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Abstract

In this short note, we give a factorization of the Pascal matrix. This result was apparently missed by Lee et al. [Some combinatorial
identities via Fibonacci numbers, Discrete Appl. Math. 130 (2003) 527-534].
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1. Introduction

For a fixed n, the n x n lower triangular Pascal matrix, P, = [p; ;i j=1,2,... x> (s€€ [1,6]), is defined by

H) Wi

. =27,

pij = (, ! (1)
0 otherwise.

Let F, be the nth Fibonacci number with the generating series Y - o F,x" = ﬁ The n x n Fibonacci matrix

Fn=1fijli,j=1,2,..n is the unipotent lower triangular Toeplitz matrix defined by
Fi_jy ifi—j+120,

e 2
0 ifi —j+1<0.

fij= {
In [4], Lee et al. discussed the factorizations of Fibonacci matrix %, and the eigenvalues of symmetric Fibonacci
matrices &, ,1; The inverse of %, was also given as follows:
1 if i =,
—1 ip ..
Ty = lij=10n=1 -1 ifi—2<j<i—1, 3)

0 otherwise.
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In fact, formula (3) is an immediate consequence of the isomorphism between lower formal power series and lower
triangular Toeplitz matrices.
In [5], Lee et al. obtained the following result:

Pn:?nn(fn’ (4)

where &), = [l; j1; j=1,2,...n is defined by

.....

i—1 i—2 i—3
Lij=1 . -1 . -\ . .
j—1 j—1 j—1
In this short note, we give a second factorization of the Pascal matrix which was apparently missed by the authors

in [5].

2. The main results

First, we define an n x n matrix #, = [r; j1I; j=1,2,....n as follows:

i—1 i—1 i—1

rij =\ . - )\ : ©)
j—1 j j+1

From the definition of £, it is easy to see that Z%,, is unipotent lower triangular. It satisfies r; | = —%(i + 1) (@ — 2) for

i>2and Fij="ri—1,j +ri—1,j-1 fori, j>2.
Next we give the following factorization of the Pascal matrix.

Theorem 2.1. We have
P, =R, 7 ,. (6)

Proof. It suffices to prove P, %, ! = %,. For i >1 we have Zi:lpi»kflc/,l =pinfiy+piafhy +rizfi =1+
() 0+ (51) D = =46 + DG = 2) =i, and for i>1, j>2, we have X4 pikfi; = pisf); +

i—1 i—1 i—1 L . _ .
Pij+1fip1j T Pij+2fis0; = <}_1> - (lj ) - (;‘+1> = r;, j, which implies that P, 7, ' = #,, as desired. [

Example.
1 0 000 1 0 0 0 0 1 0 000
1 1.0 00 0 1 0 0 0 1 1.0 00
1 210 0)=]1-2 1 100 2 1 1 00
1 33 10 -5 -1 2 1 0 32110
1 4 6 4 1 -9 -6 1 3 1 53 2 1 1

From the theorem, we have the following combinatorial identity involving the Fibonacci numbers.

Corollary 2.2.

n—1 1
( )=Fn—r+1+(n_2)Fn—r+E(”z_sn'i‘z)Fn—r—l

r—1
n—3
n—1 n m—kn—-—k—1)
+2<k—1)[2_z_ k(k + 1) }F""“‘ @
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In particular,

g((zii)—("Zl>‘(Zli>>Fk=1- ®)

Lemma 2.3.

i i—2 i—2 =2\ e L i) o
k-2 k-1 k k=TT
k=3
Proof. We argue by induction on i. If i = 3, 4, then lemma is true, respectively. Suppose the lemma is true for i >4.
Then
A ([i—1 i— 1 i—1
) - - F
k—2 k—1 k
k=3
i . i+1 . .
i—2 i—2 -2 i—2 i—2 i—2
21622 -G2)- () k+2{( )=o)
i—2 -2 F
k— k+1

1 , (/i
:5(z+1)(z—2)+;{(k )

(7
=%(i+1)(i—2)+/§{(li > ( ) < 2)}{Fk+Fkl}

i—2

2

)2 (7)] e
:(i+1)(i—2)+1—(i—2)—(i;2>+i{(;€i?>_<i;2>_<li:j)}Fk

k=1

=%(i+1)(i—2)+1—(i—2)—( )+ (+DG-2)

(by applying (8))

=(i+1)(i—2)+1—<i—2>—(i;2)+1
“Livoi-
—§(l+)(l—)-

Hence the lemma is also true for i 4+ 1. By induction, we complete the proof. [

Note. Since %(i + 1)(i — 2) is a linear combination of (,’() fork=0,1,2 (or (’tl )), the referee pointed out that
Lemma 2.3 follows also from Theorem 2.1.
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We define the n x n matrices %,,, %, and %, by

1 0 0 0 0 0
0 1 0 0 0 0
—-F 1 1 0 0 0
U, = —F, 0 1 1 0 0 , (10)
—Fs 0 0 1 0 0
-F, 0 0 0 ... 1 1

Ui =T ® Uy and B, = [11® Ry_1, i.c., A is the matrix A shifted one row down and one column to the right with
first column given by (1, 0, 0, .. .). From the definition of %y, we have % = %, = I,, and %, = % ,. Hence

Lemma 2.4.
- (1D
Proof. The (i, j) element of %, isric1,j-1, @, j=2,3,...,n),or1(i=1,j=1,0or0G # 1, j=1ori=1,j # 1).

Let Z,U,, = (D;,j) and %, = (u; ;). Obviously, Dy =1=ry,1, D21 =0=rp 1 and D; ; =0 (i < j). Fori >3, by
Lemma 2.3, we have

i
Di = Z Fie1k—1Uk,1
k=1

S ()

— %(i + 1D —2)

=r,~,1.
When i > j >2, we have
i
D; ;= Zrifl,kfluk,j =ri1j-1+rio1j="rij.

k=1

Thus, Z, = RyU,. O

Example.
1 0 0 0 O 1 0 0 0O 1 0 0 0 O
0 1 0 0 0 0 0 0 O 0O 1 0 0 O
RAs=1-2 1 1 0 0]=]0 0 1 00 -2 1 1 0 0|=%s%s.
-5 -1 2 1 0 0 -2 1 1 0 -3 01 10
-9 -6 1 3 1 0 -5 -1 2 1 -5 0 0 1 1

An immediate consequence of Lemma 2.4 and the definition of the % is
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Theorem 2.5.

12)

Example.

0 0 00

1

0 00

-2

0
0

0

1

1
1

00 O
0 0 -2

) o

1

1

0 0 0

K5 =

-5 0 0 1

1

1

-3 0

00 0O

Let

S O =

O -

— o O

S O -

S — O

1
So=11
1
So® Iy, forke N, 7, =[11®F,-1,G1=1,,Go=1,_3® S_1,and Gy = I,,_ & Sk—3 for k >3. In [4], the

Sk =

authors gave the following result:

.Gp.

Fn=G1G,y..

Hence we have:

Theorem 2.6.

13)

.Gy

Uy —1UyG1Gy ..

P, 2@_/1@_/2 ..

Example.

0
0
1
0
-2

0 0
0 0

00 0O
1 000
0 0 0
0 0010
0 0 0 01

1
0
0

00 00
1 000
2 0 0
3310
4 6 4 1

1
1
1
1
1

|

00 0 0y 1 00 0O
0

1

00 00
0

1

0

0 0 0 1 0 00 1 0 0 0

1

1

0 0 0

00 0O

|

1
1

0 0 0 0

1

0

0 0 0O

0 0 0

1

0

1

1

0 0 0

0 0 0

1

1
1

00 0 O

-3 0

-5 0 0 1 1

1

0

0 0 0

1

1/ N0 0 0 O

0 0 00
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3. A remark

In this note, all matrix-identities are expressed using finite matrices. Since all matrix-identities involve lower-
triangular matrices, they have an analogue for infinite matrices. We state them briefly as follows.

Let P, #, %, % and Z are the infinite cases of the matrices P,, & ,, £,, U, and 2%, respectively. Furthermore,
define

w® =1 ou
and

A0 =1, © 2.
Then P = 7 % = RF (cf. (4) and Theorem 2.1), Z = Z# V% (cf. Lemma 2.4) and 2 = 2TV . . yPyDyy,
where 7 is an arbitrary nonnegative integer (cf. Theorem 2.5).
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