
23 11

Article 07.7.4
Journal of Integer Sequences, Vol. 10 (2007),2

3

6

1

47

Motzkin Numbers of Higher Rank:

Generating Function and Explicit Expression

Toufik Mansour
Department of Mathematics

University of Haifa
Haifa 31905

Israel
toufik@math.haifa.ac.il

Matthias Schork1

Camillo-Sitte-Weg 25
60488 Frankfurt

Germany
mschork@member.ams.org

Yidong Sun
Department of Mathematics
Dalian Maritime University

116026 Dalian
P. R. China

sydmath@yahoo.com.cn

Abstract

The generating function for the (colored) Motzkin numbers of higher rank intro-
duced recently is discussed. Considering the special case of rank one yields the corre-
sponding results for the conventional colored Motzkin numbers for which in addition
a recursion relation is given. Some explicit expressions are given for the higher rank
case in the first few instances.

1All correspondence should be directed to this author.
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1 Introduction

The classical Motzkin numbers (A001006 in [1]) count the numbers of Motzkin paths (and
are also related to many other combinatorial objects, see Stanley [2]). Let us recall the
definition of Motzkin paths. We consider in the Cartesian plane Z × Z those lattice paths
starting from (0, 0) that use the steps {U,L,D}, where U = (1, 1) is an up-step, L = (1, 0)
a level-step and D = (1,−1) a down-step. Let M(n, k) denote the set of paths beginning
in (0, 0) and ending in (n, k) that never go below the x-axis. Paths in M(n, 0) are called
Motzkin paths and mn := |M(n, 0)| is called n-th Motzkin number. Sulanke showed [3] that
the Motzkin numbers satisfy the recursion relation

(n + 2)mn = (2n + 1)mn−1 + 3(n − 1)mn−2 (1)

and it is a classical fact (see Stanley [2]) that their generating function is given by

∑

n≥0

mnx
n =

1 − x −
√

1 − 2x − 3x2

2x2
. (2)

Those Motzkin paths which have no level-steps are called Dyck paths and are enumerated by
Catalan numbers (A000108 in [1]), see Stanley [2]. In recent times the above situation has
been generalized by introducing colorings of the paths. For example, the k-colored Motzkin
paths have horizontal steps colored by k colors (see [4, 5] and the references given therein).
More generally, Woan introduced [6, 7] colors for each type of step. Let us denote by u

the number of colors for an up-step U , by l the number of colors for a level-step L and
by d the number of colors for a down-step D. (Note that if we normalize the weights as
u + l + d = 1 we can view the paths as discrete random walks.) One can then introduce
the set M (u,l,d)(n, 0) of (u, l, d)-colored Motzkin paths and the corresponding (u, l, d)-Motzkin

numbers m
(u,l,d)
n := |M (u,l,d)(n, 0)|. Woan has given [6] a combinatorial proof that the (1, l, d)-

Motzkin numbers satisfy the recursion relation

(n + 2)m(1,l,d)
n = l(2n + 1)m

(1,l,d)
n−1 + (4d − l2)(n − 1)m

(1,l,d)
n−2 . (3)

Choosing l = 1 and d = 1 yields the recursion relation (1) of the conventional Motzkin

numbers mn ≡ m
(1,1,1)
n . Note that choosing (u, l, d) = (1, k, 1) corresponds to the k-colored

Motzkin paths. Defining mk,n := |M (1,k,1)(n, 0)|, one obtains from (3) the recursion relation
(n + 2)mk,n = k(2n + 1)mk,n−1 + (4− k2)(n− 1)mk,n−2 for the number of k-colored Motzkin
paths. Sapounakis and Tsikouras derived [4] the following generating function for mk,n:

∑

n≥0

mk,nx
n =

1 − kx −
√

(1 − kx)2 − 4x2

2x2
. (4)

For k = 1 this identity reduces to (2) for the conventional Motzkin numbers mn ≡ m1,n. One
of the present authors suggested [8] (as “Problem 1”) that it would be interesting to find the

recursion relation and generating function for the general (u, l, d)-Motzkin numbers m
(u,l,d)
n .
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We will prove in Theorem 2.1 thet m
(u,l,d)
n = m

(1,l,ud)
n , yielding the desired recursion relation.

Furthermore, a generating function and an explicit expression is derived for m
(u,l,d)
n . In [8] it

was furthermore suggested to find the recursion relation and the generating function for the
(colored) Motzkin numbers of higher rank (“Problem 2”). These numbers were introduced
by Schork [9] in the context of “duality triads of higher rank” (and have also been considered
before as “excursions”, see, e.g., [10]). In view of this connection Schork conjectured [8] that
the Motzkin numbers of rank r satisfy a recursion relation of order 2r + 1. Very recently,
Prodinger was the first to observe [11] that this conjecture does not hold by discussing
explicitly the case r = 2. In particular, already for the first nontrivial cases r = 2, 3 the
relations involved become very cumbersome. We will describe in Theorem 3.2 the generating
function for the Motzkin numbers of higher rank and discuss then several particular cases
explicitly.

2 Recursion relation and generating function for the

general (colored) Motzkin numbers

Theorem 2.1. The general (u, l, d)-Motzkin numbers satisfy the recursion relation

(n + 2)m(u,l,d)
n = l(2n + 1)m

(u,l,d)
n−1 + (4ud − l2)(n − 1)m

(u,l,d)
n−2 . (5)

A generating function is given by

∑

n≥0

m(u,l,d)
n xn =

1 − lx −
√

(1 − lx)2 − 4udx2

2udx2
, (6)

implying the explicit expression

m(u,l,d)
n =

n

2
∑

j=0

1

j + 1

(

2j

j

)(

n

2j

)

ujdjln−2j. (7)

Proof. Let us prove that m
(u,l,d)
n = m

(1,l,ud)
n for all n ≥ 0. In order to see that, let U be any

up-step in a Motzkin path; we call (U,D) a pair if the down-step D is the first down-step
on the right-hand side of U which has the same height as U . The set of pairs of a Motzkin
path is uniquely determined and for each pair exist ud possible combinations of colorings.
The same number of possible colorings result if the up-steps u are always colored white (i.e.,
u = 1) and if each down-step can be colored by ud colors (which we call “alternative colors”
to distinguish them from the original colors). Thus, given a (u, l, d)-Motzkin path we may
replace the colors (uj, dj) (with 1 ≤ uj ≤ u and 1 ≤ dj ≤ d) for the j-th pair (U,D) by
the combination of alternative colors (1, cj) where cj is the ([uj − 1]d + dj)-th alternative
color (with 1 ≤ cj ≤ ud). Replacing the colors of all pairs in this fashion by the alternative
colors yields a (1, l, ud)-Motzkin path. Thus, we have constructed a bijection between the
set of (u, l, d)-Motzkin paths of length n and set of (1, l, ud)-Motzkin paths of length n,
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thereby showing that m
(u,l,d)
n = m

(1,l,ud)
n . From this identity and (3) we immediately obtain

(5). An equation for the generating function M(u,l,d)(x) :=
∑

n≥0 m
(u,l,d)
n xn is obtained from

the “first return decomposition” of a nonempty (u, l, d)-Motzkin path M : either M = LM ′

or M = UM ′DM ′′, where M ′,M ′′ are (u, l, d)-Motzkin paths. The two possibilities give the
contributions lxM(u,l,d)(x) and udx2(M(u,l,d)(x))2. Hence, M(u,l,d)(x) satisfies

M(u,l,d)(x) = 1 + lxM(u,l,d)(x) + udx2(M(u,l,d)(x))2,

yielding

M(u,l,d)(x) =
1 − lx −

√

(1 − lx)2 − 4udx2

2udx2

which is the asserted equation (6) for the generating function. Note that this may also be
written as

M(u,l,d)(x) =
1

1 − lx
C

(

udx2

(1 − lx)2

)

,

where

C(y) =
1 −√

1 − 4y

2y
=

∑

n≥0

1

n + 1

(

2n

n

)

yn

is the generating function for the Catalan numbers (see Stanley [2]). Thus,

M(u,l,d)(x) =
∑

j≥0

1

j + 1

(

2j

j

)

ujdjx2j

(1 − lx)2j+1
.

Recalling M(u,l,d)(x) =
∑

n m
(u,l,d)
n xn, a comparison of coefficients shows that the number of

(u, l, d)-Motzkin paths of length n is given by (7).

3 Generating function for the general (colored) Motzkin

numbers of higher rank

We will now generalize the situation considered in the previous section to the case of higher
rank. One of the present authors discussed [9] in the context of duality triads of higher rank
(where one considers recursion relations of higher order, or equivalently, orthogonal matrix
polynomials [12]) why it is interesting to consider the situation where the steps of the paths
can go up or down more than one unit. The maximum number of units which a single step
can go up or down will be called the rank. More precisely, let r ≥ 1 be a natural number.
The set of admissable steps consists of:

1. r types of up-steps Uj = (1, j) with weights uj for 1 ≤ j ≤ r.

2. A level-step L = (1, 0) with weight l.

3. r types of down-steps Dj = (1,−j) with weights dj for 1 ≤ j ≤ r.
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In the following we write (u, l,d) := (ur, . . . , u1, l, d1, . . . , dr) for the vector of weights.

Definition 3.1. [9] The set M (u,l,d)(n, 0) of (u, l,d)-colored Motzkin paths of rank r and
length n is the set of paths which start in (0, 0), end in (n, 0), have only admissable steps and

are never below the x-axis. The corresponding number of paths, m
(u,l,d)
n := |M (u,l,d)(n, 0)|,

will be called (u, l,d)-Motzkin number of rank r.

Motzking paths of higher rank were considered in the literature already before [9] under
the name “excursions”, see, e.g., [10]. In [8] it is discussed how one may associate with
each Motzkin path of rank r and length n a conventional Motzkin path of length rn in a
straightforward fashion. However, it was also discussed that this association is no bijection
and that the case of higher rank is more subtle. In the following we derive an equation that
the generating function for the Motzkin numbers of higher rank satisfies. In order to do that
we need the following notations. We denote the set of all (u, l,d)-Motzkin paths of rank r

that start at height s and end at height t (and have only admissable steps and are never
below the x-axis) by As,t, and we denote the subset of paths of length n by As,t(n). Define

As,t ≡ As,t(x) :=
∑

n≥0

|As,t(n)|xn.

We extend this notation by defining As,t = 0 for all s < 0 or t < 0. For s, t ≥ 0 we denote
the subset of paths in As,t that never touch the x-axis by A∗

s,t. In the following we make
several times use of the relation A∗

s,t ≃ As−1,t−1, or, |A∗
s,t(n)| = |As−1,t−1(n)|, implying

A∗
s,t(x) :=

∑

n≥0

|A∗
s,t(n)|xn = As−1,t−1(x). (8)

Theorem 3.2. The generating function A0,0 ≡ M(u,l,d)(x) =
∑

n≥0 m
(u,l,d)
n xn for the general

(u, l,d)-Motzkin numbers of rank r satisfies

A0,0 = 1 + lxA0,0 + x2A0,0

r
∑

p=1

r
∑

q=1

updqAp−1,q−1, (9)

where the generating functions Ai,j with 1 ≤ i ≤ r − 1 and 0 ≤ j ≤ r − 1 satisfy

Ai,j = Ai−1,j−1 + xA0,j

r
∑

q=1

dqAi−1,q−1,

and for all 1 ≤ j ≤ r − 1,

A0,j = xA0,0

r
∑

p=1

upAp−1,j−1.
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L

M
′

Up Dq

M
′

M
′′

Figure 1: First return decomposition of a Motzkin path of rank r.

Proof. From the definitions, a nonempty (u, l,d)-Motzkin path M can start either by a level
step L or an up-step Up with 1 ≤ p ≤ r. In the case the path starts by an up-step Up, we
use the “first return decomposition‘” of M , i.e., we write M as M = UpM

′DqM
′′ where M ′′

is an arbitrary (u, l,d)-Motzkin path and M ′ ∈ Ap,q such that M ′ does not touch the height
zero, see Figure 1. Thus, M ′ ∈ A∗

p,q and the generating function A0,0 satisfies

A0,0 = 1 + lxA0,0 + x2A0,0

r
∑

p=1

r
∑

q=1

updqAp−1,q−1

where we have used (8). This shows (9). Now, let us write an equation for the generating
function Ai,j (with 1 ≤ i ≤ r−1 and 0 ≤ j ≤ r−1) for the number of (u, l,d)-Motzkin paths
Qij = UiPijDj where Pij ∈ Ai,j. In order to do that, we use the first return decomposition
of such paths: either Qij = UiP

′
ijDj such that P ′

ij does not touch the height zero (i.e.,

Ui
Dj

P
′

ij

Ui
DjDq

P
′

iq P
′′

0j

Figure 2: The case 1 ≤ i ≤ r − 1 and 0 ≤ j ≤ r − 1.

P ′
ij ∈ A∗

i,j), or Qij = UiP
′
iqDqP

′′
0jDj such that Dq is the first down-step that touches the

height zero (thus, P ′
iq does not touch the height zero, i.e., P ′

iq ∈ A∗
i,q) as described in Figure 2.

Using (8), the generating function Ai,j thus satisfies

Ai,j = Ai−1,j−1 + xA0,j

r
∑

q=1

dqAi−1,q−1,

as claimed.
In order to write an equation for the generating function A0,j (with 0 ≤ j ≤ r − 1), let

us consider the last up-step Up from height zero (there must exist at least one such up-step).
In this case each (u, l,d)-Motzkin path can be decomposed as P ′UpP

′′
pjDj, where P ′ is an

DjUp

P
′′

pj

P
′

Figure 3: The case i = 0 and 1 ≤ j ≤ r − 1.

arbitrary (u, l,d)-Motzkin path and P ′′
pj ∈ Ap,j such that it does not touch the height zero
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(i.e., P ′′
pj ∈ A∗

p,j), as described in Figure 3. Thus, using again (8), the generating function
A0,j satisfies

A0,j = xA0,0

r
∑

p=1

upAp−1,j−1,

which completes the proof.

Example 3.3. Let us consider as an example the case r = 1. It follows from Theorem 3.2
that

0 = 1 + (lx − 1)A0,0 + u1d1x
2A2

0,0, (10)

yielding

A0,0 ≡ M(u1,l,d1)(x) =
1 − lx −

√

(1 − lx)2 − 4u1d1x2

2u1d1x2

as described in the proof of Theorem 2.1. This implies - according to (7) - that

m(u1,l,d1)
n =

n/2
∑

j=0

1

1 + j

(

2j

j

)(

n

2j

)

ln−2j(u1d1)
j.

Example 3.4. As another example, it follows from Theorem 3.2 that one has for r = 2 that















A0,0 = 1 + lxA0,0 + x2A0,0(u1d1A0,0 + u1d2A0,1 + u2d1A1,0 + u2d2A1,1),
A0,1 = xA0,0(u1A0,0 + u2A1,0),
A1,0 = xA0,0(d1A0,0 + d2A0,1),
A1,1 = A0,0 + xA0,1(d1A0,0 + d2A0,1).

Solving the above system of equations we obtain that

0 = 1 + (lx − 1)A0,0 − x2(d2u2 − d1u1)A
2
0,0 + x2(xu2

1d2 + xu2d
2
1 − 2xlu2d2 + 2d2u2)A

3
0,0

−u2d2x
4(d2u2 − d1u1)A

4
0,0 + x4u2

2d
2
2(lx − 1)A5

0,0 + x6u3
2d

3
2A

6
0,0.

Note that, if we set u2 = d2 = 0 in the above expression then we get (10). It is also
interesting to consider the case (u, l,d) = (1, 1,1) of non-colored Motzkin paths of rank 2,
representing the most natural generalization of the conventional Motzkin paths. The above
equation reduces in this case to

0 = 1 + (x − 1)A0,0 + 2x2A3
0,0 + x4(x − 1)A5

0,0 + x6A6
0,0

= (1 + xA0,0)
2(1 − (x + 1)A0,0 + x(x + 2)A2

0,0 − x2(x + 1)A3
0,0 + x4A4

0,0).

Setting A0,0 ≡ M(1,1,1)(x) and using that A0,0 is a formal power series (thus, A0,0 6= − 1
x
),

this is equivalent to

0 = 1 − (x + 1)M(1,1,1)(x) + x(x + 2)M2
(1,1,1)(x) − x2(x + 1)M3

(1,1,1)(x) + x4M4
(1,1,1)(x),
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as described already in [10, 11]. To obtain a recursion relation for mn ≡ m
(1,1,1)
n , one can

use the MAPLE program package gfun written by Salvy et al. [13]. Prodinger has done this
[11] to obtain

625(n + 3)(n + 2)(n + 1)mn − 125(n + 3)(n + 2)(7n + 27)mn+1 − 50(n + 3)(5n2 + 24n + 23)mn+2

+(41890 + 30860n + 7540n
2 + 610n

3)mn+3 − (6844 + 5151n + 1214n
2 + 91n

3)mn+4

−(n + 7)(23n2 + 301n + 976)mn+5 + 2(2n + 13)(n + 8)(n + 7)mn+6 = 0

and mentions that Salvy has informed him that this recursion of order 6 is minimal. Thus,
the Motzkin numbers of rank r = 2 satisfy a 7-term recursion relation and not a 2 ·2+1 = 5-
term relation as the conjecture of Schork [8] implies. Thus, the conjecture does not hold!

This was first observed by Prodinger [11]. The first few values of mn ≡ m
(1,1,1)
n are given in

Table 1; this sequence is sequence A104184 in [1].

n = 1 2 3 4 5 6 7 8 9 10

m
(1,1,1)
n 1 3 9 32 120 473 1925 8034 34188 147787

Table 1: The first few values of the non-colored Motzkin numbers of rank two.

The above example shows that the general case (where the weights are not restricted to
1) seems to be extremely complicated (see Theorem 3.2). Thus, from now on let us consider
the case where all weights are equal to 1, i.e., ui = l = di = 1 for 1 ≤ i ≤ r. In this case
we denote the set of paths by Bs,t or Bs,t(n) and the generating function by Bi,j (instead of
Ai,j). Then one has

Bs,t = Bt,s (11)

which can be easily seen since to each path P ∈ Bs,t(n) one can associate a path P ′ ∈ Bt,s(n)
by traversing P in opposite direction. Since this is clearly a bijection the above equation
follows. Theorem 3.2 shows that one has to solve in the general case a system of r2 equations
for the r2 unknowns Ai,j. Due to the symmetry (11) this reduces in the case where all

weights are equal to 1 to a system of r(r+1)
2

equations in the r(r+1)
2

unknowns Bi,j (where
r − 1 ≥ i ≥ j ≥ 0).

Example 3.5. Theorem 3.2 with (11) gives for r = 3 the following set of 3·4
2

= 6 equations































B0,0 = 1 + xB0,0 + x2B0,0(B0,0 + 2B1,0 + 2B2,0 + 2B2,1 + B1,1 + B2,2),
B1,0 = xB0,0(B0,0 + B1,0 + B2,0),
B2,0 = xB0,0(B1,0 + B1,1 + B2,1),
B1,1 = B0,0 + xB1,0(B0,0 + B1,0 + B2,0),
B2,1 = B1,0 + xB1,0(B1,0 + B1,1 + B2,1),
B2,2 = B1,1 + xB2,0(B1,0 + B1,1 + B2,1).

8
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Solving the above system of equations we obtain that the generating function B0,0 ≡ M(1,1,1)(x)
for the non-colored Motzkin numbers of rank 3 satisfies

0 = 1 − (1 + x)B0,0 + 2xB2
0,0 + x2(1 − 2x)B4

0,0 + 2x5B6
0,0 − x6(1 + x)B7

0,0 + x8B8
0,0.

Now, we would like to give a recursion relation for the sequence m
(1,1,1)
n . This can be auto-

matically done with MAPLE’s program gfun: The procedure “algeqtodiffeq” translates the
(algebraic) equation for B0,0 ≡ M(1,1,1)(x) into an equivalent differential equation of order 7
(it is too long to present here) and then the procedure “diffeqtorec” translates the differential

equation into a 28-term recursion relation. The first few values of m
(1,1,1)
n are given in Table

2; this sequence seems not to be listed in [1].

n = 1 2 3 4 5 6 7 8 9 10

m
(1,1,1)
n 1 4 16 78 404 2208 12492 72589 430569 2596471

Table 2: The first few values of the non-colored Motzkin numbers of rank three.

Example 3.6. Theorem 3.2 with (11) gives for r = 4 a set of 4·5
2

= 10 equations for the
Bi,j. As above, it is possible to solve this system and obtain that the generating function
B0,0 ≡ M(1,1,1)(x) for the non-colored Motzkin numbers of rank 4 satisfies the following
equation

0 = 1 + (x − 1)B0,0 − 2xB2
0,0 − x(x + 2)(x − 1)B3

0,0 − x2(x − 2)(x + 2)B4
0,0

+x2(x − 1)B5
0,0 + x3(x − 2)(x + 1)2B6

0,0 + x4(x + 1)(x − 1)2B7
0,0 − x5(2x2 − 3x − 4)B8

0,0

+x6(x + 1)(x − 1)2B9
0,0 + x7(x − 2)(x + 1)2B10

0,0 + x8(x − 1)B11
0,0 − x10(x − 2)(x + 2)B12

0,0

−x11(x + 2)(x − 1)B13
0,0 − 2x13B14

0,0 + x14(x − 1)B15
0,0 + x16B16

0,0.

The first few values of the corresponding Motzkin numbers m
(1,1,1)
n of rank 4 are given in

Table 3; this sequence seems not to be listed in [1].

n = 1 2 3 4 5 6 7 8 9 10

m
(1,1,1)
n 1 5 25 155 1025 7167 51945 387000 2944860 22791189

Table 3: The first few values of the non-colored Motzkin numbers of rank four.

Remark. Let us consider the non-colored Motzkin numbers of rank r (i.e., all weights are
equal to 1). They satisfy a τ(r)-term recursion relation where τ(r) is defined by this property
(and is minimal). This yields a well-defined sequence {τ(r)}r∈N starting - according to the
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above examples - with 3, 7, 28, . . .. The original conjecture τ(r) = 2r + 1 proved to be too
naive, but it seems that an exact formula for τ(r) will be very difficult to obtain. Thus,
approximations or bounds would also be interesting. Considering the equations for the
generating functions B0,0 ≡ M(1,1,1)(x) of non-colored Motzkin numbers given in the above
examples for rank r ≤ 4, one observes that they all have the form f(x,B0,0) = 0 where f(x, y)
is a polynomial of degree 2r in y with coefficients in Z[x] (and with constant coefficient 1);
more precisely, the coefficient ai(x) of yi is a polynomial of degree at most i in x over the
integers Z. Thus, we can write

0 = 1 +
2r

∑

i=1

i
∑

j=0

ai,jx
j(B0,0)

i (12)

where ai,j ∈ Z. It would be interesting to find out whether this representation holds for all
ranks (which is what we expect) or whether it is confined to r ≤ 4.

We would like to close this paper by stressing that it is still an open problem to derive
a recursion relation for the Motzkin numbers of higher rank. As the explicit examples
r = 2, 3, 4 and the complicated set of equations for the generating function given in Theorem
3.2 show this will be a rather daunting task (see also the last remark).
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