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TANGENT AND BERNOULLI NUMBERS RELATED TO MOTZKIN

AND CATALAN NUMBERS BY MEANS OF NUMERICAL

TRIANGLES

JOSÉ LUIS ARREGUI

Abstract. It is shown that Bernoulli numbers and tangent numbers (the derivatives
of the tangent funcion at 0) can be obtained by means of easily defined triangles of
numbers in several ways, some of them very similar to the Catalan triangle and a
Motzkin-like triangle. Our starting point in order to show this is a new expression of
ζ(2n) involving Motzkin paths.

1. Introduction. Numerical triangles generated by matrices.

Recall that the sequence of tangent numbers is defined as (tan(2n−1)(0)), with

tan z =

∞
∑

n=1

tan(2n−1)(0)

(2n − 1)!
z2n−1 (|z| < π/2) .

On the other hand, the sequence of Bernoulli numbers (Bn) is defined by

z

ez − 1
=

∞
∑

n=0

Bn

zn

n!
(|z| < 2π) .

The first values of Bernoulli numbers are

B0 = 1, B1 = −
1

2
, B2 =

1

6
, B3 = 0, B4 = −

1

30
, B5 = 0, B6 =

1

42
,

and in general B2n+1 = 0 for all n ∈ N, while the signs of B(2n) alternate.
From the relation between the exponential, sine and cosine functions, it results that

tan(2n−1)(0) = |B2n|
4n (4n − 1)

2n
.

Bernoulli numbers satisfy the recurrence relation

Bn = −
1

n + 1

n−1
∑

k=0

(

n + 1

k

)

Bk .

These numbers are also related to Euler numbers (En), given by E2n+1 = 0 and
E2n = (−1)nE∗

n, where E∗
n are the secant numbers verifying

sec z =
1

cos z
=

∞
∑

n=0

E∗
n

(2n)!
z2n (|z| < π/2).
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Actually, if we consider (δn) the sequence such that

1

2
(sec z + tan z) =

∞
∑

n=1

δnzn−1 (|z| < π/2)

it turns out that
∞
∑

k=0

(−1)nk

(2k + 1)n
= δn

πn

2n
(n ∈ N)(1)

a result that goes back to Euler. For even values it follows the relation between Bernoulli
numbers and the Riemann zeta function ζ,

ζ(2n) =

∞
∑

k=1

1

k2n
= |B2n|

(2π)2n

2(2n)!
.

Standard references for all of this are [9] and [10].
A much more recent way to relate Euler and Bernoulli numbers is their combinatorial

interpretation, due to R. C. Entringer, in terms of alternating permutations. See the last
section for the details.

In [3] E. Calabi, F. Beukers and J. A. C. Kolk used a remarkable change of variables
to reduce the series in (1) to the volume of a polytope in Rn, showing how it yields an
elementary proof of (1). Very recently, N. D. Elkies has shown in [6] how the same idea
(which seems to be commonly attributed to Calabi) gives another proof of Entringer’s
theorem. In this paper we follow Calabi’s argument in a different way, and although it
applies only for even values of n (thus focusing on Bernoulli but not on Euler numbers)
it allows us to find a nice connection between ζ(2n) and Motzkin paths and numbers. In
view of Entringer’s result, a similar connection involves Catalan numbers as well.

Let us first introduce one definition in order to provide an appropiate setting for our
purpose:

Let (A(n))n≥1 be a sequence of matrices (with numerical entries), each one with n

rows and n + 1 columns. Let t0,0 = 1, t̄1 = (t1,0, t1,1) = A(1) and, for each n > 1,

t̄n = (tn,0, tn,1, tn,2, . . . , tn,n) = tn−1A
(n) = A(1)A(2) · · ·A(n).

We obtain a numerical triangle

T ≡ (tn,m)0≤m≤n ≡

t0,0

t1,0 t1,1

t2,0 t2,1 t2,2

t3,0 t3,1 t3,2 t3,3

t4,0 t4,1 t4,2 t4,3 t4,4

. . . . . . . . . . . . . . . . . . . . . . . . .

what we define as the triangle generated by (A(n)).

In particular, if A = (aij)1≤i,j is an infinite matrix and A(n) is the submatrix formed
by the first n rows and n + 1 columns, the triangle obtained in this way is the triangle

generated by A. For instance, t̄3 = (t3,0, t3,1, t3,2, t3,3) = A(1)A(2)A(3), that is

(

a1,1 a1,2

)

(

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

)





a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4



 .
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Example 1. If aij = 1 for all i, j ∈ N the the triangle generated by A = (aij) is just

tn,m = n! for all 0 ≤ m ≤ n.

Example 2. Now let aij =











2 if i=j=1,

1 if i = j − 1,

0 otherwise,

and A = (aij) =









2 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
. . . . . . . . . . . . . . . .









.

The triangle generated by A is given by tn,m = 2n−m, that is

1
2 1
4 2 1
8 4 2 1
16 8 4 2 1
. . . . . . . . . . . . . . . .

Example 3. For aij =

{

1 if i ≤ j ≤ i + 1,

0 otherwise
we have that

A = (aij) =













1 1 0 0 0 · · ·
0 1 1 0 0 · · ·
0 0 1 1 0 · · ·
0 0 0 1 1 · · ·
. . . . . . . . . . . . . . . . . . .













generates the Pascal triangle

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
. . . . . . . . . . . . . . . . . . . .

what means that tn,m =

(

n

m

)

for all n and m. Each number plus the one next to its left

in the triangle gives the number below.
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Example 4. Take the matrix in the previous example (say the Pascal matrix) and put
1 in all the entries for the lower dominant as well, that is

A =

















1 1 0 0 0 0 · · ·
1 1 1 0 0 0 · · ·
0 1 1 1 0 0 · · ·
0 0 1 1 1 0 · · ·
0 0 0 1 1 1 · · ·
. . . . . . . . . . . . . . . . . . . . . . .

















,

Then the triangle generated by A begins

1
1 1
2 2 1
4 5 3 1
9 12 9 4 1
21 30 25 14 5 1
. . . . . . . . . . . . . . . . . . . . . .

This is the so-called Motzkin triangle. Each number in the triangle is the sum of the one
above and its (one or two) contiguous ones.

The first column in the triangle gives the sequence of Motzkin numbers Mn.

Example 5. If we fill with 1 all below the diagonal in the Pascal matrix we get

A =













1 1 0 0 0 · · ·
1 1 1 0 0 · · ·
1 1 1 1 0 · · ·
1 1 1 1 1 · · ·
. . . . . . . . . . . . . . . . . . .













,

which generates
1
1 1
2 2 1
5 5 3 1
14 14 9 4 1
42 42 28 14 5 1
. . . . . . . . . . . . . . . . . . . . . .

that is known as Catalan triangle. Note that (if we set tn,−1 = 0 for all n)

tn+1,m =

n
∑

k=m−1

tn,m .

The first (second) column in the triangle gives the sequence of Catalan numbers Cn. It
is well known that

tn,m =

(

2n− m

n

)

m + 1

n + 1
(0 ≤ m ≤ n)

and thus Cn =

(

2n

n

)

1

n + 1
=

(2n)!

n! (n + 1)!
.

Both Motzkin and (much better known) Catalan numbers have a nice variety of re-
alizations as the number of solutions to some combinatorial problem on n objects (see



TANGENT, MOTZKIN AND CATALAN NUMBERS 5

[5] and [8]). In this article we will briefly explore one of them, obtaining a new one that
links these numbers to permutation groups and then to Bernoulli numbers.

For instance, we will obtain the following theorem:

Theorem 1.1. Let A = (aij) the matrix given by

aij =

{

j(j + 1) if i ≥ j − 1,

0 if i < j − 1,

i.e.

A =













2 6 0 0 0 · · ·
2 6 12 0 0 · · ·
2 6 12 20 0 · · ·
2 6 12 20 30 · · ·
. . . . . . . . . . . . . . . . . . . . . . .













.

The first column of the triangle generated by A is then the sequence of tangent numbers
(

tan(2n−1)(0)
)

Note that A is the product of the matrix in example 5 and (on the right) the diagonal
infinite matrix

(

j(j + 1)δij

)

.
The triangle begins

1
2 6
16 48 72
272 816 1440 1440
7936 23808 44352 57600 43200
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where tn+1,m = m(m + 1)

n
∑

k=m−1

tn,k.

We find it convenient to start with Motzkin paths and numbers, then showing their
relation with Calabi’s idea.

2. Motzkin paths

A Motzkin path of n-th order (or n steps) is a finite sequence

λ̄ = (λ1, . . . , λn) ∈ {−1, 0, 1}n such that

n
∑

j=1

λj = 0 and

l
∑

j=1

λj ≥ 0 if l < n.

The name Motzkin is due to the fact that the number of Motzkin paths of n steps is
just the number Mn in example 4, so this is one of the realization of Motzkin numbers
(surely the most common by now), and the term path comes after the usual visualitazion,
in an obvious 1-1 correspondence, of any such sequence with a path that joins (0, 0) with
(n, 0) in n steps –in the Z×Z lattice–, each one by summing the vector (1, λj), with the
condition that no intermediate point lies below the horizontal axis.

The empty sequence is considered as the only Motzkin path of 0 steps, to give M0 = 1.
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The only Motzkin path of 1 step is (0), and with 2 steps we have (0, 0) and (1,−1).
The four Motzkin paths of 3 steps are

(0, 0, 0) →→→ րց −→ (1,−1, 0)

(0, 1,−1) −→ րց ր −→ ց (1, 0,−1)

and a 6 step Motzkin path is (1, 0, 1,−1, 0,−1), visualized as

−→ ր ց −→
ր ց

We will denote Mn the set of all Motzkin paths of n steps, being then Mn its cardi-
nality. M = ∪∞

n=1 Mn is the set of all Motzkin paths of any positive order. Being so
easy to draw Motzkin paths, the reader can check that the first Motzkin numbers are
1,1,2,4,9,21 (beginning by n = 0).

The usual way to obtain Motzkin numbers is as in example 4. Another recursive
formula is

Mn+1 = Mn +

n−1
∑

k=0

MkMn−k−1,

and in the next section we will recover the formula that best relates them to Catalan
numbers. These and further results can be seen in [1] and [2].

To fix notations, let (λ̄, µ̄) = (λ1, . . . , λn1
, µ1, . . . , µn2

) if λ̄ = (λ1, . . . , λn1
) and µ̄ =

(µ1, . . . , µn2
). Here µ̄ could be the empty sequence, and (λ̄, µ̄) = λ̄.

The following proposition is then pictorially evident; it says that by removing flat
steps, or by “flattening cusps” in a Motzkin path, we get another Motzkin path.

Proposition 2.1. For any n ∈ N

(i) (λ̄, 0, µ̄) ∈ Mn+1 if and only if (λ̄, µ̄) ∈ Mn.
(ii) (λ̄, 1,−1, µ̄) ∈ Mn+1 if and only if (λ̄, 0, µ̄) ∈ Mn.

For each k ∈ N, let −1k = (−1, . . . ,−1
k times

), so (λ̄,−1k) = (λ̄,−1, . . . ,−1
k times

). We allow

k = 0 by defining −10 as the empty sequence. In the same way, we define 1k and 0k for
any k ∈ N ∪ {0}.

Now we define, for any µ̄ ∈ {−1, 0, 1}k, Mn;µ̄ = {(λ̄, µ̄) ∈ Mn}, the set of Motzkin
paths of n steps that “end in µ̄”, and Mn;µ̄ is its cardinality.

Note that Mn;1 is empty, and then Mn = Mn;0 ∪ Mn;−1. Moreover we have the
following:

Proposition 2.2. For every n ∈ N

Mn = Mn;0 ∪Mn;1,−1 ∪Mn;0,−1 ∪Mn;1,−12
∪Mn;0,−12

∪Mn;1,−13
∪ . . .

(disjoint union), where the nonempty sets are exactly the first n sets in the list.
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Proof. Note that Mn;−1k
= Mn;1,−1k

∪Mn;0,−1k
∪Mn;1,−1k+1

∪ . . . is empty if k > 2n,

since for any (λ̄,−1k) ∈ Mn we have 0 = λ1 + · · · + λn−k − k ≤ n − 2k.
If n = 2k then (1k,−1k) ∈ Mn;1,−1k

, while the same argument as before shows that
Mn;0,−1k

is empty.
If n = 2k + 1 then (1k, 0,−1k) ∈ Mn;0,−1k

and (0, 1k,−1k) ∈ Mn;1,−1k
.

Finally, for n > 2k (0n−2k, 1k,−1k) ∈ Mn;1,−1k
and (0n−2k−1, 1k, 0,−1k) ∈ Mn;0,−1k

.

This decomposition of Mn allows us to prove the following “general” theorem, in the
context of triangles generated by matrices.

Theorem 2.3. Let f : M → R a function verifying the following recursion conditions
(I) and (II), in terms of two matrices (bn,k)1≤n, 0≤k and (cn,k)1≤n,k with bn,0 6= 0 for all
n:
(I) If (λ̄,−1k) ∈ Mn then f(λ̄, 0,−1k) = bn,kf(λ̄,−1k).
(II) If (λ̄, 0,−1k−1) ∈ Mn then f(λ̄, 1,−1k) = cn,kf(λ̄, 0,−1k−1).

Then the sequence
(

bn,0

∑

λ̄∈Mn
f(λ̄)

)

n≥1
is the first column of the numerical triangle

f(0)T , where T is the triangle generated by the sequence of matrices (A(n)), A(n) being
the n × (n + 1) matrix

A(n) =





















bn,0 cn,1 0 0 0 0 · · ·
bn,0 0 bn,1 0 0 0 · · ·
bn,0 0 bn,1 cn,2 0 0 · · ·
bn,0 0 bn,1 0 bn,2 0 · · ·
bn,0 0 bn,1 0 bn,2 cn,3 · · ·
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
bn,0 0 bn,1 0 bn,2 0 · · ·





















.

Proof. Let (xn,1, xn,2, . . . , xn,n+1) be the vector given by
(

∑

λ̄∈Mn+1;0

f(λ̄),
∑

λ̄∈Mn+1;1,−1

f(λ̄),
∑

λ̄∈Mn+1;0,−1

f(λ̄),
∑

λ̄∈Mn+1;1,−12

f(λ̄), . . .
)

i.e.

xn,2k+1 =
∑

λ̄∈Mn+1;0,−1k

f(λ̄) (0 ≤ 2k ≤ n),

xn,2k =
∑

λ̄∈Mn+1;1,−1k

f(λ̄) (2 ≤ 2k ≤ n + 1).

We claim that this vector equals f(0)A(1)A(2) · · ·A(n), as we see by induction on n: for
n = 1 it is (f(0, 0), f(1,−1)) = (b1,0f(0), c1,1f(0)) = f(0)A(1). Assuming it true for n−1,
note first that

xn,1 =
∑

λ̄∈Mn+1;0

f(λ̄) =
∑

(λ̄,0)∈Mn+1

f(λ̄, 0) =
∑

λ̄∈Mn

f(λ̄, 0)

=
∑

λ̄∈Mn

bn,0f(λ̄) = bn,0

∑

λ̄∈Mn

f(λ̄) = bn,0

n
∑

j=1

xn−1,j

= f(0)A(1) · · ·A(n−1)





bn,0

· · ·
bn,0



.
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For 1 ≤ k ≤ n/2 we have

xn,2k+1 =
∑

λ̄∈Mn+1;0,−1k

f(λ̄) =
∑

(λ̄,−1k)∈Mn

f(λ̄, 0,−1k)

=
∑

(λ̄,−1k)∈Mn

bn,kf(λ̄,−1k) = bn,k

∑

λ̄∈Mn;−1k

f(λ̄)

= bn,k

(

∑

λ̄∈Mn;1,−1k

f(λ̄) +
∑

λ̄∈Mn;0,−1k

f(λ̄) +
∑

λ̄∈Mn;1,−1k+1

f(λ̄) + · · ·
)

= bn,k

n
∑

j=2k

xn−1,j = f(0)A(1) · · ·A(n−1)

















0
· · ·
0

bn,k

· · ·
bn,k

















←2k

,

and finally, for 1 ≤ k ≤
n + 1

2
,

xn,2k =
∑

λ̄∈Mn+1;1,−1k

f(λ̄) =
∑

(λ̄,0,−1k−1)∈Mn

f(λ̄, 1,−1k)

=
∑

(λ̄,0,−1k−1)∈Mn

cn,kf(λ̄, 0,−1k−1) = cn,k

∑

λ̄∈Mn;0,−1k−1

f(λ̄)

= cn,k xn−1,2k−1 = f(0)A(1) · · ·A(n−1)





















0
· · ·
0

cn,k

0
· · ·
0





















←2k−1 ,

so our claim is true.

Our first application of this theorem is counting Motzkin paths.

Corollary 2.4. The sequence of Motzkin numbers (Mn) is the first column of the triangle
generated by A = (aij) with

aij =











1 if i = j − 1,

1 if j is odd and i > j − 1,

0 otherwise .

Proof. Apply Theorem 2.3 to f = 1.
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Note that

A =





















1 1 0 0 0 0 · · ·
1 0 1 0 0 0 · · ·
1 0 1 1 0 0 · · ·
1 0 1 0 1 0 · · ·
1 0 1 0 1 1 · · ·
1 0 1 0 1 0 · · ·
. . . . . . . . . . . . . . . . . . . . . . .





















,

and the triangle (which is not the Motzkin triangle of example 4) begins

1
1 1
2 1 1
4 2 2 1
9 4 5 2 1
21 9 12 5 3 1
. . . . . . . . . . . . . . . . . . . .

Once the (n − 1)-th row is given, we get the number tn,m as in Catalan triangle for odd
m, but tn,m = tn−1,m−1 if m is even.

Following the proof of Theorem 2.3, note that the n-th row is just

(Mn+1;0, Mn+1;1,−1, Mn+1;0,−1, Mn+1;1,−12
, · · · ) .

For instance, the third row is (4, 2, 2, 1), the cardinalities of

M4;0 = {(0, 0, 0, 0), (1,−1, 0, 0), (1, 0,−1, 0), (0, 1,−1, 0)} ,

M4;1,−1 = {(0, 0, 1,−1), (1,−1, 1,−1)} ,

M4;0,−1 = {(1, 0, 0,−1), (0, 1, 0,−1)} ,

M4;1,−12
= {(1, 1,−1,−1)} ,

which sum up 9 = M4 = M5;0 = t4,0.

3. Dyck paths and Catalan numbers.

There is antoher easy decomposition of Motzkin paths that relates Motzkin and Catalan
numbers, by counting how many λj = 0 there are in each λ̄. For each n ∈ N and
k = 0, 1, . . . , n, let

Dn,k = {λ̄ ∈ M; λ̄ has k 0’s}

and let Dn,k its cardinality. Dn,k is then the number of Motzkin paths of n steps, k of
which are horizontal.

Since any Motzkin path has the same number of 1’s and −1’s, the number of horizontal
steps is of the same parity as n. Hence Dn,k = 0 if n is even and k is odd or vice-versa.

It is also obvious that Dn,n = 1 for each n.
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Dn,0 is the set of the so-called Dyck paths, i.e. Motzkin paths with no horizontal steps.
It is empty for any odd n, and then

D0 = ∪∞
n=1D2n,0

is the set of Dyck paths of any order. It is well known that

D2n,0 = Cn

for all n, where Cn is the Catalan number of example 5. See for instance [4]. We will
find out a simple proof of this.

With the same notations as in the previous section, we clearly have

D2n,0 = D2n,0;1,−1 ∪ D2n,0;1,−12
∪ · · · ∪ D2n,0;1,−1n

(disjoint union). Denote the cardinality of each set by D2n,0;1,−1k
> 0.

Moreover, note that

(λ̄,−1k) ∈ D2n,0;−1k
if and only if (λ̄, 1,−1k+1) ∈ D2n+2,0;1,−1k+1

,

and

D2n,0;−1k
= D2n,0;1,−1k

∪ D2n,0;1,−1k+1
∪ · · · ∪ D2n,0;1,−1n

.

Similarly to Theorem 2.3, we can formulate a “general” theorem:

Theorem 3.1. Let f : D0 → R a function verifying the following recursion condition, in
terms of a matrix (an,k)1≤n, 0≤k with an,0 6= 0 for all n:
If (λ̄,−1k) ∈ D2n,0 then f(λ̄, 1,−1k+1) = an,kf(λ̄,−1k).

Then the sequence
(

an,0

∑

λ̄∈D2n,0

f(λ̄)
)

n≥1
is the first column of the numerical triangle

f(1,−1)T , where T is the triangle generated by the sequence of matrices (A(n)), A(n)

being the n × (n + 1) matrix

A(n) =

















an,0 an,1 0 0 0 · · · 0
an,0 an,1 an,2 0 0 · · · 0
an,0 an,1 an,2 an,3 0 · · · 0
an,0 an,1 an,2 an,3 an,4 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an,0 an,1 an,2 an,3 an,4 · · · an,n

















.

Proof. The proof is similar to that of Theorem 2.3. We have to prove that
(

∑

λ̄∈D2n+2,0;1,−1

f(λ̄),
∑

λ̄∈D2n+2,0;1,−12

f(λ̄), . . . ,
∑

λ̄∈D2n+2,0;1,−1n+1

f(λ̄)
)

equals f(1,−1)A(1)A(2) · · ·A(n), the first component being an,0

∑

λ̄∈D2n,0

f(λ̄).

Take in particular f = 1. Then an,k = 1 for all 0 ≤ k ≤ n, and A is just the matrix of
example 5. Theorem 3.1 says in this case that

Cn =
∑

λ̄∈D2n,0

1 = D2n,0 .
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As in “our” Motzkin triangle, we also get that the numbers of the n-th row in the
Catalan triangle are the number of Dyck paths of 2n steps finishing in −1k, for k =
0, . . . , n. For instance, the third row is

(5, 5, 3, 1) = (D6,0, D6,0;−1, D6,0;−12
, D6,0;−13

) ,

the cardinalities of (listed backwards)

D6,0;−13
= {(1, 1, 1,−1,−1,−, 1)} ,

D6,0;−12
= D6,0;−13

∪ {(1,−1, 1, 1,−1,−1), (1, 1,−1, 1,−1,−1)} ,

D6,0;−1 = D6,0;−12
∪ {(1,−1, 1,−1, 1,−1), (1, 1,−1,−1, 1,−1)} ,

D6,0 = D6,0;−1 .

Our results concerning Bernoulli numbers are applications of Theorems 2.3 and 3.1.
Before seing that, we show another application of Theorem 2.3:

Theorem 3.2. Let

A(x) =





















x 1/x 0 0 0 0 · · ·
x 0 x 0 0 0 · · ·
x 0 x 1/x 0 0 · · ·
x 0 x 0 x 0 · · ·
x 0 x 0 x 1/x · · ·
x 0 x 0 x 0 · · ·
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .





















,

and let T (x) the triangle generated by A(x). Then its first column is given by the poly-
nomials

n
∑

k=0

Dn,k xk .

Proof. Let z(λ̄) the function that counts the zeroes in each λ̄ ∈ M, and let f(λ̄) = xz(λ̄).
Note that

f(λ̄, 1,−1k) =
1

x
f(λ̄, 0,−1k−1) and

f(λ̄, 0,−1k) = xf(λ̄,−1k) ,

so Teorem 2.3 applies, and the matrices A(n) for each x are the corresponding submatrices
of A(x). According to this, the first element of the n-th row is

∑

λ̄∈Mn

xz(λ̄) =

n
∑

k=0

Dn,k xk .

Some remarks are in order: of course, if x = 1 it results the matrix of Corollary 2.4,
what is just saying that Mn =

∑n
k=0 Dn,k, obvious since (Dn,k)0≤k≤n give a decomposi-

tion of Mn.

On the other hand, note that from each Dyck path of D2m−2k,0 we get, by interlacing

2k 0’s in all the
(

2m
2k

)

possible ways, this number of different paths in D2m,2k, and any
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element in this set is obtained in this way from a unique path in D2m−2k,0. It follows
that

D2m,2k =

(

2m

2k

)

Cm−k =

(

2m

2(m − k)

)

Cm−k .

Analogously

D2m+1,2k+1 =

(

2m + 1

2k + 1

)

Cm−k =

(

2m + 1

2(m − k)

)

Cm−k .

These two facts give the most usual relation between Motzkin and Catalan numbers,

Mn =
∑

n≥0

(

n

2k

)

Ck .

4. Calabi’s argument and Motzkin paths.

Let us briefly explain Calabi’s argument reducing the calculation of ζ(2n) to the volume
of a polytope in Rn:

For any natural number n ≥ 2, by writing

ζ(n) =

∞
∑

k=1

1

kn
=

∞
∑

k=0

1

(2k + 1)n
+

∞
∑

k=1

1

(2k)n

we get

ζ(n)(1 − 2−n) =

∞
∑

k=0

1

(2k + 1)n
.

Since
1

2k + 1
=

∫ 1

0

x2kdx, then

ζ(n) =
2n

2n − 1

∞
∑

k=0

∫

(0,1)n

(x1x2 · · ·xn)2kdm(x̄),

where of course x̄ = (x1, . . . , xn) and m stands for the Lebesgue measure. Then

ζ(n) =
2n

2n − 1

∫

(0,1)n

∞
∑

k=0

(x1x2 · · ·xn)2kdm(x̄)

=
2n

2n − 1

∫

(0,1)n

1

1 − x2
1x

2
2 · · ·x

2
n

dm(x̄) .

Try now the change of variables

(x1, x2, . . . , xn) = ϕ(ū) =
( sin u1

cosu2
,
sin u2

cosu3
, . . . ,

sin un−1

cosun

,
sin un

cosu1

)

.

Note that if 0 < u, v < π/2 then
sin u

cos v
=

sinu

sin(π/2 − v)
> 0, and it is < 1 if and only if

u < π/2 − v. Then, if we define

An = {ū > 0; u1 + u2 < π/2, u2 + u3 < π/2, . . . , un−1 + un < π/2, un + u1 < π/2}
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we have that ϕ(An) ⊆ (0, 1)n. It is not difficult to see that ϕ(An) is actually (0, 1)n

(moreover ϕ is injective on An), and hence this change of variables gives
∫

(0,1)n

1

1 − x2
1x

2
2 · · ·x

2
n

dm(x̄) =

∫

An

det(Jϕ(ū))

1 − tan2 u1 · · · tan2 un

dm(ū).

Now, it is readily checked that

det(Jϕ(ū)) = 1 + (−1)n+1 tan2 u1 · · · tan2 un,

and thus, if n is even, it results
∫

(0,1)n

1

1 − x2
1x

2
2 · · ·x

2
n

dm(x̄) =

∫

An

dm = m(An).

Take instead

En = {0 < x̄ ∈ R
n; x1 + x2 < 1, x2 + x3 < 1, . . . , xn−1 + xn < 1, xn + x1 < 1} .

Since m(An) =
πn

2n
m(En), we have shown that

ζ(2n) =
π2n

4n − 1
m(E2n)(2)

for all n ∈ N. Now let x2j = y2j and x2j−1 = 1− y2j−1 for j = 1, . . . , n. This new change
of variables gives

ζ(2n) =
π2n

4n − 1
m(F2n) ,

where F2n = {0 < ȳ < 1; y2 < y1, y2 < y3, . . . , y2n < y2n−1, y2n < y1}.

For n = 1, we have F2 = {(a, b) ∈ R2; 0 < b < a < 1}, so m(F2) = 1/2 and
ζ(2) = π2/6.

Changing the coordinates order, we can re-write

F2n = {(t̄, x̄) ∈ (0, 1)n × (0, 1)n; t1 < x1, t1 < x2, . . . , tn < xn, tn < x1}.

Let a∧b = min{a, b} for all real numbers a and b. For each x̄ ∈ (0, 1)n the corresponding
section of F2n is

Fx̄ = {t̄; (t̄, x̄) ∈ F2n}

= (0, x1 ∧ x2) × (0, x2 ∧ x3) × · · · × (0, xn−1 ∧ xn) × (0, xn ∧ x1),

so

m(F2n) =

∫

(0,1)n

m(Fx̄)dm(x̄) =

∫

(0,1)n

(x1 ∧ x2) · · · (xn−1 ∧ xn)(xn ∧ x1)dm(x̄),

and we have obtained the following expression of ζ(2n) for each natural n:

ζ(2n) =
π2n

4n − 1

∫

(0,1)n

ξ(x̄)dm(x̄) ,(3)

where ξ(x̄) = (x1 ∧ x2)(x2 ∧ x3) · · · (xn−1 ∧ xn)(xn ∧ x1).
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For n = 2 we have ξ(a, b) = (a ∧ b)2, and
∫

(0,1)2
(a ∧ b)2dm(a, b) = 2

∫

{0<b<a<1}

(a ∧ b)2dm(a, b) = 2

∫

{0<b<a<1}

b2dm(a, b)

= 2

∫ 1

0

∫ a

0

b2dbda =
2

3

∫ 1

0

a3da =
1

6
,

so (3) says that ζ(4) =
π4

90
.

For n = 3 we can also write

m(D6) = 6

∫

{0<x1<x2<x3<1}

ξ(x̄)dm(x̄),

since any coordinate is compared to each other in (x1∧x2)(x2∧x3)(x3∧x1). This makes
it easy to see that m(F6) = 1/15 and thus ζ(6) = π6/945.

For n > 3 it does not suffice to consider the set {0 < x1 < · · · < xn < 1}.

Let Sn be the group of permutations of the set {1, 2, . . . , n}, for each n ∈ N.
Note that, in the integral in (3), we can ignore all points in (0, 1)n with two equal

coordinates, since m(H) = 0 for any hyperplane H . Besides, if we fix j and integrate
in {x̄; xj < xi for all i 6= j, xi 6= xk for all i, k} then the result is independent from j,
by simmetry. Choose j = n. For each x̄ in the corresponding set there exists a unique
permutation σ ∈ Sn−1 such that

0 < xn < xσ(1) < xσ(2) < · · · < xσ(n−1) < 1.

If Eσ is the set of such points for any given σ, we have
∫

(0,1)n

ξ(x̄)dm(x̄) = n
∑

σ∈Sn−1

∫

Eσ

ξ(x̄)dm(x̄) = n
∑

σ−1∈Sn−1

∫

E
σ−1

ξ(x̄)dm(x̄) .(4)

Let E = Eid = {x̄; 0 < xn < x1 < x2 < · · · < xn−1 < 1}.
The change of variables x̄ 7→ (xσ(1), . . . , xσ(n−1), xn) maps E onto Eσ−1 , and then

∫

E
σ−1

ξ(x̄)dm(x̄) =

∫

E

ξ(xσ(1), . . . , xσ(n−1), xn)dm(x̄)

=

∫

E

x2
n(xσ(1) ∧ xσ(2)) · · · (xσ(n−2) ∧ xσ(n−1))dm(x̄) .

The last integral is easily expressed in terms of the ad hoc map

Φ: ∪∞
n=2 Sn −→ ∪∞

n=1{−1, 0, 1}n

defined as follows: for any n ∈ N and σ ∈ Sn+1, Φ(σ) is the family λ̄ = (λ1, . . . , λn) ∈
{−1, 0, 1}n such that, in the list

0, σ(1), σ(2), . . . , σ(n), σ(n + 1), 0

λj + 1 is the number of neighbours of j that are greater than j.

For example, if σ ∈ S5 is the given by 0, 2, 1, 4, 5, 3, 0 then Φ(σ) = (1,−1, 0, 0): λ1+1 =
2 because 2 and 4 (the neighbours of 1) are both > 1; λ2 + 1 = 0 since 0, 1 < 2, and
λ3 + 1 = λ4 + 1 = 1, for both 3 and 4 have 5 as a neighbour.
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It is easy that
∑n

j=1 λj = 0 for all λ̄ = Φ(σ): consider all the couples of neighbours;

appart from the first and the last (containing 0) each one adds +1 to
∑n

j=1 λj − n, and
there are n such couples.

On the other hand it is clear that λ1 > −1 and λn < 1, as in Motzkin paths.

Definition 4.1. For each λ̄ ∈ ∪∞
n=1{−1, 0, 1}n, ν(λ̄) is the number of permutations σ

such that Φ(σ) = λ̄.

Note that ν(λ̄) > 0 if and only if λ̄ is in the image of Φ.

In the following ej will denote (0, 0, . . . , 0, 1
j
, 0, . . . ), and then λ̄±ej = (λ1, λ2, . . . , λj ±

1, λj+1, . . . ).

Lemma 4.2. For each λ̄ ∈ {−1, 0, 1}n it holds:
(i) ν(λ̄, 0) = 2ν(λ̄) ;

(ii) ν(λ̄,−1) = 2
∑

λj=0

ν(λ̄ − ej) +
∑

λj=1

ν(λ̄ − ej) .

Proof. Let σ ∈ Sn+1 given by 0, σ(1), σ(2), . . . , σ(n), σ(n + 1), 0. From σ we obtain n + 2
permutations τ ∈ Sn+2, by interlacing n + 2 between two any neighbours. These τ are
different each other, and the (n + 2)! permutations of Sn+2 arise in this way by taking
the (n + 1)! permutations of Sn+1.

If τ is so-derived from σ, with Φ(σ) = λ̄ and Φ(τ) = µ̄, then or λj = µj for j = 1, . . . , n
with µn+1 = 0 (this happens in two cases, setting n + 2 next to n + 1) or µj = λj + 1 for
exactly one j, λj = µj for the rest and µn+1 = −1.

If λj = −1 then µj = 0 for each τ that puts n + 2 next to j, and if λj = 0 then µj = 1
only if τ sets n + 2 between j and its least neighbour.

Theorem 4.3. The image of Φ is M, the set of Motzkin paths.

Proof. It is easy for n = 1: M1 = {(0)}, S2 = {(0, 1, 2, 0), (0, 2, 1, 0)} and ν(0) = 2.
Assume that it is true for n.

If λ̄ ∈ Φ(Sn+2) and λ̄ = (µ̄, 0), by Lemma 4.2 ν(µ̄) 6= 0, hence µ̄ ∈ Mn and then
λ̄ ∈ Mn+1 (by Lemma 2.1). If λ̄ = (µ̄,−1) Lemma 4.2 says that, for some j, µ̄ − ej has
preimages in Sn+1, so µ̄ − ej ∈ Mn and this easily implies that λ̄ ∈ Mn+1 (a simple
draw may help).

Conversely, if λ̄ ∈ Mn+1 and λ̄ = (µ̄, 0) then µ ∈ Mn, and thus 2ν(µ̄) = ν(λ̄) > 0, so
λ̄ ∈ Φ(Sn+2).

If λ̄ ∈ Mn+1 with λ̄ = (µ̄,−1), by the definition of Motzkin paths we have
∑n

j=1 µj = 1

and
∑k

j=1 µj ≥ 0 for 1 ≤ k. Let l the maximum such that
∑n

j=l µj = 1. As
∑

j<l µj = 0

it can’t be µl = −1, so we can take µ̄ − el; Would it be
∑k

j=l µj = −1 for some k > l,

it should be
∑n

j=k+1 µj = 2, in contradiction with our election of l. It follows that

µ̄ − el ∈ Mn, and hence ν(µ̄ − el) > 0. Lemma 4.2 gives now that ν(µ̄,−1) = ν(λ̄) > 0,
and hence λ ∈ Φ(Sn+2).

Let’s get back to formula (4), where n ≥ 3, and the integral
∫

E

x2
n(xσ(1) ∧ xσ(2)) · · · (xσ(n−2) ∧ xσ(n−1))dm(x̄) .
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If λ̄ = Φ(σ) ∈ Mn−2 then this integral is the same as
∫

E

x2
n xλ1+1

1 · · ·x
λn−2+1
n−2 dm(x̄)

=

∫ 1

0

∫ xn−1

0

x
λn−2+1
n−2 · · ·

∫ x2

0

xλ1+1
1

∫ x1

0

x2
n dxn dx1 · · ·dxn−2 dxn−1

=
1

6n
·

1

λ1 + 5
·

1

λ1 + λ2 + 7
· · ·

1

λ1 + · · · + λn−2 + (2n − 1)
.

Definition 4.4. For each λ̄ ∈ {−1, 0, 1}n,

ρ(λ̄) = (λ1 + 5)(λ1 + λ2 + 7) · · · (λ1 + · · · + λn + 2n + 3) .

In this expression, each j-th factor (j > 1) is the previous one plus 3 (if λj = 1), plus
2 (if λj = 0) or plus 1 (if λj = −1). If λ̄ ∈ M then

∑

j λj = 0, so the last factor is 2n+3.

Summarizing, we have that
∫

(0,1)n

ξ(x̄)dm(x̄) =
1

6

∑

σ∈Sn−1

1

ρ(Φ(σ))

and then
∫

(0,1)n

ξ(x̄)dm(x̄) =
1

6

∑

λ̄∈Mn−2

ν(λ̄)

ρ(λ̄)
,(5)

which along with (2) gives, for every n ≥ 3,

ζ(2n) =
π2n

6(4n − 1)

∑

λ̄∈Mn−2

ν(λ̄)

ρ(λ̄)
.(6)

Stop for a moment and compute ζ(6) and ζ(8):

M1 = {(0)}, with ν(0) = 2 and ρ(0) = 5. Then

ζ(6) =
π6

6(43 − 1)
·
2

5
=

π6

945
.

M2 = {(0, 0), (1,−1)}. From Lemma 4.2 ν(0, 0) = 2ν(0) = 4 and ν(1,−1) = ν(0) = 2.
Besides ρ(0, 0) = 5 · 7 and ρ(1,−1) = 6 · 7, whence

ζ(8) =
π8

6(44 − 1)
·
( 4

5 · 7
+

2

6 · 7

)

=
π8

9450
.

Proposition 4.5. For any λ̄ ∈ ∪∞
n=1{−1, 0, 1}n we have that

(i) ν(λ̄, 0,−1k) = 2(k + 1)ν(λ̄,−1k) for each k ≥ 0, and

(ii) ν(λ̄, 1,−1k) = k(k + 1)ν(λ̄,−1k−1) =
k + 1

2
ν(λ̄, 0,−1k−1) for each k ≥ 1.
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Proof. The proof follows by induction on k, using Lemma 4.2.
(i) If k = 0 the result is just (i) in Lemma 4.2. If k > 0 and we know that it is true for
k − 1, by (ii) in the lemma we can write

ν(λ̄, 0,−1k) = ν(λ̄, 0,−1k−1,−1)

= 2ν(λ̄,−1,−1k−1) + 2
∑

λj=0

ν(λ̄ − ej , 0,−1k−1) +
∑

λj=1

ν(λ̄ − ej , 0,−1k−1)

= 2ν(λ̄,−1k) + 2k
(

2
∑

λj=0

ν(λ̄ − ej,−1k−1) +
∑

λj=1

ν(λ̄ − ej,−1k−1)
)

= 2ν(λ̄,−1k) + 2kν(λ̄,−1k−1,−1)

= 2(k + 1)ν(λ̄,−1k).

(ii) If k = 1 then

ν(λ̄, 1,−1) = 2
∑

λj=0

ν(λ̄ − ej , 1) +
∑

λj=1

ν(λ̄ − ej , 1) + ν(λ̄, 0)

= ν(λ̄, 0) = 2ν(λ̄)

since ν(µ̄, 1) = 0 for any µ̄.
If k > 1 and the result is true for k − 1, then

ν(λ̄, 1,−1k) = ν(λ̄, 1,−1k−1,−1)

= 2
∑

λj=0

ν(λ̄ − ej , 1,−1k−1) +
∑

λj=1

ν(λ̄ − ej , 1,−1k−1) + ν(λ̄, 0,−1k−1)

= (k − 1)k
(

2
∑

λj=0

ν(λ̄ − ej ,−1k−2) +
∑

λj=1

ν(λ̄ − ej ,−1k−2)
)

+ 2kν(λ̄,−1k−1) (by (i))

= (k − 1)k ν(λ̄,−1k−2,−1) + 2k ν(λ̄,−1k−1)

= (k + 1)k ν(λ̄,−1k−1).

The rest follows from (i): ν(λ̄, 0,−1k−1) = 2kν(λ̄,−1k−1), so

ν(λ̄, 1,−1k) = (k + 1)k
1

2k
ν(λ̄, 0,−1k−1) =

k + 1

2
ν(λ̄, 0,−1k−1).

Corollary 4.6. Let A = (aij) the matrix given by

aij =















2j if j is odd and i ≥ j − 1 ,
(j + 2)

4
if j is even and i = j − 1 ,

0 otherwise,

i.e.

A =

















2 1 0 0 0 0 · · ·
2 0 4 0 0 0 · · ·
2 0 4 3/2 0 0 · · ·
2 0 4 0 6 0 · · ·
2 0 4 0 6 2 · · ·
. . . . . . . . . . . . . . . . . . . . . . . . .

















.
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Then, if T = (tn,m) is the triangle generated by A, for all n ∈ N

tn,0 = (n + 1)! .

Proof. Proposition 4.5 says that we can apply Theorem 2.3 to f = ν, and conditions (I)
and (II) there are satisfied with bn,k and cn,k independent from n. It results that the

corresponding A(n) matrices are the submatrices of A as stated, and since f(0) = 2 = b2,0

we get

tn,0 =
∑

λ̄∈Mn

ν(λ̄) ,

which is just the cardinality of Sn+1, that is (n + 1)!.

Proposition 4.7. (i) If k ≥ 0 and (λ̄,−1k) ∈ Mn then

ρ(λ̄, 0,−1k) = ρ(λ̄)(2n + 5 − k)(2n + 6 − k) · · · (2n + 4)(2n + 5), and

ρ(λ̄,−1k) = ρ(λ̄)(2n + 4 − k)(2n + 5 − k) · · · (2n + 2)(2n + 3)

(just ρ(λ̄) if k = 0)

(ii) If k ≥ 1 and (λ̄, 0,−1k) ∈ Mn, then

ρ(λ̄, 1,−1k) = ρ(λ̄)(2n + 5 − k)(2n + 6 − k) · · · (2n + 4)(2n + 5).

Proof. If (λ̄, 0,−1k) ∈ Mn+1 then ρ(λ̄, 0,−1k) = ρ(λ̄)α1α2 · · ·αk+1, with αk+1 = 2n + 5
and αj+1 − αj = 1 for each j, so

ρ(λ̄, 0,−1k) = ρ(λ̄)(2n + 5 − k)(2n + 6 − k) · · · (2n + 4)(2n + 5).

The rest is similar.

Theorem 4.8. For each n ≥ 3, let

a
(n)
ij =



















(j + 1)(4n− j + 1)

8
if j is odd and i ≤ j − 1 ,

(j + 2)(4n− j)

32
if j is even and i = j − 1 ,

0 otherwise,

and let A(n) = (a
(n)
ij )1≤i≤n−2, 1≤j≤n−1.

Then

ζ(2n) =
π2n

(2n)!
·

4n−1

4n − 1
bn ,

where bn is the first component of A(3)A(4) · · ·A(n).
Therefore

B2n = (−1)n+1 bn

2(4n − 1)
, and

tan(2n−1)(0) =
4n−1

n
bn .
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Remark. Note that the matrices A(n) are as follows:

A(3) =
(

3 5/4
)

, A(4) =

(

4 7/4 0
4 0 7

)

,

A(5) =





5 9/4 0 0
5 0 9 0
5 0 9 12/4



 , A(6) =









6 11/4 0 0 0
6 0 11 0 0
6 0 11 15/4 0
6 0 11 0 15









,

A(7) =













7 13/4 0 0 0 0
7 0 13 0 0 0
7 0 13 18/4 0 0
7 0 13 0 18 0
7 0 13 0 18 22/4













and so on.

Proof. Write formula (6) as

ζ(2n) =
π2n

6(4n − 1)

∑

λ̄∈Mn−2

f(λ̄) ,

with f(λ̄) = ν(λ̄)

ρ(λ̄)
for each λ̄ ∈ M.

From Propositions 4.5 and 4.7 it follows that

f(λ̄, 0,−1k) =
2(k + 1)(2n + 4 − k)

(2n + 4)(2n + 5)
f(λ̄,−1k) if (λ̄,−1k) ∈ Mn, and

f(λ̄, 1,−1k) =
(k + 1)(2n + 4 − k)

2(2n + 4)(2n + 5)
f(λ̄, 0,−1k−1) if (λ̄, 0,−1k−1) ∈ Mn.

Hence f satisfies conditions I and II as in Theorem 2.3, with

bn,k =
2(k + 1)(2n + 4 − k)

(2n + 4)(2n + 5)
and cn,k =

1

4
bn,k .

Note that f(0) =
2

5
, and then Theorem 2.3 gives, for any n ≥ 3,

5

2n + 1

∑

λ̄∈Mn−2

f(λ̄) = 〈Ã(3)Ã(4) · · · Ã(n), e1〉

where Ã(k+2) is the k-th matrix in the statement of Theorem 2.3 and 〈·, ·〉 is the usual
scalar product.

Let now A(n) =
2n(2n + 1)

4
Ã(n). It is easily checked that A(n) are the matrices in the

statement, and we have now

∑

λ̄∈Mn−2

f(λ̄) =
6 · 4n−1

(2n)!
〈A(3)A(4) · · ·A(n), e1〉 ,

so

ζ(2n) = π2n 4n−1

4n − 1

1

(2n)!
〈A(3)A(4) · · ·A(n), e1〉 .
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5. Entringer’s theorem and Catalan numbers.

In order to prove Theorem 1.1 we will make use of Entringer’s theorem about alternating
(or zig-zag) permutations.

A permutation σ ∈ Sn is said alternating if it is such that

σ(j) < σ(j + 1) if and only if σ(j + 1) > σ(j + 2)

for j = 1, . . . , n − 2, i.e. if σ(j) is not a number between σ(j − 1) and σ(j + 1) for
j = 2, . . . , n − 1.

Let αn the number of alternating permutations. Let τ ∈ Sn given by τ(j) = n+1− j,
i.e.

τ ≡ n, n − 1, n − 2, . . . , 2, 1.

Then σ 7→ τ ◦ σ defines a bijection between alternating permutations σ such that σ(1) <
σ(2) and those such that σ(1) > σ(2), and thus the number of any of these is αn/2.

Let then βn = αn/2, with β0 = β1 = 1. Entringer (see [7]) proved that these numbers
give a combinatorial interpretation of tangent and secant numbers, namely

sec z = β0 + β2
z2

2
! + β4

z4

4!
+ · · · and

tan z = β1z + β3
z3

3
! + β5

z5

5!
+ · · ·

for each z ∈ C with |z| < π/2. In particular

β(2n − 1) = tan(2n−1)(0)

for all n ∈ N.
Independently from Calabi’s argument, in [12] R. Stanley obtained the tangent part by

considering the polytopes in (1) and, as we mentioned in the introduction, N. D. Elkies
([6]) has derived the result for both secant and tangent numbers starting from Calabi’s
idea.

As for tangent numbers, there is the following relation with Φ:

Proposition 5.1. Given n ∈ N and σ ∈ S2n+1, Φ(σ) is a Dyck path if and only if σ is
alternating and σ(1) > σ(2).

Proof. Φ(σ) ∈ D2n,0 means that λj = ±1 for all j, so in

0, σ(1), σ(2), σ(3), . . . , σ(2n), σ(2n + 1), 0

or two or none of the neighbours of each j are > j. This is exactly as saying that σ is
alternating and σ(1) > σ(2) (the fact that σ(2n) < σ(2n + 1) follows from them).

Corollary 5.2. For each n ∈ N

tan(2n+1)(0) =
∑

λ̄∈D2n,0

ν(λ̄) .

Proof of Theorem 1.1 By Proposition 4.5, for each k ≥ 0

ν(λ̄, 1,−1k+1) = (k + 1)(k + 2)ν(1,−1k)

whenever (λ̄,−1k) ∈ D0. We can use Theorem 3.1 with f = ν, and this together with
Corollary 5.2 gives the result.
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Let’s see another application of Theorem 2.3, giving yet another way to obtain tangent
(Bernoulli) numbers by means of triangles.

Theorem 5.3. Let T (x) be the triangle generated by the infinite matrix

A(x) =

















2x 1/x 0 0 0 0 · · ·
2x 0 4x 0 0 0 · · ·
2x 0 4x 3/2x 0 0 · · ·
2x 0 4x 0 6x 0 · · ·
2x 0 4x 0 6x 2/x · · ·
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

















(so that A(1) is the matrix of Corollary 4.6). Then the first element of the n-th row of
T (x) is a polynomial Pn(x) of degree n such that Pn(1) = (n + 1)! and

Pn(0) = tan(n+1)(0).

Proof. Let f : M → R given by f(λ̄) = ν(λ̄)xz(λ̄), with z(λ̄) the number of 0’s in λ̄, as
in Theorem 3.2. By Proposition 4.5 we have

f(λ̄, 0,−1k) = 2(k + 1)x f(λ̄,−1k), and

f(λ̄, 1,−1k) =
k + 1

2x
f(λ̄, 0,−1k−1),

and by Theorem 2.3 the first element in the n-th row of T (x) is

∑

λ̄∈Mn

f(λ̄) =
∑

λ̄∈Mn

ν(λ̄)xz(λ̄) =

n
∑

k=0

un,k xk =: Pn(x) ,

where un,k =
∑

λ̄∈Dn,k

ν(λ̄).

If n is odd then Pn(0) = 0 since Dn,0 is empty.

If n is even, we have seen in Corollary 5.2 that Pn(0) = tan(n+1)(0). This holds for
n = 0 too, since P0 = 1.

Finally, Pn(1) = (n + 1)! as in Corollary 4.6.

Remark. Of course, the matrix A(x) is not defined for x = 0, but we certainly have
that

lim
x→0

Pn(x) = tan(n+1)(0).

If x is positive and small enough then tan(n+1)(0) will equal the floor function applied
to Pn(x). If we fix n and want to find tan(n+1)(0) it suffices to take x = 1/(n + 1)!: we
have seen that

Pn(x) − tan(n+1)(0) =
n

∑

k=1

(

∑

λ̄∈Dn,k

ν(λ̄)
)

xk ,

so if 0 < x < 1 and n is even

0 < Pn(x) − tan(n+1)(0) < x

n
∑

k=1

(

∑

λ̄∈Dn,k

ν(λ̄)
)

< xPn(1) = x (n + 1)! ,

and for x =
1

(n + 1)!
we have 0 < Pn(x) − tan(n+1)(0) < 1.
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Entringer’s paper [7] shows actually more than we have said so far: it provides a
triangle to generate both tangent and secant numbers. Our last aim is to recall this,
presenting it in the frame of our matrix-generated triangles idea.

Let En,k denote the number of alternating permutations σ ∈ Sn+1 such that σ(1) =
k + 1 > σ(2), with E0,0 = 1. Note that En,0 = 0 for n ≥ 1, and En,n is just the zig-zag
number βn.

(En,k) are the so-called Entringer numbers, and they form the Seidel-Entringer-Arnold

triangle. The starting point for the proof of Entringer’s theorem in [7] is the recurrence

En+1,k+1 = En+1,k + En,n−k (n ≥ k ≥ 0) ,

which gives itself a very simple algorithm to generate the triangle and thus the zig-zag
numbers (see [11] for more on this). This recurrence yields

En+1,k+1 =

n
∑

j=n−k

En,j (n ≥ k ≥ 0) ,(7)

a fact that can be formulated as the following observation: if we remove the first (and
trivial) column in the Seidel-Entringer-Arnold triangle, the resulting one is easily obtained
by means of matrices:

Proposition 5.4. For each n ∈ N, let (A(n) = (aij) the n × (n + 1) matrix given by

aij =

{

0 if i + j ≤ n ,

1 if i + j > n .

Then the triangle (tn,m)0≤m≤n) generated by (A(n)) is such that

tn,m = En+1,m+1 for all n, m .

In particular tn,0 is the zig-zag number βn for all n ≥ 0, and tn,n = βn+1.

Note that A(n) in the proposition is the submatrix of the first n rows and the last n+1
columns of the infinite matrix

A =









· · · 0 0 0 1 1
· · · 0 0 1 1 1
· · · 0 1 1 1 1
. . . . . . . . . . . . . . . . . . . .









,

and the triangle begins

1
1 1
1 2 2
2 4 5 5
5 10 14 16 16
16 32 46 56 61 61
. . . . . . . . . . . . . . . . . . . . . . . . .
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Corollary 5.5. Let the infinite matrix

A =





















1 2 2 2 2 2 2 · · ·
1 2 3 3 3 3 3 · · ·
1 2 3 4 4 4 4 · · ·
1 2 3 4 5 5 5 · · ·
1 2 3 4 5 6 6 · · ·
1 2 3 4 5 6 7 · · ·
. . . . . . . . . . . . . . . . . . . . . . . . . .





















,

and let A(n) be the submatrix formed by the first n rows and the first n + 2 columns of
A, for all n ∈ N. Let then t̄1 = (1) and

t̄n+1 = (tn+1,1, tn+1,2, . . . , tn+1,2n+1) = t̄nA(2n−1) ∈ N
2n+1 (n ∈ N) .

Then, for every n = 1, 2, . . . we have

tn,1 = β2n−2 (the n-th secant number), and

tn,2n−1 = β2n−1 (the n-th tangent number).

Proof. Just note that, if Ã(n) are the matrices in the previous proposition, then

Ã(2n−1)Ã(2n) = A(2n−1)

for each n ∈ N, and thus the vectors t̄n are the even rows in the triangle of the previous
proposition.

Proposition 5.6. Let A = (aij) the infinite matrix given by

aij =











1 if i is odd and i ≤ j ,

1 if j is odd and j ≤ i + 1 ,

0 otherwise,

i.e.

A =





















1 1 1 1 1 1 1 · · ·
1 0 1 0 0 0 0 · · ·
1 0 1 1 1 1 1 · · ·
1 0 1 0 1 0 0 · · ·
1 0 1 0 1 1 1 · · ·
1 0 1 0 1 0 1 · · ·
. . . . . . . . . . . . . . . . . . . . . . . . . .





















.

Then the triangle (tn,m)n≥m≥0 generated by A is such that

tn,0 = βn+1 (the zig-zag number)

and each row t̄n is a permutation of the Entringer numbers (En+1,k)k=1,...,n+1.

Proof. Using (7), it follows (by induction on n) that

tn,2k = En+1,n+1−k if 0 ≤ k ≤
n

2
, and

tn,2k+1 = En+1,k+1 if 0 ≤ k ≤
n − 1

2
,
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and then

(tn,m) ≡

1
1 1
2 1 2
5 2 5 4
16 5 16 10 14
61 16 61 32 56 46
. . . . . . . . . . . . . . . . . . . . . . . . .
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