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Abstract: Denote by {F},} and {L,,} the Fibonacci numbers and Lucas numbers, respectively. Let F,, = F}, X L,
and £,, = F,, + L,. Denote by {P,} and {Q,} the Pell numbers and Pell-Lucas numbers, respectively. Let
Pn = P, X Qn and Q,, = P, + Q. In this paper, we give some determinants and permanent representations of
Prs Qn, Fn and L,,. Also, complex factorization formulas for those numbers are presented.
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1. Introduction

The Fibonacci and Lucas sequences are defined by the
following recurrence relations:

Foyo=F,1+ F, where Fy =0, F) = 1;

Ln+2 = Ln+1 + L, where Lo =2,L1 = 1.

The Pell and Pell-Lucas sequences are defined by the
following recurrence relations, respectively:

Pn+2:2Pn+1+Pn WhCI'CP():O,Plzl;

Qn+2 = 2Qn+1 + Qn where QO =2, Ql = 2.

Let A = [a; ;] be an n x n matrix. The permanent
of A is defined by

per A = Z Haia(i)u

O'ESn i=1

where the summation extends over all permutations o
of the symmetric group .S, [15].

It is known that there are lots of relations be-
tween determinants or permanents of matrices and the
famous sequences. By the determinant of tridiago-
nal matrix, an identity of Fibonacci number is proved
[5]. Demirtiirk [4] derived some Fibonacci and Lucas
sums by matrix method. In [9], the authors present a
result involving the permanent of an (—1, 0, 1)-matrix
and the Fibonacci number F,, ;. Kilic and Stakhov
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[12] considered certain generalizations of the well-
known Fibonacci and Lucas numbers, the general-
ized Fibonacci and Lucas p-numbers. They also de-
termined certain matrices whose permanents generate
the Lucas p-numbers and their sums.

By the determinant of tridiagonal matrix, an iden-
tity of Pell identities is presented [19]. Yilmaz and
Bozkurt [20] derived some relationships between Pell
sequence and permanents and determinants of one
type of Hessenberg matrices. Li [14] gave another
proofs of two results relative to the Pell and Perrin
numbers by constructing new Fibonacci-Hessenberg
matrices. Fu and Zhou [6] derived the relation be-
tween Pell numbers and its companion sequence by
matrix representations of them. Gulec and Taskara
[7] gave new generalizations for (s, ¢)- Pell and (s, t)-
Pell-Lucas sequences for Pell and Pell-Lucas num-
bers, and defined the matrix sequences which have
elements of them and investigated their properties.
Kilic [11] gave the definition of generalized Pell
(p,i)—numbers and then presented their generating
matrix. He obtained relationships between the gen-
eralized Pell (p,i)—numbers and their sums and per-
manents of certain matrices. Civciv and Tiirkmen
[1] defined a new matrix generalization of the Lucas
numbers, and using essentially a matrix approach they
showed properties of these matrix sequences.

A. Nalli [17] present a family of tridiagonal ma-
trices given by
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1 -0 0
1 1 0 0
1 o 1 3 1 0
A, = )
N R 0
o -~ 0 1 1
o o0 --- 0 1 3

- - nxXn

such that the determinant | Al | is the Fibonacci num-
ber Fy,42. Another example in [2] is the family of
tridiagonal matrices given by:

1 4 0 - 0 O
: 1 4 0 -+ 0
0 1 1 ) 0

N oo . 0
o --- 0 ) 1 )
o o0 --- 0 ¢ 1

- - nXxXn

Strang [18] presents the tridiagonal matrix

1 -1 0 -~ 0 0
1 1 -1 0 0
0 1 1 -1 0
A2 =
n . )
0O -~ 0 1 1 -1
0 0 0o 1 1

o - nxn

the determinant |A2| is the Fibonacci number Fj, 1.
It can be checked that

1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1
nxn
2 1 0 0
1 2 1 0
Pn+1 = . 0 )
0 1 2 1
0 0O 1 2
nxn
1 1 0 0 0
-2 1 1 0
0 -1 1 1 0
L, = )
0 0o -1 1 1
0 0 0o -1 1
nxn
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The Jacobsthal and Jacobsthal-Lucas sequences
are defined by the following recurrence relations, re-
spectively:

Jn+2 = Jn+1 + 2Jn where JU = 0’ Jl = 17

Jn+2 = Jn+1+ 2jn where jo =2, j1 = 1.

Let
[ 3 0 0 0 7
1 1 2 0 0
1 1 2 0
A=

o S ()
0O --- 0 1 1 2
0 0 - 0 1 1 ]

be an n-square matrix.
F. Yilmaz and D. Bozkurt [21] showed that

3
per A3 = J 12

Let
1 2 0 0 0 7
1 3 2 0 0
1 1 2 0
A, =
: : P (|
o --- 0 1 1 2
0 0 --- 0 1 1 ]

be an n-square matrix.
F. Yilmaz and D. Bozkurt [21] showed that

per A% = j,.

Also, they gave a complex factorization formulas for
Jacobsthal numbers. That is

n
km
J, = 14+ 2v2: .
H( + \fzcosn_i_l)
k=1
Let
1 1 -1 0 0 0 0 T
1 1 1 1 - 0 0 0
1 1 1 -1 0 0
Ai: : . .
0o --- 0 1 1 1 1 0
o o0 --- 0 1 1 1 -1
0 0 o --- 1 1 1
|0 0 0 0 0 1 1 |

be an n-square matrix. F. Yilmaz and D. Bozkurt [20]
showed that
per A = P,.
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N. D. Cahill, D. A. Narayan [3] showed
that the symmetric tridiagonal family of matrices
Mg p(k)(E=1,2,---), whose elements are given by:

F2a+b—‘

my = Fgyp,moo = [F \
a+

mi; = Lq,3 < i < k,

mi2=ma1 = \/m22Furb — Faato,

My i+1 = Mjitlj = V (*1)a,2 <7< k‘,

where @ € ZT and b € N, has determinants
\Mgp(k)| = Fako-

For example,

1 0 0 0 0
8 1 0
o1 7 1 0 -
Foeo=|. . . i ) ,
0 -~ 0 1 1
0 0 1 ok
8 v6 0 -~ 0 0
V6 5 i 0 -+ 0
. 0 i i 0
3k+3 — . . . . . ’
0 - 0 i 4 i
0 0 kxk
and
13 -5 0 0 0
-5 3 =1 0 0
0 -1 3 -1 0
Fopp5 = . 0
0 : 0 -1 3 -1
0 0 0 -1 3|,

In the same paper, they proved that the symmetric
tridiagonal family of matrices T, ;(k)(k = 1,2, --),
whose elements are given by:

L2a+ﬂ

t1,1 = Loyp, to2 = {
“ La+b

tis = La,3 <1<k,

t12=ta1 = \/t22La+b — Loatb

tij+1 =tj+15 =V (=1)%,2 < j <k,
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where a € ZT and b € N, has determinants
|To,b(K)| = Lak+b-

For example,

3 0 0 0 0
0O 6 -1 0 0
O -1 7 -1 0
Lyp—o=|. . . . . ;
o - 0 -1 7 -1
o o --- 0 -1 7 kexk
18 v14 0 --- 0 0
\/ﬁ 5 /) o --- 0
I 0 7 ) 0
3k+3 = . . . . . )
0 0 ) 4 )
0 0 0 4 exk
and
20 V11 0 --- 0 0
Vil 3 1 0o -~ 0
0 1 3 1 0
Logi5 = . .
. 0
0 0o 1 3 1
0 0 0 1 3 [,

N. D. Cahill and D. A. Narayan [3] also derived
the following factorization

n—1 -
Fomn = P [ [ (Lom — 2c05—).
k=1

A. Nalli and H. Civciv [17] generalized the result
of N. D. Cahill and D. A. Narayan [3]. The tridiagonal
family of matrices M_, _(k),k = 1,2, -- - whose el-
ements are given by:

F—2a—b“
Foaw ’

mi1 = F_q_p,moo = [

mi; = L_a,3 S ) S /{,

mi2=ma1 = /mo2F q_p — F_24p,

mjj+1 = mjr1j =/ (=1)%2 < j <k,

where a € ZT and b € N. Then
(1) if @ and b are odd, then

)

o _Fak+b k is odd
det(M_q—p(k)) = { F,.4p Kk iseven
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(2) if a is odd and b is even, then

k is odd
k is even

Fokto
—Fokto

)

det(M_q —p(k)) = {
(3) if @ and b are even, then
det(M_q,—5(k)) = —Fak+v;
(4) if a is even and b is odd, then
det(M,a’,b(k)) = Foktob.

For example,

_3 i 0 0 0
i 1o 0
o 1 7 1 0 -
M_y4,_2(k) = : S : : 7
Lo g
0 1 7 -1
0 0 0 1 7 kxk
|M_4,—2(1)| = —F5,
|M_4,-2(2)| = —Fo,
[M_4,-2(3)| = —Fua,
|M_4,—2(4)| = —Fis,
My (K)] = ~Far
1 0 0 0
0 -2 i 0 0
0 i -1 3 0
M_1,-1(k) = : : : ’ 7
; g -0
0 i -1 i
0 0 i -1 kxk
(M_q1,-1(1)] = —F,
[M_1,-1(2)| = —F3,
|M_1,-1(3)| = —Fu,
’M_17_1(4)‘ = _F57
[ —Fyy1 Kk isodd
IM_1,_1(k)| = { Frpi1 Kk iseven

Also, they proved if the symmetric tridiagonal
family of matrices 7", _4(k),k = 1,2, -- - whose el-
ements are given by:

L 2,
11 =L_q pt22= { . -‘ )

L o
tii=1L_q,3<1<Ek,
tio=1to1 = \/t22L_q—b — L_2q_s,
tjj1 =tiy1y =V (=1)%2 <j <k,

where a € Z1T and b € N. Then
(1) if @ and b are odd, then

k is odd
k is even

Lak+o
—Lak+b

Y

det(T_q_s(k)) = {
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(2) if a is odd and b is even, then

k is odd
k is even

—Lak+b
Lak+b

det(T,a’,b(k)) = { H

(3) if @ and b are even, then
det(T_a,_b(kJ)) = Lak+b§

(4) if a is even and b is odd, then
det(T-q,~6(k)) = —Lak-+b-

For example,

-29 6 0 -~ 0 0
6i -3 i 0 . 0
0 3 -4 i 0 -
T_3,-4(k) = C : 7
S -0
0 0 I —4 A
0 0 .- P
[ T-3,-4(1)| = = L7,
’T_37_4(2)| = L107
T—5,-4(3)| = —Lus,
T_5,-4(4)| = Lus,
[ —Lsgya Kk isodd
T-3,-4(k)| = { Lagra K iseven
99 /ILi 0 0]
11 3 1 0
. " 0 1 3 1 0
—2,—5 = :
. 0
0 ce 0 1 1
L 0 0 : 1 3 4 kxk
T2, -5(1)| = — L7,
T-2,-5(2)| = — Lo,
T-2,-5(3)] = — L1,
| T2,-5(4)| = —Lus,
T2 _5(k)| = —Log+s-

Let A = [a; ;] be an n x n matrix with row vec-
tors r1,7r9, -, 7. Suppose column k contains ex-
actly two nonzero elements a;;, # 0 # a;;, and i # j.
Then the (n— 1) x (n — 1) matrix A;;.;; obtained from
A by replacing row ¢ with a;;7; + a;,r; and deleting
row j and column £ is called the contraction of A on
column k relative to rows ¢ and j, and we say A is
contractible on column k. Similarly, if row %k contains
exactly two nonzero elements, ar; # 0 # ay; and

i # j, then the matrix Ag;; = [A]},]" is called the
contraction of A on row k relative to columns 4 and j.
If A is a nonnegative matrix and B is a contraction of
A, then per A = per B [10].

A directed pseudo graph G = (V| E), with set
of vertices V(G) = {1,2,---,n} and set of edges
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n (0|12 |3 4
FnlO0]1] 3| 821
L2246 |10
Pn | 021270 | 408
9,123 8 |19 46

Table 1:

The first few values of the sequences.
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Let Ay, = [aij]nxn be the adjacency matrix of the
graph given by Figure 1, in which
a1l = agpr1 = lyass = 3,01 =1

fort = 1,2,---,n—1,s = 2,3,---,nand [ =
3,4, ---,n and otherwise 0. That is

\Y

o -

Figure 1.

E(G) = {ei1,e2, -+, en}, is a graph in which loops
and multiple edges are allowed. A directed graph rep-
resented with arrows on its edges, each arrow pointing
towards the head of the corresponding arc. The adja-
cency matrix A(G) = [a; ;] is n X n matrix, defined
by the rows and the columns of A(G) are indexed by
V(G), in which a; ; is the number of edges jointing v;
and v; [13].

Let 7, = F,, X L,, and L,, = F,, + L,,. Then we
can get the following recurrence relations:

Frio = 3Fn+1 — Fn where Fy =0, F; = 1;

£n+2 = £n+1 + L, where Lo =2, L1 =2.

The graph gotten by join a single vertex to every ver-
tices of a path is called a fan. By [16], the number of
spanning tree of a fan with n 4 1 vertices is J,.

Let P, = P, x @, and Q,, = P, + Q). Then we
can get the following recurrence relations:

Pn+2 = 67)n+1 - Pn where 730 = 0’ 7)1 = 27

Ony2 =2Q,11 + 9y, where Qo =2, Q1 =3.

The first few values of the sequences are in Table 1.

In this paper, we investigate relationships be-
tween adjacency matrices of graphs and the F,,, the
L, the P, and the 9,, sequences. We also give com-
plex factorization formulas for the numbers.

1 Determinant representations of F,,
and £,

In this section, we consider a class of pseudo graph
given in Figure 1 and Figure 2, respectively. Then we
investigate relationships between permanents of the
adjacency matrices of the graphs and F,, and L,,.

E-ISSN: 2224-2880

11 0 -~ 0 0
o 3 1 0 --- 0
0 1 3 1 0
Ap = . . .
: . .. .0
o --- 0 1 3 1
0 0 0 1 3
Let S, be a (1, —1) matrix of order n, defined as
[ 1 1 1 1]
1 1 - 1 1
s o= | 1 -1 1 1
1 1 -1 1|

Denote the matrices A,, o .S, by H,, where A,, 0 S,
denotes Hadamard product of A, and S,,. Thus

[ 1
0
0

0
| 0

1
3
-1

0

0
1
3

0

-1

0
0

0
1
3

)

Theorem 1 Let H,, be an matrix as in (1). Then

per H, = per Hﬁb"_Q) = Fn.

Proof. By definition of the matrix H,, it can be con-

tracted on column 1. Let Hg

of H,. If r = 1, then

W =

)

be the rth contraction

LW =

Note that HT(Ll) also can be contracted by the first col-

umn, then

453

W = O

[
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D

Figure 2.
Similarly,
21 8 0 0 ]
-1 3 1 0
HS’) _ 0 -1 3 1 0
o -~ 0 -1 3 1
0 0 0 -1

Going with this induction process, we have

(n-2) _ | Fn-1 Fn-2
e[ ]

)
per H,, = per HT(L"_2) = Fu.

O
Let K, = [kij]nxn be the adjacency matrix of the
pseudo graph given in Figure 2, with

ki1 =Fkig=kiy1=2kss =1,k 1 =1

fort =2,---,n,s=2,3,---,nandl = 2,3,---,n,
and otherwise 0. That is

21 0 -~ 0 0
2 1 0 0
0 1 1 1 0 -
Kp = P - @
o --- 0 1 1 1
0 O 0 1

Theorem 2 Let K, be a matrix as in (2).
per K, = per K7(ln—2) =L,

Then

Proof. By definition of the matrix K, it can be con-

tracted on column 1. Let Kff) be the rth contraction
of K,,. If r = 1, then

(4 2 0 0 0]
11 0 0
K _ 1 1 1 0
0
0 -~ 0 1 1
L0 0 1]
E-ISSN: 2224-2880 454
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Note that K,(ll) also can be contracted by the first col-
umn, then

6 4 0 -~ 0 0 ]
11 1 0 0
K,(f): 0o 1 1 1 0
0
o --- 0 1 1 1
|0 0 0 1 ]
Similarly,
(10 6 0 0 0 ]
11 1 0 0
K® 1 1 1 0
o : : oo o0
o --- 0 1 1 1
. 0o 0 -~ 0 1 1 |

Going with this induction process, we have

(n—2) _ ['n—l Ln—2
e |

SO

O
Denote the matrices K, o S, by B,,. That is
2 2 0 -~ 0 0]
-2 1 1 o --- 0

o
o
[
_
—_
—_

Then we have
det A,, = per H,, = F,

and
det B,, = per K, = L.

Let Cp41 be an (n+ 1) x (n + 1) matrix defined
as

o
—_
—_
o
es}

C’nr‘rl: . . . .
o -~ 0 -1 1 1
o o -~ 0 -1 1

Similar to Theorem 2, it can be proofed that

per (Cpy10Sp41) =det Cpy1 = L.
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Figure 3.

2 Determinant representations of P,
and O,

In this section, we consider a class of pseudo graph
given in Figure 1 and Figure 2, respectively. Then we
investigate relationships between permanents of the
adjacency matrices of the graphs and P, and Q,,.

Let A], = [aij]nxn be the adjacency matrix of the
graph given by Figure 1, in which

!/ o ! o / o !
app =20 = a1 = 1,a

fort = 1,2,---.n—1,s8 = 2,3,---
3,4,---,n and otherwise 0. That is

2 1 0 -~ 0 0
06 1 0 --- 0
P 01 6 1 0 -
0 -~ 0 1 6 1
(000 -~ 0 1 6 |

Denote the matrices A), o S,, by U,,, where U, o S,
denotes Hadamard product of U,, and S,,. Thus

2 1 0 --- 0 O
o 6 1 0 --- 0
0 -1 6 1 0
Un = i ) (3)
o -+ 0 -1 6 1
| 0 0 0 -1 |
Theorem 3 Let U,, be an matrix as in (3). Then

per U, = per UT(Lnﬁ) =Py

Proof. By definition of the matrix U, it can be con-

tracted on column 1. Let UT(LT)

of U,. If r = 1, then

be the rth contraction

12 2 0 --- 0 O
-1 6 1 e 0
UY(LI)Z 0 -1 6 1 O
0
o --- 0 -1 6 1
0 O 0 -1 6

E-ISSN: 2224-2880

455

Fuliang Lu, Zhaolin Jiang

Figure 4.

Note that Uél) also can be contracted by the first col-
umn, then

70 12 0 --- 0 0
-1 6 1 0 --- 0
U,(f): 0 -1 6 1 0
S
o -~ 0 -1 6 1
| 0 0 0 -1 6 |
Similarly,
408 70 0 --- O O ]
-1 6 1 0 0
U,(l?’): 0 -1 1 0
: o .0
o -~ 0 -1 6 1
. 0 o0 -~ 0 -1 6 |

Going with this induction process, we have

|\

per U,, = per U,(L"72) =P,

Pn-1 Pna

(n—2) _
ug-a = | P P

SO

O
Let V}, = [vij]nxn be the adjacency matrix of the
pseudo graph given in Figure 2, with

v11 = 3,021 = Vss = 2,041 = 41 = 1

for
t=3,---,n,s=2,3,---,n
and
[=1,2,---,n—1,
and otherwise 0. That is
(3 1 0O --- 0 0]
2 1 0 0
0 1 1 0
Vo = . 4)
0 0 1 1
| 0 O 0 1 2]
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Theorem 4 Let V,, be an matrix as in (4). Then

n-2) _

= n.

per V,, = per VTE

Proof. By definition of the matrix V,,, it can be con-

tracted on column 1. Let Vn(r) be the rth contraction
of V,,. If r = 1, then

Fuliang Lu, Zhaolin Jiang

and
det B, = per V,, = Q,,.

Let C),; bean (n+ 1) x (n + 1) matrix defined

8 3 0 -~ 0 0

1 2 1 0 - 0
po_ [0 2 10

: 0

0 - 0 1 1

0 0 0 1 2

Note that Vn(l) also can be contracted by the first col-

umn, then

Similarly,

[ 19

[\

—_

N =

1

N =

Going with this induction process, we have

Qn—Q

n

SO

v (n=2) _

|

Qn—l

1

|\

per V,, = per V}E”_z) = Q,.

Denote the matrices V}, o S, by B},. That is

Then we have

E-ISSN: 2224-2880

0
1
2

detA! = per U, = P,

0
0

= O

456

as
(2 0 0 -~ 0 0]
032 1 0 - 0
, 0 -1 2 1 0
n+1: . . .
0 -~~~ 0 -1 2 1
0 0 0 -1 2

Similar to Theorem 2, it can be proofed that

per (Cy, 1 0 Spy1) =det C) | = Q.

3 Complex factorization formulas

In this section, we give complex factorization formu-
las for F,,, L, and P,,.

Theorem 5 F,, =[]}/ (3 + cos &™),
Proof. The characteristic equation of A,, is

0 = det(A, — AI)

1—A 1 0 0 0
0 3—A 1 0 0
0 1 3—Xx 1 0
B . . 0

0 0 1 3-X 1
0 0 0 1 3—A

3—A 1

1 3—X2 1

1 3—-)\ 1
1 3—A

here I is the identity matrix. By [22], the eigenvalues
of the matrix

[3— ) 1
1 3—=X 1
1 3—-Xx 1
1 3—-2)\

areS—i—cos%”(k: 1,2,---,n—1).
So the result follows. O

Theorem 6 £, = 2[[,_,(1 +icos nk—fl)

Issue 4, Volume 12, April 2013
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Proof. The characteristic equation of C), 11 is

0 = det(Crs1 — AI)

2-A 0 0 x 0 0
0 1-A 1 0 0
0 -1 1-Xx 1 0
B : : . . . 0
0 0 -1 1-2A 1
0 0 0 -1 1-2A
1—A 1
-1 1-x 1
=2~ S
-1 1-2X 1
-1 1-A
By [22], the eigenvalues of the matrix
[1-) 1 i
-1 1-X 1
-1 1-2X 1
-1 1-X ]

are 1 + 4 cos n’%(k =1,2,---,n). So the result fol-

lows. O
Then, we give complex factorization formulas for
Pr.

Theorem 7 P, = 2 ][} (6 + cos &™),
Proof. The characteristic equation of A, is

0 = det(A], — \I)

Fuliang Lu, Zhaolin Jiang

are6+cos’%(kz: 1,2,---,n—1).
So the result follows. O

4 Conclusion

We give some determinant and permanent representa-
tions of F,, L, Pn and Q,, and complex factorization
formulas for F,,, £,, and P,,. So, it is natural to ask the
question: what is the complex factorization formula
for 9,,?
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