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The Pell numbers are defined by 

Po = 0, Pf = 1, and Pn+2 = 2Pn+1+Pn for n > 0. 

In [1] it was noted that if 

p > q > 0 and p2 - q2 - 2pq = ±N, 

where N is a square or twice a square, then there exist non-negative integers a, b, and n with a > b such that 

p = aPn+2-bPn+i and q = aPn+1-bPn, 

or 

P = bPn+2 + aPn+1 and q = bPn+1+aPn . 

We shall prove this result for/7 >q > 0 and/I/ > 7 and, in addition, show that (a + b)2 - 2b2 = N (Theorem 6). 

We shall also prove the converse of this result (Theorem 8). In order to prove Theorem 6 we shall need Theorem 

2, which gives an interesting property of the fundamental solution(s) to Pell's Equation 

(1) u2 - Dv2 = C, 

where D is a positive integer which is not a perfect square and C £ 0. The converse of Theorem 2 is also true 

but it is neither stated nor proved since it is not needed to prove Theorem 6. 

Before proving these results we need to establish some definitions and theorems concerning (1). For this we 

can do no better than follow Nagel [2, 195-212] with but one_exception. _ 

If u and v are integers which satisfy (1), then we say u + VyjD is a solution to (1). \\ u + V\jDw\&u* + v*s/D 

are both solutions to (1) then they are called associate solutions iff there exists a solution* +y^jD to A-2 - Dy2 

= 1 such that 

fu + Vy/D) = {u* + v*y/D)(x + y>jD). 

The set of all solutions associated with each other forms a class of solutions of (7). Every class contains an in-

finite number of solutions [2, 204]. _ 

It is possible to decide whether the two given solutions u + v^jD and u* + v*s/D belong to the same class or 

not. In fact, it is easy to see that the necessary and sufficient condition for these two solutions to be associated 

with each other is that the two numbers 

— _ _ _ _ a n d _ _ _ 

be integers. 

If K is the class consisting of the solutions 

Uj + vjyjlJ, i = 1,2,3, - , 

it is evident that the solutions _ 

Uj- VjyjD, i = 1,2,3,—, 

also constitute a class, which may be denoted by K. The classes K and K are said to be conjugates of each other. 

Conjugate classes are in general distinct, but may sometimes coincide; in the latter case we speak of ambiguous 

classes. 
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If the diophantine equation u2 - Dv2 = C is solvable then from among all solutions u + v^/D in a given class 

K of solutions to u2 - Dv2 = C, we shall now choose a solution u0 + vQ^]D, which we shall call the fundamental 

solution of the class K. The manner of selecting this solution will depend on the value of C. 

(i) For the case C > 1, let uQ be the least positive value of u which occurs in K. If K is not ambiguous then 

the number i/0 is uniquely determined. If K is ambiguous we get a uniquely determined vQ by prescribing 

that i/0 > 0. 

(ii) For the case C < - 1 or C = 1 let i/0 be the least positive value of v which occurs in K. If K is not ambigu-

ous then the number u0 is uniquely determined. If K is ambiguous we get a uniquely determined uQ by 

prescribing that u0 > 0. _ 

In the sequel we shall always denote the fundamental solution of u2 - Dv2 = 1 byXj + ylSjD instead of by 

u0 +vQ\]D. Since there is only one class of solutions to u2 - Dv2 = 1, we have thatxx > 0 and j / ^ > 0. 

EXAMPLES._ The fundamental solution to u2 - 2v2 = 1 is 3 + 2^J2. The fundamental solution to u2 - 2v2 

= - 1 is 1 + >/21The two different classes of solutions to u2 - 2v2 = 7 have as their fundamental solutions 3 + 

v/2 and 3 - sj2. The four different classes of solutions to u2 - 2v2 = 119 have as their fundamental solution 

11 + V 2 , 11 - %/2, 13 + 5V2, 13 - 5V2. 

REMARK A. It follows from the definition of fundamental solution that if uQ + vQyJD is a fundamental 

solution to a class K of solutions to u2 - Dv2 = C, where C t 0, then 

ID ' 0 
+ VQ^JD > 0 , 

(ii) forC^M, Wu + Vy/D is in /Cthen 

\u\ > \u0\ and \v\ > | i/0|,and 

(iii) If C > 1 then u0 > 0 and if C < 1 then i/0 > 0. 

In (ii) we must exclude C = 1 since for C = 1, u = 1 and v = 0 is a solution to u2 - Dv2 = 1 but it is not 

the fundamental solution. 

Our definition of fundamental solution differs from Nagel's only when v0 < 0. In this case, while our funda-

mental solution is uQ + v0y/D his is -(uQ + v0y/D). Instead of satisfying uQ + VQSJD > 0 as our fundamental 

solutions do Nagel's satisfy i/0 > 0. 

If u0 + vQsjD is a fundamental solution to a class K of solutions to u2 - Dv2 = C, we shall sometimes simply 

say that uQ + vQ^/D is a fundamental solution to u2 - Dv2 = C. 

Lemma 1. [2, 205-207]. Letx t +ylyJD be the fundamental solution to x2 - Dy2 = 1. l f i / 0 +v0y/D 

is a fundamental solution to the equation u2 - Dv2 = -N, where N > 0, then 

O < |„oi < yplL^ and O < \uQ\ < S/WX^UN . 
1 01 ^2(xx - 1) 

If u0 +vQyjD is a fundamental solution to the equation u2 - Dv2 = N, where N > 1, then 

s/2(xx + 1) 
O < \v0\ < - ^ I J ^ r . and O < \u0\ < sJ1Mxx + 1)N. 

Theorem 2. Letxx +yxsjD be the fundamental solution tox 2 - Dy2 = 1. If 

* - - ^ 7 
xl - 1 

and if uQ +v0^/D is a fundamental solution tot/2 - Dv2 =-N, where N > 0, then v0 = \v0\> k\u0\. If 

xx-1 

and if u0 +vQsjD is a fundamental solution to u2 - Dv2 = N, where N > 1, then d/0 = \u0\ > k\vQ\. 

Proof. Assume uQ +vQ\/D is a fundamental solution to x2 - Dy2 =-N and assume | i /0 j < /r|t/0|.Thus 

-N = u2 - Dv2
Q > u2

Q-Dk2u2
0 = u2

Q(1-Dk2). 

Hence, by Lemma 1, 
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xx-1 

Therefore we have the contradiction 

2u2 

°- < N < ul(Dk2 - 1). 

J- <Dk*-f = 7Jrt„7 = ?±lJr-f 
xt - 7 (xx - V2 x l - 1 xt - 1 

Now assume u0 +vQ^JD is a fundamental solution to*/2 - Dv2 = /!/ and assume \uQ\ < k\v01. Thus 

N - ul-Dv* < k2v\ - Dv2 = (k2 - D)v% . 

Hence, by Lemma 1, 

y\ 

Therefore we have the contradiction 

2fxx + D , 2 _ D _ D[Dy\ - (xx - 1)2] _ _2D__ 2(xx + 1) 

y\ (*i -W * i - i ~ y\ ' 

Lemma 3._ Letu0 + V0<JD be a fundamental solution to a class of solutions to*/2 - Dv2 = C, where C ^ 1, 

and letx+y^/D be a solution to the equation A-2 - Dy2 = 1. In addition, let 

u + Vy/D = (u0 +voSJ~D)(x+y^d). 

If u > 0 and v> 0 then* > 0 and / > 0 (if C= 1, one requires v > 0 instead of v > 0). 

Proof. Since u0 + v0sjd > Omdu + v^/D > Q,x +y^/D > 0. This impliesx>Q. If x = J t hen /= 0 and 

the lemma is_true. Thus assume x > .1 . We need only show y > 0. Since (x +y^jD)(x - y%/D) = 1,y < 0 im-

plies x + y^/D < 1. Whence 

u + VxjD = (uQ +v0s/D)(x+yyjD) < uQ +vQ%/D . 

This is impossible since, by Remark k,u>uQ and v > i/0. 

Lemma 4. [2, 197-198]. If x + y*jD is a solution, with x > 0 and y > 0, to the diophantine equation 

x2 - Dy2 = 1 then 

(x+y^jD) = (xx+yjD)m, 

whereA-J + y_l*jD is the fundamental solution t o * 2 - Dy2 - 1 and/77 is a non-negative integer. 

If u + VyjD is a solution to the diophantine equation u2 - Dv2 = Cthen, by the definition of a fundamental 

solution, _ _ _ 

u + VyjD = (u0 + vQ^/D)(x+y*jD), 

where uQ + vQyjD is the fundamental solution to the class of solutions to u2 - Dv2 = C to which u + V*JD be-

longs and A-2 - Dy2 = 7. By Lemma 3, u > 0 and v > 0 imply x > 0 andy > 0. Hence by Lemma 4, we have 

Theorem 5. If u + V*JD is a solution in non-negative integers to the diophantine equation u2 - Dv2 = 

C, where C f 1, then there exists a non-negative integer m such that 

u + VyjD = (uQ +v0^J~D)(xx +yiy/D)m, 

where u0 + v0sjD isjhe fundamental solution to the class of solutions of u2 - Dv2 =C to which (/ + V\JD be-

longs and xx +yx\jD is the fundamental solution to x2 - Dy2 = 7. 

Theorem 6. Let N be an integer greater than one. If p > q > 0 and/72 - q2 - 2pq = eN, where e= Tor 

- 1 , then there exist non-negative integers a, b, n with a > b such that either 

(2) p = aPn+2 - bPn+1 and q = aPn+1 - bPn , 

or 

(3) p = bPn+2 + aPn+1 and q = bPn+1+aPn , 
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Also we have that (a + b)2 -2b2 = N. 

We shall now indicate how one can explicitly determine which of (2) or (3) is satisfied and also5, b, and/7. 

Since (p - q)2 - 2q2 = p2 - q2 - 2pq = eN, by Theorem 5, 

(4) (p - q) + qs/2 = (u0 + v^2)(3 + 2sj2)m = um + vm*J~2 , 

where u0 + VQ>J2 is the fundamental solution to the class of solutions of u2 - 2v2 = eN XQ which (p - q) + 

qsj2 belongs and m is a non-negative integer. 

If the product eu01/0 is negative then p and q satisfy (2), where f or e = - 1 we have a = i/0, b = i/0 - u0, n = 

2m, and a >b > 0 whereas for e= 1 we have 5 = uQ +v0, b = - i / 0 , n = 2m - 1, m > 1, and a > b > 0. 

If the product eu0v0 is positive then p and q satisfy (3), where for e = - 1 we have a = vQ, b = uQ + i/0, n = 

2m - 7, m > 1, and a > b > 0 whereas for e= 1 we have a = u0 -vQ,b = vQ,n = 2m, and a > Z? > 0. 

If u0 = 0 then p and q satisfy (2) f or a = i/0 = b and n = 2m. Furthermore, if m > 1 then p and q also satisfy 

(3) f or a = vQ = b and n = 2m - 1. 

If v0 = 0 then p and q satisfy (3) for a = u0, b-d, and n = 2m. Furthermore, \\m>\ then p and q also satis-

fy (2) with a = u0,b = Q, and n = 2m - 1. 

In order to prove Theorem 6, we shall need 

Lemma 7. Let u0 + v0\]D be a fundamental solution to u2 - 2v2 = C. For m > 0, let 

um + vm^2 = (u0 + v0 J2)(3 + 2^/2 ) m . 

We have that 

(5) Um + Vm = V0P2m+2 + ("0 ~ V())P2m+1 = (uo + ^O^lm+I + ^0P2m 

and 

(6) vm = v0P2m + i + (u0 ~ V0)P2m = ("0 + V())P2m + ^0P2m-1 -

Proof. The second equality in both (5) and (6) follows directly from Pn+2 = 2Pn+j +Pn. We shall prove 

the first equality in both (5) and (6) by induction on m. Clearly (5) and (6) are true for/77 = 0. Thus assume (5) 

and (6) are true for/7? = k. Now 

uk+1 + vk+1sj2 = (uk + vky/2)(3 + 2^/2) = (3uk + 4vk) + (2uk + 3vk)^/2 . 

Hence 

Uk+1 + Vk+1 = 5uk + 7vk = 5(uk + vk)+2vk = 5voP2k+2 + 5(uo~ vo>p2k+1 + 2v()P2k+ I+2(UQ- vo)P2k 

= 5v0P2k+2 +l5(iio ~ v0)+2v0]P2k+l+2(uo - v0) (P2k+2 - 2P2k+l) 

= (UQ + Vo)(2P2k+2 + P2k+1) + VQP2k+2 

= (UQ + v0)P2k+3 + V0P2k+2 = V0P2k+4 + (uo " V())p2k+3 -

Also 

vk+1 = 2vk + 3vk = 2(uk + vk) + vk = 2[v0P2k+2 + ("0 - vo)p2k+lJ + ^0p2k+1 + ("0 ~ v0>p2k 

= 2v0P2k+2 + 2u0P2k+1 ~ V0p2k+1 + ("0 - V0>(p2k+2 ~ 2P2k+1^ 

= (uo + Vo)p2k+2 + V0P2k+1 = ^0P2k+3 + ("0 ~ ^0>P2k+2 -

Now we are ready for the 

Proof of Theorem 6. Assume/7 >q > 0 and/72 - q2 - 2pq = eN. By (•;) - (6), we have 

(7) p = V0R2m+2 + (uo ~ V0>P2m+1 = ("0 + v0>P2m+1 + ^0P2m 

and 

(8) q = v0P2m+ i + (u0- Vo)p2m = (uo + V())p2m + v0P2m-1 > 

where u + v ^/2 's a fundamental solution to u2 - 2v2 = eN and m > 0. 

If eu0v0 < 0 and e= - 1 then let a = v0,b = v0 -u0, and n = 2m. For this choice of a, b, and/7, by (7) and 

(8), we have that (2) is satisfied. We also have that a > b, b > 0 (by Theorem 2 with D = 2) and n > 0. 

If eu0vQ < 0 and e= 1 then \eta = uQ +vQ,h = -vQ, and n = 2m - 1. For this choice of a, b, and/7, we have 

that (2) is satisfied. We also have that a ^b (by Theorem 2), and b > 0. Finally m £0 since m = 0 implies, by 

(4), the contradiction q = v0 < 0. Thus m > 1. 
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The proof for eu0v0 > 0 and the verification that (a + b)2 - 2b2 = N are left to the reader. 

Theorem 8. If p and q are integers which satisfy (2) or (3) with n > 0, a > b > 0, and (a + b)2 - 2b2 = 

N, then p > q > 0 and p2 - q2 - 2pq = eN, where e = 1 or —1. We have e= - 1 for eitherp and q satisfying 

(2) and n even or/7 and q satisfy (3) with n odd. Otherwise 6 = 1 . 

Proof. First supposep and q satisfy (2). Thus/? = 3 / ^ 2 - £ / W / and 

Q = apn+l ~ bPn = -bPn+2 + (a+2b)Pn+1. 

Hence, 

p2-q2-2pq = (a2 + 2ab - h2)(P2
+2- 2Pn+2Pn+1 - P2

n+1) = N(-1)n+1 = eN, 

where e= - 1 for A7 even and e- 1 for/7 odd. Now we shall show that/? > q > 0. Since n > 0, 

Pn+2-Pn + 1 = Pn+1+Pn > Pn+1 ' Pn -

Therefore, since a > b, 

aPn+2-aPn+1 > bPn+1-bPn. 

This impliesp > q. Since a > b and, for/? > 0, Pn+i >Pn, we see thataPn+i > bPn and this implies # > 0. 

If/7 and # satisfy (3) then 

p2~q2-2pq = N(-1)n+2 = eN, 

where e= - 1 for/7 odd ande= 1 for/7 even. Since n > 0, Pn+2>pn+i andPn+i >Pn . Hence 

/? = bPn+2 + aPn+1 > bPn+1+aPn = q. 

Since a>0,b>0, Pn+1 > O, and Pn>0,q = bPn+1 +aPn > O. 
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