counted byr(n,k - 1). case (ii): if we have a path of length n and height a, then on the iast step
there is aJso 1 choice for height À (the E stepf. In ihis casi all paths whose last step
is E are counted by r (n,a). case (iii): if we have a path of tenglh (r, - 1) and heightk+ 1, then the last possible sequence of steps for heighì À+ 1 is EÉ (east, south). tn tiis
particuiar case, all paths whose last sequence of steps is ES are counted by r (n -'1, k + r).
case (iv): if we continue and have a path of length (" - j) and height k *.?, then the iast
possible sequence of steps for height k + 7 is ESr 1east, south 7-tiirur;. rl"r"ì;q;;;",
occur since there are no NS steps. Here, all paths rvhose last sequence of steps is ÉSr are
counted by r (n - j, k,+ 1). Combining all oi the cases give all ptssibie ways of forming a
new (n + 1)st path of 

lrgisht À. Applying the addition principle, recursion (a) is proved.
Recursion (b) is proved by similar reasoning.D

Thus, the combinatorial interpretation of ,R is proved.. Also by similar reasoning, we
can prove the lattice path interpretations defined above for H, c, M and co [12j.Explicit GFs for r(z) and /(o) are now derived. Recall that.R is Riord.an,'so each
colurnn is of the form r (t).lr (")]0. Bv the ru].e of formation of .R, the Àúà column GF
is defined as

r' fk :, (rfr-t +rfk +.rrfk+l * x2ryk+z + .) .

solving for /, we find /: r*rf +12f2 +rsfs *.... since the sum is a geometric series,
weobtain f :rÍ2 +r(1 -r)f +r.Now,soiving/interms of f (r)andsimplifyingwe

(a) r(n+t.A) : {'(",È-1)+Liror(n-i,k+i)
|. 0,if À>n+1

(b) r(n + 1,0) : fr-'" @- j, j).
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obtain f (r) : x. s (r). Similarly, the ieft most column GF i; ctefi',ed as

r : 1 * x (r * rrf * r2rf2 + x3rf3 +...) .

Simplifying this equation, we find that r expressed in ter-s of r (r) is the same GF as
equation 2, i.e., r (r) : s (r). Thus, we have explicit GF representations for r (r) and
Í (s).

The GF r (r) is associated with the unit-step NSE* lattice paths of length n and height
k : 0. As a result of À : 0, r (r) corresponds to the paths that return to the x-asis. In
general, as.a consequence of deriving r(c) and f (r): r.r(x), we can defi.ne for k ) 0
the GF &l whose associated. sequence is {1,2, 4,g,2r,b0,...}. These numbers are the
values of the row sums of .R and they count the total number of unit-step NSE* lattice
paths of length n and height k i1121. However, of all NSE- paths, we a.re only concerned
with those paths that return to the r-a,sis.

5. RNA Correspondence with Lattice paths
A one'teone correspondence between NSE* lattice paths and RNA secondary struc-

tures is constructed in this section. Since r (r) and s (r) denote the same GF, the order of
the set of unit-step NSE* lattice paths of length n and height È : 0 and the ord.er of the
set of RNA seconda.ry structures of length n are the same. So, the nth terms are such that
ls(n)l : lr(n'0)1. We can now state the correspondence theorem and the corresponding
constructive proof.

5.1. Theorern. There is a one-to-one arrespondence between the set of RNA sec-
ondary stractures of length n and the set of unit-step NSÈ tattice paths of lingth n and,
height È : 0.

Proof. First, we show how 1[s rrnif steps of a NSE* lattice path of length n and height
/c : 0 a^re assigned. To establish the required correspondence, let s be a secondiry
structure of length n. Then, for a given s list the RNA sequence a.s a sequence of integers
increasing in order from left to right as a primary structure along a horizontal g;,6s La
denote base pairs (or bondings) as arcs. Now, consider whether an integer is paired
or unpaired. If an integer (or base) k is unpaired label the kth integer as an E step.
Otherwise, if a base pairing of integers occurs where an integer i represents a pairing with
a larger hteger 7, then label the ità integer as an N step and the jth integer as an I step.
Therefore, the correspondence is setup accorrling to the rules È -+ E, i --. lr, and j - s
where the arroÌ,r menns "corresponds to.tt The definiligo of secoudary structure ensures
that the NSE* paths do not have any consecutive pair of NS steps since no two adjacent
points (i.e., wilh labels i and i f 1) can be comected by an arc, and no two 

"r", *uy
intersect. Also, the paths are of height zero since each ,A/ step is paired with a;1 ,S step.

As an example of the correspondence consider the sequence s : ACAGUU wheré A
bonds with U and C bonds with G. The bondings are ind,icated by dashes in the foilowing
graph:

"A"A4U
.u



\ow list f as a sequence of integers along a horizontal axis as described above to obtainthe following linear representation:

Applying the rules of the^correspond.ence, the integers are assigned to the path steps asfollows: t ----*N, 2 
-\_3_ --*4 4 

-S,'b 
...-s, ùa o ----8. ilom the correspondence,

we obtain the unit-step NSE* path NNEssE which has len6h 6 and height 0.The correspondence is reversibie. Thus, the correspoìl"rr." is one.to.one an4 thetheorem is proved.tr

6. First Moments
The first moments (weighted row sums) of ,? a.re computed. in this section. Thesemoments can be used, in a combinatorial sense, to compute the average d.istance from theorigìn of all unit-step NSE* lattice paths of leagth n.
Multipiying ft on the right side by the coiuJn vector VT : {1,2,8,4,5,6,7,...}", wemake the following obserr,ation:
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1.1 :
1.1 +1.2 :

^ _.,. t.t +2.2 +1.3 :Ít'v':2.L +8.2 +3.3 +1..4 :4.1 +6.2 +6.3 +4.4 + 1.5 :

a

6

1

.)

8
27

Then. we conjecture that the first moments of .rt are defined by

R- = F2n-1: ;u . r (n -1,À - 1) for n ) t,
,k=0

where F2,'-1 denotes the alternating Fibonacci numbers l, 3, g, 21, 55,. . . The conjecture
can--be groved using the Riordan matrix technique mentioned.'in section 2. The proof isoutliued as follows. A Riordan matrix cn' be àpreserrteJ * 

"-pri. [g (r) ,11ryi *n"*9(r) and /(c) are defined in section 2. A compositional funciionat a(r) is obteinedwhen a Riordan pair is multiplied on the right side by a GF d.enoted as A (c). The GF
'4 (c) is associated with an appropriate column vector. Thus, B (r) is defined as

B (x) : [g (") , f (c)) * A(x): s(î).eU@))
where the symbol ' * ' denotes Riordan matrix muttiplication. The Riordan pair associatedwith -R is the pair [r(r),x."(r)] where r(r) is th; GF j"il; by equation 2 of section



3. The GF associated with the coiumn vector I/T is defined by u (rr) : (1 _ ,)-2. Then
by fuordan multiplication. a compositional functional F (r) is obtained an6 4efiaed as

F(r): 
'f";fi\i]'fl

1-3r*rz'

fl":,t:t"'f (") I î---.# which is the GF for the aiternating Fibonacci numbers [1],
[D]. r-tus proves the conJecrure.

7. Other Applications
In the previous sections. rve showed that the .R triangle has matrix properties that are

of combinatoriai interest, and an appìication related. to tLe RNA numbers. In this section,
we mention other appearances of the RNA numbers related to noncrossing partitions, an4
the Narayana numbers.

The Narayana numbers are also of combinatoriaì. interest and are defined as N (n, À) :
*(T)G:t) for-n ) 1 and È ) 1. These numbers can be put into infinite lower-triangular
matrix form, denoted as y'y'. The triangie N is not Riordan, and the first few terms Le
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N-
I
21UI

661
10 20 10

It is known that the row sums of N are the nth Cataian numbers C. lL1,). A combinatorial
iaterpretation of ly' is that N(n,È) counts the number of Dyck paths'of length 2nwith
fr peaks' A Dyck path is a path in the first quad.rant, rvhich tegins at the origin. ends at
(2n,0), and consists of north-east and south-east steps. We nole that the diagonal slices
1,1,1 + 1,1 + 3,1 + 6 + 1,... of the tr/ triangle give the first few RNA mrmbers. This
can be proved by using generating functions, where the bir,aniate GF associated with the
Narayana numbers is noted by Stanley [23j.

To find a combinatorial relation between the RNA numbers and noncrossing partitions
consider-the set [n] :: {1t?,_..,"i. A partition r of [n] is said to be noàirossing if
1 ( a ( b < c < d 1 n andif 81 and 82 areblocks of 2.. sucl that a, c € 81 arÀ.b,d eb2,
then 81 - F,2. That is, given that the conditions are satisfied, a, b, c and d are all in
the same block. As an exampie of a noncrossing partition of [6] - {L,i,3,4, b,6} consiàerz':1 5 I 24 I 3 / 6wheretheslashesseparatetheblocks.'Theiìnearrepresentationof
r is illustrated above in section 5, where successive elements in the same block are ioined
by arcs.

Following simion and Lrilman [20], aword u.'of length n-1over the alphabet {b,e,I,r}can be associated with a noncrossing partition n. See the reference for detailed dòfinltions
of each letter in the alphabet. By eliminating the letter r and. the consecutive pair
of letters ó and e from an1' potential word, another word. ?r* can be defined over the
a'lphabet {b,e,I,}. The word ur" can also be associated with a noncrossing partition a-.
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For example, noncrossing partition r : I 5 I 2 4 I B I 6 is associated rvith the word
w* Qr) : bbleel' A one-to-one correspondence can be constructed. between the subset of
noncrossing partitions associated with rvords u* and the set of NSE. lattice paths. ThecorrespondenceissetupaccordingtothefollowingruleswhereÒ + N)e-.g, and I _ E.Thus' via NSE* Iattice paths. a relation is established. between noncrossing partitions andthe RNA numbers.

Severai appearances of the RNA numbers related. to pianar trees are in [3]. Othercombinatorial applications and interpretations of the RNA numbers are discussed in i2],[t2] and [2+].
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