The Fibonacci Quarterly 1994 (32,3): 228-231

A GENERALIZATION OF MORGAN-VOYCE POLYNOMIALS

Richard André-Jeannin

IUT GEA, Route de Romain, 54400 Longwy, France (Submitted September 1992)

1. INTRODUCTION

Recently Ferri, Faccio, & D'Amico ([1], [2]) introduced and studied two numerical triangles, named the DFF and the DFFz triangles. In this note, we shall see that the polynomials generated by the rows of these triangles (see [1] and [2]) are the Morgan-Voyce polynomials, which are well known in the study of electrical networks (see [3], [4], [5], and [6]). We begin this note by a generalization of these polynomials.

2. THE GENERALIZED MORGAN-VOYCE POLYNOMIALS

Let us define a sequence of polynomials $\{P_n^{(r)}\}\$ by the recurrence relation

$$P_n^{(r)}(x) = (x+2)P_{n-1}^{(r)}(x) - P_{n-2}^{(r)}(x), \ n \ge 2,$$
 (1)

with $P_0^{(r)}(x) = 1$ and $P_1^{(r)}(x) = x + r + 1$.

Here and in the sequel, r is a fixed real number. It is clear that

$$P_n^{(0)} = b_n \tag{2}$$

and that

$$P_n^{(1)} = B_n, (3)$$

where b_n and B_n are the classical Morgan-Voyce polynomials (see [3], [4], [5], and [6]). We see by induction that there exists a sequence $\{a_{n,k}^{(r)}\}_{n\geq 0,\ k\geq 0}$ of numbers such that

$$P_n^{(r)}(x) = \sum_{k \ge 0} a_{n,k}^{(r)} x^k,$$

with $a_{n,k}^{(r)} = 0$ if k > n and $a_{n,n}^{(r)} = 1$ if $n \ge 0$.

The sequence $a_{n,0}^{(r)} = P_n^{(r)}(0)$ satisfies the recurrence relation

$$a_{n,0}^{(r)} = 2a_{n-1,0}^{(r)} - a_{n-2,0}^{(r)}, \ n \ge 2,$$

with $a_{0,0}^{(r)} = 1$ and $a_{1,0}^{(r)} = 1 + r$.

From this, we get that

$$a_{n,0}^{(r)} = 1 + nr, \ n \ge 0.$$
 (4)

In particular, we have

$$a_{n,0}^{(0)} = 1, \ n \ge 0$$
 (5)

and

$$a_{n,0}^{(1)} = 1 + n, \ n \ge 0.$$
 (6)

Following [1] and [2], one can display the sequence $\{a_{n,k}^{(r)}\}$ in a triangle:

$\setminus k$	0	1	2	3	•••
$n \longrightarrow$					
0	1				
. 1	1+r	1			• • •
2	1+2r	3+r	1		• • •
3	1 + 3r	3+r $6+4r$	5+r	1	•••
• • •		•••	• • •	•••	

Comparing the coefficient of x^k in the two members of (1), we see that, for $n \ge 2$ and $k \ge 1$,

$$a_{n,k}^{(r)} = 2a_{n-1,k}^{(r)} - a_{n-2,k}^{(r)} + a_{n-1,k-1}^{(r)}. (7)$$

By this, we can easily obtain another recurring relation

$$a_{n,k}^{(r)} = a_{n-1,k}^{(r)} + \sum_{\alpha=0}^{n-1} a_{\alpha,k-1}^{(r)}, \ n \ge 1, k \ge 1.$$
 (8)

In fact, (8) is clear for $n \le 2$ by direct computation. Supposing that the relation is true for $n \ge 2$, we get, by (7), that

$$\begin{aligned} a_{n+1,k}^{(r)} &= a_{n,k}^{(r)} + \left(a_{n,k}^{(r)} - a_{n-1,k}^{(r)} \right) + a_{n,k-1}^{(r)} \\ &= a_{n,k}^{(r)} + \sum_{\alpha=0}^{n-1} a_{\alpha,k-1}^{(r)} + a_{n,k-1}^{(r)} = a_{n,k}^{(r)} + \sum_{\alpha=0}^{n} a_{\alpha,k-1}^{(r)}, \end{aligned}$$

and the proof is complete by induction.

We recognize in (8) the recursive definition of the DFF and DFFz triangles. Moreover, using (5) and (6), we see that the sequence $\{a_{n,k}^{(0)}\}$ (resp. $\{a_{n,k}^{(1)}\}$) is exactly the DFF (resp. the DFFz) triangle. Thus, by (2) and (3), the generating polynomial of the rows of the DFF (resp. the DFFz) triangle is the Morgan-Voyce polynomial b_n (resp. B_n).

3. DETERMINATION OF THE $\{a_{n,k}^{(r)}\}$

In [1] and [2], the authors gave a very complicated formula for $\{a_{n,k}^{(0)}\}$ and $\{a_{n,k}^{(1)}\}$. We shall prove here a simpler formula that generalizes a known result [5] on the coefficients of Morgan-Voyce polynomials.

Theorem: For any $n \ge 0$ and $k \ge 0$, we have

$$a_{n,k}^{(r)} = {n+k \choose 2k} + r {n+k \choose 2k+1}, \tag{9}$$

where $\binom{a}{b} = 0$ if b > a.

Proof: If k = 0, the theorem is true by (4). Assume the theorem is true for k - 1. We shall proceed by induction on n. Equality (9) holds for n = 0 and n = 1 by definition of the sequence

 $\{a_{n,k}^{(r)}\}$. Assume that $n \ge 2$, and that (9) holds for the indices n-2 and n-1. By (7), we then have $a_{n,k}^{(r)} = 2a_{n-1,k}^{(r)} - a_{n-2,k}^{(r)} + a_{n-1,k-1}^{(r)} = X_{n,k} + rY_{n,k}$, where

$$X_{n,k} = 2\binom{n+k-1}{2k} - \binom{n+k-2}{2k} + \binom{n+k-2}{2k-2} \text{ and } Y_{n,k} = 2\binom{n+k-1}{2k+1} - \binom{n+k-2}{2k+1} + \binom{n+k-2}{2k-1}$$

Recall that

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a-1 \\ b \end{pmatrix} + \begin{pmatrix} a-1 \\ b-1 \end{pmatrix} = \begin{pmatrix} a-2 \\ b \end{pmatrix} + 2\begin{pmatrix} a-2 \\ b-1 \end{pmatrix} + \begin{pmatrix} a-2 \\ b-2 \end{pmatrix}$$

From this, we have

$$X_{n,k} = 2\binom{n+k-2}{2k} + \binom{n+k-2}{2k-1} - \binom{n+k-2}{2k} + \binom{n+k-2}{2k-2}$$
$$= \binom{n+k-2}{2k} + 2\binom{n+k-2}{2k-1} + \binom{n+k-2}{2k-2} = \binom{n+k}{2k}.$$

In the same way, one can show that $Y_{n,k} = \binom{n+k}{2k+1}$; this completes the proof.

The following particular cases have been known for a long time (see [5]). If r = 0 (DFF triangle and Morgan-Voyce polynomial b_n), then

$$a_{n,k}^{(0)} = \binom{n+k}{2k}$$

and, if r = 1 (DFFz triangle and Morgan-Voyce polynomial B_n), then

$$a_{n,k}^{(1)} = {n+k \choose 2k} + {n+k \choose 2k+1} = {n+k+1 \choose 2k+1}.$$

Remark: The sequence $w_n = P_n^{(r)}(1)$ satisfies the recurrence relation $w_n = 3w_{n-1} - w_{n-2}$. On the other hand, the sequence $\{F_{2n}\}$, where F_n denotes the usual Fibonacci number, satisfies the same relation. From this, it is easily verified that

$$P_n^{(r)}(1) = F_{2n+2} + (r-1)F_{2n} = F_{2n+1} + rF_{2n}.$$

For instance, we have two known results (see [1] and [2]), $P_n^{(0)}(1) = F_{2n+1}$ and $P_n^{(1)}(1) = F_{2n+2}$. We also get a new result,

$$P_n^{(2)}(1) = F_{2n+2} + F_{2n} = L_{2n+1},$$

where L_n is the usual Lucas number.

4. MORGAN-VOYCE AND CHEBYSHEV POLYNOMIALS

Let us recall that the Chebyshev polynomials of the second kind, $\{U_n(w)\}$, are defined by the recurrence relation

$$U_n(\omega) = 2\omega U_{n-1}(\omega) - U_{n-2}(\omega),$$
 (10)

with initial conditions $U_0(\omega) = 0$ and $U_1(\omega) = 1$. It is clear that the sequence $\{P_n^{(r)}(2\omega - 2)\}$ satisfies (10). Comparing the initial conditions, we obtain

230

$$P_n^{(r)}(2\omega - 2) = U_{n+1}(\omega) + (r-1)U_n(\omega).$$

If $\omega = \cos t$, $0 < t < \pi$, it is well known that

$$U_n(\omega) = \frac{\sin(nt)}{\sin t}.$$

Thus, we have

$$P_n^{(r)}(2\omega - 2) = \frac{\sin(n+1)t + (r-1)\sin nt}{\sin t}.$$

From this, we get the following formulas, where $\omega = \cos t = (x+2)/2$,

$$b_n(x) = P_n^{(0)}(x) = \frac{\cos(2n+1)t/2}{\cos t/2},$$
(11)

$$B_n(x) = P_n^{(1)}(x) = \frac{\sin(n+1)t}{\sin t}.$$
 (12)

Formulas (11) and (12) were first given by Swamy [6]. We also have a similar formula for $P_n^{(2)}(x)$, namely,

$$P_n^{(2)}(x) = \frac{\sin(2n+1)t/2}{\sin t/2}.$$
 (13)

From (11) and (12), we see that the zeros x_k (resp. y_k) of the polynomial b_n (resp. B_n) are given by (see [6])

$$x_k = -4\sin^2\left(\frac{k\pi}{2n+2}\right), k = 1, 2, ..., n, \text{ and } y_k = -4\sin^2\left(\frac{(2k-1)\pi}{4n+2}\right), k = 1, 2, ..., n.$$

Similarly, the zeros z_k of the polynomial $P_n^{(2)}(x)$ are given by

$$z_k = -4\sin^2\left(\frac{k\pi}{2n+1}\right), k = 1, 2, ..., n.$$

REFERENCES

- 1. G. Ferri, M. Faccio, & A. D'Amico. "A New Numerical Triangle Showing Links with Fibonacci Numbers." *The Fibonacci Ouarterly* **29.4** (1991):316-20.
- 2. G. Ferri, M. Faccio, & A. D'Amico. "Fibonacci Numbers and Ladder Network Impedance." *The Fibonacci Quarterly* **30.1** (1992):62-67.
- 3. J. Lahr. "Fibonacci and Lucas Numbers and the Morgan-Voyce Polynomials in Ladder Networks and in Electrical Line Theory." In *Fibonacci Numbers and Their Applications*, ed. G. E. Bergum, A. N. Philippou, & A. F. Horadam, I:141-61. Dordrecht: Kluwer, 1986.
- 4. A. M. Morgan-Voyce. "Ladder Networks Analysis Using Fibonacci Numbers." *I.R.E. Trans. Circuit Theory* **6.3** (1959):321-22.
- M. N. S. Swamy. "Properties of the Polynomial Defined by Morgan-Voyce." The Fibonacci Quarterly 4.1 (1966):73-81.
- M. N. S. Swamy. "Further Properties of Morgan-Voyce Polynomials." The Fibonacci Ouarterly 6.2 (1968):166-75.

AMS Classification Number: 11B39