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Abstract

We show that the formalism of hybrid polynomials, interpolating between Hermite
and Laguerre polynomials, is very useful in the study of Motzkin numbers and cen-
tral trinomial coefficients. These sequences are identified as special values of hybrid
polynomials, a fact which we use to derive their generalized forms and new identities
satisfied by them.

1 Introduction

The central trinomial coefficients (CTC) cn are defined as the coefficients of xn in the ex-
pansion of (1 + x + x2)n. Various expressions have been given for these coefficients (see, for
example, [2, 11]); here we will refer to the following form, see A002426 and A001006 in [13]:

cn =

[n

2
]∑

k=0

n!

(k!)2 (n − 2k)!
, (1)

which is the most useful for our purposes. An alternative approach according to which
one can define the central trinomial coefficients is to follow [5] and to consider the Laurent
polynomial

(1 + x + x−1)n =
n∑

j=−n

(
n

j

)

2

xj, (2)
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where the appropriate trinomial coefficients
(

n

j

)
2

are given by:

(
n

m

)

2

=
∑

j≥0

n!

j!(m + j)!(n − 2j − m)!
. (3)

Comparing Eqs. (1) and (3) one immediately derives cn =
(

n

0

)
2
.

The Motzkin numbers (MN) are connected to the number of planar paths associated with
the combinatorial interpretation of cn. They are defined as follows (see [2, 11]):

mn =

[n

2
]∑

k=0

n!

k!(k + 1)!(n − 2k)!
. (4)

Similarly to the central trinomial coefficients also the Motzkin numbers can be expressed
in terms of the coefficients

(
n

m

)
2

simply as follows:

mn =
1

n + 1

(
n + 1

1

)

2

. (5)

In the next sections we shall demonstrate that the Motzkin numbers mn and the central
trinomial coefficients cn can be treated on the same footing and framed within the context
of the theory of the hybrid polynomials, (see [8]). Recalling basic properties of the hybrid
polynomials interpolating between standard two-variable Hermite and Laguerre polynomials
we shall show that the central trinomial coefficients and the Motzkin numbers satisfy a
simple recurrence which relates cn+1, cn and mn−1. Moreover, the methods developed on the
base on the hybrid polynomials formalism allow natural generalization of the notions of the
central trinomial coefficients and the Motzkin numbers which is useful for the investigation
of their properties.

Definition 1. The Hermite-Kampé de Fériét (HKdF) polynomials are defined by the
following expression

Hn(x, y) = n!

[n

2
]∑

k=0

xn−2kyk

k!(n − 2k)!
, (6)

where x, y ∈ C. For special values of x and y the HKdF polynomials reduce to the well
known ordinary Hermite polynomials [1]

Hn(x,−1

2
) = Hen(x), Hn(2x,−1) = Hn(x), (7)

Hn(x) = 2
n

2 Hen(
√

2x).

Remark 2. The HKdF polynomials can be also defined through the following operational
rules:

Hn(x, y) = exp(y
∂2

∂x2
) · xn, (8)

Hn(x, y) = (x + 2y
∂

∂x
)n · 1, (9)
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and the relevant exponential generating function:

∞∑

n=0

tn

n!
Hn(x, y) = exp(xt + yt2). (10)

Other properties of the HKdF polynomials can be found in the review [7].

Definition 3. The two-variable Laguerre polynomials are defined as follows (see [6]):

Ln(x, y) = n!
n∑

k=0

(−1)kyn−kxk

(k!)2 (n − k)!
. (11)

They reduce to the ordinary Laguerre polynomials for the value of the argument y = 1.

Remark 4. The two-variable Laguerre polynomials (11) are also defined by the opera-
tional rule

Ln(x, y) = (y − D̂−1
x )n1 =

n∑

k=0

(
n
k

)
( − 1)kyn−kD̂−k

x 1, (12)

where D̂−1
x is the inverse derivative operator whose action on the unity is given as follows:

D̂−k
x 1 =

xk

k!
. (13)

Indeed, substituting Eq. (13) into Eq. (12) we immediately recover Eq. (11) in the fol-
lowing form:

Ln(x, y) =
n∑

k=0

(
n
k

)
(−1)kyn−kxk

k!
. (14)

Hereby, we note that according to [8] the inverse derivative operator action on a function
f (x) is specified as follows:

D̂−k
x f (x) =

1

(k − 1) !

x∫

0

(x − ξ)k−1 f (ξ) dξ, (k = 1, 2, 3, . . .) , (15)

and we specify its zeroth order action on the function f (x) by the function itself:

D̂0
x · f (x) = f (x) . (16)

Next we will introduce the hybrid Hermite-Laguerre polynomials combining the individ-
ual characteristics of both Laguerre and Hermite polynomials and explore their properties
in the context of the central trinomial coefficients and Motzkin numbers.

Definition 5. The hybrid Hermite-Laguerre polynomials Πn(x, y) are defined by the
following expression:

Πn(x, y) = Hn(y, D̂−1
x )1. (17)
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Proposition 6. The central trinomial coefficients are the particular case of the hybrid
Hermite-Laguerre polynomials:

cn = Πn(1, 1). (18)

Proof. Note that from the definition of HKdF and from Eq. (13), we find

Πn(x, y) = n!

[n

2
]∑

k=0

yn−2kD̂−k
x

k!(n − 2k)!
1 = n!

[n

2
]∑

k=0

yn−2kxk

(k!)2 (n − 2k)!
(19)

and therefore the comparison of Eq. (19) with Eq. (1) yields Eq. (18).

2 Central trinomial coefficients and special functions

In this Section we will focus our attention on some properties of the central trinomial coef-
ficients and the calculation of their generating function.

Definition 7. I0 denotes the zeroth order modified Bessel function of the first kind.
In (x) is defined as (see [4]):

In(x) =
∞∑

r=0

(
x
2

)n+2r

r!(n + r)!
, (20)

which is a particular case of the Tricomi function of αth order where the parameter α is not
necessarily an integer:

Cα(x) =
∞∑

r=0

xr

r!Γ(r + α + 1)
= x−α

2 Iα(2
√

x). (21)

Proposition 8. The exponential generating function for the CTC is given by:

∞∑

n=0

tn

n!
cn = exp(t)I0(2t). (22)

Proof. Using the definition of Eq. (17) and the generating function (10) of the HKdF poly-
nomials we obtain:

∞∑

n=0

tn

n!
Πn(x, y) =

∞∑

n=0

tn

n!
Hn(y, D̂−1

x )1 = exp(yt + D̂−1
x t2)1. (23)

The exponential on the r.h.s of Eq. (23) can be disentangled because y and D̂−1
x commute.

Thus we get:

exp(yt) exp(D̂−1
x t2)1 = exp(yt)

∞∑

r=0

D̂−r
x t2r

r!
1 = exp(yt)

∞∑

r=0

xrt2r

(r!)2 . (24)

hen Eq. (22) follows from Eqs. (23), (24), (20) and (18) and the proposition is proved.
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Proposition 9. The central trinomial coefficient can be expressed in terms of Legendre
polynomials Pn(x):

cn = in
√

3nPn(− i√
3
). (25)

Proof. As it has been shown in [6], hybrid polynomials Πn(x, y) have the following ordinary
generating function:

∞∑

n=0

tnΠn(x, y) =
1√

1 − 2yt + (y2 − 4x)t2
,
∣∣∣
√

y2 − 4xt
∣∣∣ < 1. (26)

Since Legendre polynomials satisfy the analogous relation (see [9]) written below:

∞∑

n=0

tnPn(x) =
1√

1 − 2xt + t2
, |t| < 1, (27)

we can easily rearrange the summation in (26) to obtain

Πn(x, y) = (y2 − 4x)
n

2 Pn

(
y√

y2 − 4x

)
, (28)

which, on account of Eq. (18), yields Eq. (25).

Corollary 10. The central trinomial coefficients satisfy the following recurrence [3]

(n + 1)cn+1 = (2n + 1)cn + 3ncn−1. (29)

Proof. Eq. (29) follows from Eq. (25) and from the well known recurrence for the Legendre
polynomials [9]:

(n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x). (30)

So far, we have shown that the central trinomial coefficients can be written in terms of
Legendre polynomials.

For an alternative derivation of the results of this section see [10].
In the next section we will demonstrate that analogous relations can be obtained for the

Motzkin numbers too.

3 Motzkin numbers and special functions

In this section we concentrate on the calculation of the generating function for the associated
hybrid polynomials, which will be defined below, and we study their properties related to
the Motzkin numbers.
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Definition 11. Associated CTC are defined by

cα
n =

[n

2
]∑

k=0

n!

(n − 2k)!k!Γ(k + α + 1)
. (31)

and the Motzkin numbers can be identified as a particular case of the associated CTC:

mn = c1
n. (32)

Definition 12.

Recall the operator D̂−1
x,α defined in [8] via the following rule for its action on the unity:

D̂−n
x,α1 =

xn

Γ(n + α + 1)
. (33)

Definition 13. The associated hybrid Hermite-Laguerre polynomials Π
(α)
n (x, y) are de-

fined as follows:

Πα
n(x, y) = Hn(y, D̂−1

x,α)1 = n!

[n

2
]∑

kr=0

xkyn−2k

(n − 2k)!k!Γ(k + α + 1)
. (34)

Proposition 14. The associated hybrid polynomials Π
(α)
n (x, y) possess the following gener-

ating function:
∞∑

n=0

tn

n!
Πα

n(x, y) = exp(yt)(xt2)−
α

2 Iα(2t
√

x). (35)

Proof. Using Eq. (34) and the generating function for the HKdF polynomials Eq. (10) we
find that

∞∑

n=0

tn

n!
Πα

n(x, y) = exp(yt + D̂−1
x,αt2)1 = exp(yt)

∞∑

r=0

D̂−r
x,αt2r

r!
1, (36)

which yields Eq. (35) with account of Eq. (33).

Corollary 15. The MN can be identified as the particular case of the associated hybrid
Hermite-Laguerre polynomials Π

(α)
n (x, y)

mn = Π1
n(1, 1), (37)

and satisfy the following identity:

∞∑

n=0

tn

n!
Π1

n(1, 1) =
exp(t)

t
I1(2t). (38)

It is now evident that many of the properties of the CTC and of the MN can be derived
from those of the hybrid polynomials.
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Theorem 16. The MN and the CTC are linked by the recurrence [3]

cn+1 = cn + 2n · mn−1 . (39)

Proof. The HKdF polynomials satisfy the following recurrence relation [8]:

Hn+1(x, y) = Hn(x, y) + 2ynHn−1(x, y). (40)

The same recurrence, written in operational form for the hybrid case, reads as follows:

Hn+1(y, D̂−1
x )1 =

[
Hn(y, D̂−1

x ) + 2D̂−1
x nHn−1(y, D̂−1

x )
]
1. (41)

Then, employing the result of the action of the inverse derivative on the Hn(y, D̂−1
x )1 as

written below
D̂−1

x Hn(y, D̂−1
x )1 = xΠ1

n(x, y), (42)

we find from (40) the following recurrence:

Πn+1(x, y) = Πn(x, y) + 2nxΠ1
n−1(x, y). (43)

Hence, we have proved also the particular case of this identity, given by Eq. (39).

Corollary 17. The MN can be expressed in terms of the central trinomial coefficients as
follows:

mn =
cn+2 − cn+1

2(n + 1)
. (44)

Corollary 18. Define the p-associated CTC (p is an integer) in the following way:

cp
n = n!

[n

2
]∑

k=0

1

(n − 2k)!k!(k + p)!
. (45)

Then, with help of identities Eqs. (41) and (43), we obtain the generalized form of the formula
Eq. (44):

cp+1
n =

cp
n+2 − cp

n+1

2(n + 1)
. (46)

Note that for p > 1, the p-associated CTC cp
n are not integers. For example, the first 11 cp

n

numbers (n = 0 . . . 10) for p = 0, 1, 2 are listed in Table 1.

n c0
n c1

n 6 · c2
n

0 1 1 3
1 1 1 3
2 3 2 5
3 7 4 9
4 19 9 18
5 51 21 38
6 141 51 84
7 393 127 192
8 1107 323 451
9 3139 835 1083
10 8953 2188 2649
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Table 1. The p-associated CTC cp
n for n = 0, 1, 2, . . . , 10 and p = 0, 1, 2.

In the second column, i.e., for p = 1we have the usual Motzkin numbers.

Before concluding this paper, we will add the following note on the further generalization
of the CTC and MN as a consequence of the approach developed in the present work.

Definition 19. The mth order p-associated CTC are defined as follows:

mcp
n = n!

[ n

m
]∑

k=0

1

(n − mk)!k!(k + p)!
. (47)

The above defined family of central trinomial coefficients is linked to the higher order hybrid
polynomials. Their properties can be explored along the lines developed above. We just
note, that they satisfy the following recurrence:

mcp
n+1 = mcp

n + m
n!

(n − m + 1)!
mcp

n−m+1, (48)

which is a straighforward generalization of Eq. (39). Observe that Eqs. (44), (46) and (48)
are simple recurrences that clearly share common structure revealing inherent connection
between cn, cp

n and mcp
n.

4 Discussion

In the present work we have reinterpreted the central trinomial coefficients and Motzkin
numbers employing the general formalism, which underlies the theory of the hybrid poly-
nomials. The analogous results could be achieved, using properties of the hypergeometric
functions. In fact, using Eq. (6) and the definition of the hypergeometric function pFq, see
[12], the following representation is valid

Hn(x, y) = xn
2F0

(
−n

2
,
1 − n

2
;
4y

x

)
, (49)

where 2F0 is the hypergeometric function. Most of the results of this paper may also be
derived from this observation.

Even though we have referred to the coefficients mcp
n,m > 2, p > 0 as “central trinomial”,

they do not have the same interpretation as in the case1 p = 0,m = 2. We have noted that
for p = 0,m = 1, the CTC produce the Motzkin numbers. Thorough discussion of their
combinatorial interpretation is intended for future investigations.

Since through Eq. (17) all the findings of this paper are related to the HKdF polynomials
Hn(x, y) it seems legitimate to look for their combinatorial interpretation. We just point that

1 The coefficients of x
n of the expansion (1 + x + x

m)n are mdn = n!
[ n

m
]∑

k=0

1
k!((m−1)k)!(n−mk)! and their

properties can be also framed within the context of the properties of the hybrid polynomials.
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for a large class of arguments x, y of Hn(x, y) the resulting integer sequences can be given
a precise representation which may be helpful in searching a combinatorial interpretation of
CTC. We quote two examples of such a situation:

(a) For x = 1, y = 1/2 we have Hn(1, 1/2) = 2F0

(
−n

2
, 1−n

2
; 2
)

which generates the
sequence

1, 1, 2, 4, 10, 26, 76, 232, . . .

for n = 0, 1, 2, . . . . They are called involution numbers (see A000085 in [13]), whose clas-
sical combinatorial interpretation is the number of partitions of a set of n distinguishable
objects into subsets of size one and two. This sequence counts also permutations consisting
exclusively of fixed points and transpositions.

(b) Another example is supplied by the choice x = y = 1/2. Then the quantity
2nHn(1/2, 1/2) = 2F0

(
−n

2
, 1−n

2
; 8
)

furnishes the following integer sequence:

1, 1, 5, 13, 73, 281, 1741, . . .

for n = 0, 1, 2, . . ., see A115329 in [13]. It counts the number of partitions of a set into
subsets of size one and two with the additional requirment that the constituents of a set of
size two are assigned two colors.

Many other instances of such combinatorial interpretations may be given by judicious
choices of parameters x and y in Eq. (49).
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