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Now let y = (L,)o o and we find from (1) and (2) that
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= AEoyz[l + 0(1)] from assumption B.

Proceeding in a similar manner, we find
[UaVE@Y: + Us VE@) — B = By U + Up(l + o))
We now have
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 FUNCTIONS
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The polynomials p,(m, z) given by the definition

o palm, ) = ()¢5 L,

1 This note was written while the author was employed by the Radiation Laboratory,
M.IT.
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\

called the Poisson-Charlier polynomials, and the associated function y,.(m, 2,
given by the definition

(2) '//n(m: z) = pn(m’ 2)1//0(m, z))
® bolm, ) = T F,

occur in statistics. Doetsch [1] has devoted a memoir to them, and they are
noticed in Szegd’s Orthogonal Polynomials (pp. 33-34).

I suggest that they are most directly and easily studied in connection with
the “F-equation”

) gz F,0) = Fz,a + 1),

whose properties and application to various special functions I have sum-
marized in a recent note [2]. Using the theorems of that note, which I shall
cite by number, I shall now generalize the Poisson-Charlier polynomials and
sketch the speediest derivation of their most interesting formal properties.

Greek letters shall represent unrestricted real numbers, while Latin letters
shall represent integers.

From the existence theorem for the F-equation (Theorem 4) we know that
there exists an integral function of z, Fg(z, ), which satisfies the F-equation
and the condition

()] Fp(0, @) = cos(e + B)r <_’6a)

From the uniqueness theorem for the F-equation (Theorem 4) it follows that
(6) Fg(z,n — B+ 3) = 0,

) Fg(z,n) =0, n > 0.

From the general power series solution for the F-equation (Theorem 4) we have
the formula

®) Fo(e, @) = cos (@ + B ( £ e 8+ w159,
We now define the Poisson-Charlier functions in general by the formulas
9) psa, 2) = T(a + 1)27Fp(2, —a),
_ e—‘ za
(10) ¥l 2) = T (_—a 1 pp(a, 2).

From the formulas (6) and (7) we see that [1, p. 263]
(11) ¥s(—n,2) =0, =n>0;
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(12) ‘pﬁ(_n+ﬁ—%)z)=0’ pﬁ(—n"l'ﬁ—%:z):()'
From the formula (8) we see that

T 1 —
19 pola,d) = cos 6 = r T 0T R(—as 8 — k139,
whence it follows at once that

(14) ps(m, z) = cos Br kzm; <7Z> ({Z) kl(—2)7",

This is the usual explicit expression for the Charlier polynomials [1, p. 257].

From formula (13) we see that

§in 2am
27

(15) po(—a, 2) = 'l — &)zy(a, 2).

In the indeterminate case when « is a negative integer we see from the formula
(14) that

(16) po(m, 2) = 1, m = 0.
Hence

17 Yo(—a,2) = smziwr ¢ "v(a, 2),
(18) dolm, 2) = =

From the definition (10) we now see that
(19) l”ﬂ(m, Z) = pﬂ(m: Z)lpo(m, Z),

a generalization of the formula (2). From the formula (13) and the definition
(10) we see that

_ _ Me + 1) — )
(20)  ¥a(B,2) = cos (8 “)"r(ﬂ+ T E S (=B — B+ 1;2).

Then by Kummer’s first transformation,
- _ la+1) o L
(21) ¥a(8,2) = cos (8 — a)x RS O Fila+1l;a—B+1;—2),

from which it follows from the power series formula for solutions of the F-equa-
tion (Theorem 4) that ¥.(8, 2) is a solution. of the F-equation (4).
We now have two different solutions of the F-equation based on the Poisson-

Charlier functions:
(A) F(z, @) = eYp(—a, 2).
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(B) F(z) a) = Kba(ﬂ) z)-

From the F-equation it is evident that

(22) \bn(ﬁ’ z) = '(;9_2-” ‘l’O(ﬁ; Z),

whence we at once deduce the formula (1). Applying Taylor’s theorem for the
F-equation (Theorem 8) to the solution (B) we see that [1, p. 259]

(29) 2+ 1) =2y, 25

putting « equal to zero we find that

(24) _Sln22ﬁ7l' e_’_ha’)'(—ﬁ, 2 + h) = Z '}L' ‘pn (:37 2),
™ n=0 7.

and, more specially [1, p. 260]
h m _ 0 hn
@ (142 = S putm, .

n=0 N

Applying the same theorem to the solution (A) we obtain the formula

00

(26) Atz + 1) =2 L spa = n,2),

n=0

whence we recover the formula (11) by putting o equal to zero.
Applying Theorem 9 to the solution (B) yields the result

(27) Z_:O tn ‘,’a+n(,3, z) = ‘/; 6—0 ¢a(ﬁ; 2 + 0t) doa
which contains as a special case the formula -
) m 1
28) X "palm,2) = (1 + ™ (Z) A [m! - 'y(m +1, z<1 + :))]
n=0

Appell’s generating expansion (see Theorem 10, part C or [3, p. 120]) applied
to the solution (A) yields the result

(29) Z_O W,z + it = &40 Z_Jo ve(n, YI";
hence

S _ et S~ Yyt \ e, y)
(30) 3L,z y) = e 5 (z+y) oty),

Putting y equal to zero and using the formula (13) we see that
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0 tn t B
(31) > o i,z =¢ (1 - ;> cos B.

n=0

Comparing this result with the formula (25) we see that
(32) (=)"pa(m, 2) = (=)"pu(n, 2).

It would be possible to proceed in this same fashion and discover many other
formal properties of the Poisson-Charlier functions, but it is perhaps easier to
notice from the formula (13) that

(33) pa(a, 2) = cos (8 — a)al(a + 1)2°LE2().

Lj(x) being Laguerre’s function suitably generalized for complex lower index
[4, p. 53]. By means of this formula every relationship involving Laguerre
functions may be translated into one involving Poisson-Charlier functions.
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