$$
2 x^{2} \equiv x^{2}+y^{2} \equiv z^{2}(\bmod p)
$$

By definition, x^{2} is a quadratic residue of p. The above congruence implies $2 x^{2}$ is also a quadratic residue of p. If p were of the form $8 t \pm 3$, then 2 would be a quadratic nonresidue of p and since x^{2} is a quadratic residue of $p, 2 x^{2}$ would be a quadratic nonresidue of p, a contradiction. Thus p must be of the form $8 t \pm 1$.

Now, if we assume that there is a finite number of primes of the form $8 t \pm 1$, and if we let m be the product of these primes, then we obtain a contradiction by imitating the above proof that there are infinitely many primes.

REFERENCE

1. W. Sierpinski. "Pythagorean Triangles." Scripta Mathematica Studies, No. 9. New York: Yeshiva University, 1964.

AN APPLICATION OF PELL'S EQUATION

DELANO P. WEGENER
Central Michigan University, Mt. Pleasant, MI 48859
The following problem solution is a good classroom presentation or exercise following a discussion of Pell's equation.

Statement of the Problem
Find all natural numbers α and b such that

$$
\frac{a(a+1)}{2}=b^{2} .
$$

An alternate statement of the problem is to ask for all triangular numbers which are squares.

> Solution of the Problem

$$
\frac{a(a+1)}{2}=b^{2} \Longleftrightarrow a^{2}+a=2 b^{2} \Longleftrightarrow a^{2}+a-2 b^{2}=0 \Longleftrightarrow a=\frac{-1 \pm \sqrt{1+8 b^{2}}}{2} \Longleftrightarrow \exists
$$

$$
\text { an odd integer } t \text { such that } t^{2}-2(2 b)^{2}=1
$$

This is Pell's equation with fundamental solution [1, p. 197] $t=3$ and $2 b=2$ or, equivalently, $t=3$ and $b=1$. Note that $t=3$ implies

$$
a=\frac{-1 \pm 3}{2},
$$

but, according to the following theorem, we may discard $a=-2$. Also note that t is odd.

Theorem 1: If D is a natural number that is not a perfect square, the Diophantine equation $x^{2}-D y^{2}=1$ has infinitely many solutions x, y.

All solutions with positive x and y are obtained by the formula

$$
x_{n}+y_{n} \sqrt{D}=\left(x_{1}+y_{1} \sqrt{D}\right)^{n},
$$

where x_{1}, y_{1} is the fundamental solution of $x^{2}-D y^{2}=1$ and where n runs through all natural numbers.

A comparison of $\left(x_{n}+y_{n} \sqrt{2}\right)(3+2 \sqrt{2})$ and $\left(\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right)\binom{x_{n}}{y_{n}}$ shows that all solutions
of $t^{2}-2(2 b)^{2}=1$ are obtained by

$$
\left(\begin{array}{ll}
3 & 4 \\
2 & 3
\end{array}\right)\binom{t_{n}}{2 b_{n}}=\binom{t_{n+1}}{2 b_{n+1}}
$$

and hence all solutions of $\frac{a(a+1)}{2}=b^{2}$ are obtained from $a_{n}=\frac{t_{n}-1}{2}, b_{n}=\frac{2 b_{n}}{2}$. Note that t_{n} is odd for all n so a_{n} is an integer.

CENTRAL FACTORIAL NUMBERS AND RELATED EXPANSIONS
Ch. A. CHARALAMBIDES
University. of Athens, Athens, Greece

1. INTRODUCTION

The central factorials have been introduced and studied by Stephensen; properties and applications of these factorials have been discussed among others and by Jordan [3], Riordan [5], and recently by Roman and Rota [4].

For positive integer m,

$$
x^{[m, b]}=x\left(x+\frac{1}{2} m b-b\right)\left(x+\frac{1}{2} m b-2 b\right) \cdots\left(x-\frac{1}{2} m b+b\right)
$$

defines the generalized central factorial of degree m and increment b. This definition can be extended to any integer m as follows:

$$
\begin{aligned}
x^{[0, b]} & =1 \\
x^{[-m, b]} & =x^{2} / x^{[m+2, b]}, m \text { a positive integer }
\end{aligned}
$$

The usual central factorial $(b=1)$ will be denoted by $x^{[m]}$. Note that these factorials are called "Stephensen polynomials" by some authors.

Carlitz and Riordan [1] and Riordan [5, p. 213] studied the connection constants of the sequences $x^{[m]}$ and x^{n}, that is, the central factorial numbers $t(m, n)$ and $T(m, n)$:

$$
x^{[m]}=\sum_{n=0}^{m} t(m, n) x^{n}, x^{m}=\sum_{n=0}^{m} T(m, n) x^{[n]}
$$

these numbers also appeared in the paper of Comtet [2]. In this paper we discuss some properties of the connection constants of the sequences $x^{[m, g]}$ and $x^{[n, h], ~} h \neq$ g, of generalized central factorials, that is, the numbers $K(m, n, s)$:

$$
\begin{gathered}
x^{[m, g]}=\sum_{n=0}^{m} g^{m} h^{-n} K(m, n, s) x^{[n, h]}, s=h / g . \\
\text { 2. EXPANSIONS OF CENTRAL FACTORIALS }
\end{gathered}
$$

The central difference operator with increment α, denoted by δ_{a}, is defined by

$$
\delta_{a} f(x)=f(x+a / 2)-f(x-a / 2)
$$

Note that

$$
\begin{equation*}
\delta_{a}=E_{a}^{\frac{1}{2}}-E_{a}^{-\frac{1}{2}}=E_{a}^{-\frac{1}{2}} \Delta_{a} \tag{2.1}
\end{equation*}
$$

