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We consider a modification of Meixner moment functional by adding a mass
point at x = 0. We obtain the resulting orthogonal polynomials, identify them as
hypergeometric ;F; functions, and derive the second order difference equation
which these polynomials satisfy. In such a way we give the solution to a problem
raised by R. Askey (1991) in ““Orthogonal Polynomials and Their Applications,”
p. 418, Baltzer AG Scientific, (Basel). © 1995 Academic Press, Inc.

1. INTRODUCTION

The study of orthogonal polynomials with respect to a modification of
a linear functional in the linear space of polynomials with real coefficients
via the addition of one or two delta Dirac measures has been performed
by several authors. In particular, Chihara [3] considered some properties
of such polynomials in terms of the location of the mass point with respect
to the support of a positive measure. More recently Marcellan and Maroni
[6] analyzed a more general situation for regular linear functionals, i.e.,
such that the principal submatrices of the corresponding infinite Hankel
matrices for the moment sequences are nonsingular.

Special emphasis is given to modifications of classical linear functionals
(Hermite, Laguerre, Jacobi, and Bessel). In [6], representation formulas
for the new orthogonal polynomial sequences as well as the second order
differential equation that such polynomials satisfy were deduced.

In the open problem section of the “‘Proceedings of the Third Interna-
tional Symposium on Orthogonal Polynomials and Their Applications”
held in Erice (Italy), R. Askey raised the following question [1]: “Consider
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the Meixner Polynomials M}*(x), add or subtract a point mass at x = 0
and find the resulting polynomials. Identify them as hypergeometric func-
tions and show that these polynomials satisfy a difference equation in x.”

In the present paper we solve this problem. Very recently H. Bavinck and
H. van Haeringen [2] found an infinite difference equation with polynomial
coefficients that such generalized Meixner polynomials satisfy as well as a
second order difference equation, which has a different form with respect
to the equation that we find in this work.

We continue the algebraic approach presented by Godoy, Marcelldn,
Salto, and Zarzo [5] in a general theory based in the addition of a delta
Dirac measure to a discrete semiclassical linear functional.

The structure of the paper is as follows. In Section 2, we deduce an
expression of the generalized Meixner polynomials M}*4(x) in terms of
the nth Meixner polynomial and its first difference derivative. In Section
3, we obtain its representation as a hypergeometric function ;£;. In Section
4, we find the second order difference equation which these generalized
polynomials satisfy. Finally, an appendix with the required background
concerning Meixner polynomials is included.

2. THE DEFINITION AND ORTHOGONAL RELATION

Consider the linear functional U on the linear space of polynomials with
real coefficients defined as

_vy #Tly+x -
(U, Py = %F(y)m e P(x) + AP(0), x€E€N,A=0 1)

and

_5 #Th+x)
(M, Py= ;;W)-P(x)’ XEN, 2)

where M is the Meixner moment functional, 0 < u <1,y > 0,and N =
{0,1,2,..}.

We will determine the monic polynomials My#*4(x) which are orthogonal
with respect to the functional U. These polynomials exist because U is a
positive definite moment functional (see (4, p. 26, Definition 5.1]).

To obtain this we may write the generalized polynomials as a Fourier
series
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n-1

MyA(x) = My#(x) + 3, ani M (), (3

where M%#(x) denotes the classical Meixner monic polynomial of degree n.
To find the unknown coefficients a,, we will use the orthogonality of
the polynomials M} (x) with respect to U, i.e.,

U, M (x)My*(x)) =0 Vk <n.
Now putting (3) in (1) we find

(U, Mp+A(x)ME*(x)) = (M, M4 (x)Mp*(x)) @)
+ AMI*A(0)M]*(0).

If we use the decomposition (3) and take into account the orthogonality
of the classical Meixner polynomials with respect to the linear functional
M, the coefficients a,,, are given by

AMH(0)M*(0)
pi = — dl% > (5)

where d3 denotes the norm of the classical Meixner polynomials (24).
Finally, Eq. (3) gives the expression

n-1 MY»# 0 My.u
M:/,'“A(x) = MZ,"‘(x) — AM%.}LA(O) 2 k ( L)iz k (X) )
k=( k

(6)
Now in order to obtain an explicit expression for these polynomials we
need some properties of the classical Meixner polynomials. These formulas
are enclosed in the Appendix.
Doing some algebraic calculations in (6) and taking into account formula
(27), below, we obtain the following expression for the generalized Meix-
ner polynomials:

M) = My) = Amger @) S E T a0

In the above formula the polynomials M%*(x) evaluated in x = 0 appear.
Then, to obtain the analytical expression of M}*-*(0) it is enough to evaluate
(7) in x = 0. The solution of this equation is
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My#+A(x) = My*(x) + B,V M}#*(x) = (I + B,V)M}*(x), ‘)
where

w1 = ) (Y)n
nl (1 + A 2o (M1*(0))¥/d})

From (6) we can conclude that the representation (8) exists for any value
of the mass A. To obtain this is it enough to evaluate (6) in x = 0,

( & Mx (O)M’ ”(0))

1+AZ M3#A0) = My#(0) # 0,
=0

and use the fact that 1 + A 2r_, (M*(0)M}*(0)/d%) > 0 for n € N. The
result then follows.

3. REPRESENTATION AS HYPERGEOMETRIC SERIES

The classical Meixner polynomials are represented by the hypergeomet-
ric function

n

M) = (D o1 = ), ©)
where
F (B2 gy = o (@)(@2)k - - (ap)k x*
Pra\s 5,0, £ (b)) (b k!
(a)[] = 1,

(@=ala+ 1 a+2)---(a+k-1), k=1,2,3,..

In this section we will prove the following:

ProposiTion 1. The orthogonal polynomial M4 (x) is, up fo a constant
factor, a generalized hypergeometric function. More precisely

Myp#A(x) = (v) Ay L
n n( 1),, 2 pr,“,l ’ u .
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Proof.  From (8) and the hypergeometric representation of the Meixner
polynomials (9) we can write.

> (= n)m(_x)mﬁ
(o 1)" mz— Ym  m!
B & (WX 2"
B G Ty ,,Zo M m!
- ( n)m(l — x)mi?_
( 1)" mz() ('Y)m m!

MyEA(x) = (¥)n

= By(¥)n

or, equivalently,

M) = o, 3 [ B |2 )

( 1)" m=0 (Y)m X

where z = 1 — l/pu.

Taking into account the fact that B, # 0 as well as the fact that the
expression inside the quadratic brackets is a polynomial in m of degree 1,
we can write (10) as

A = M= x ]z
M) = G =y ) 3, = @ [ Bn]m!' 1

Since

B.' + 1),
("’ * 'x") - xg,.(xB:‘): ’ (12)

then (11) becomes

( n)m(—x)m(xB;‘ + 1)m "
M;yf“‘A - n e 1
R e U e e S s
or in terms of the hypergeometric series
wA(x) = M nexiexdy, 1
My ) = s (T 1) (14)

Here the coefficient xB;' is, in general, a real number. In the case when
xB,' is a nonpositive integer we need to take the analytic continuation of
the hypergeometric series (14).

It is straightforward to show that for A = 0 the hypergeometric function
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(14) yields Eq. (9). So (14) can be considered as a generalization of the
representation of the classical Meixner polynomials M}*#(x) as hypergeo-
metric series. |

4. A SEcoND ORDER DIFFERENCE EQUATION

We will prove the following:

THEOREM 1. The polynomial M1*4(x) satisfies a second order linear
difference equation

[x + B,(BuA, + A, — 7(x))](x — 1) AVPA(x) + (x — D7(x) AP (%)
+ Ba[(7(x) = B,A) (A, — 1 = 7(x = 1)) + A, (A, + B,)
+ (x + B A) AT(X)] AP X)) + (x — DA, PA(X)
+ B,A A — 1 — 7(x — 1) + B,(Ar(x) + A,)] Pi(x) =0,
where
x=01,2, ., (x) = ypu — x(1 — w), A =n(l — )
and

Vi(x) = f(x) — fx = 1), Af(x) = flx + 1) = fx).

Proof. We will start from the representation (8) for the generalized
polynomials

My#A(x) = My#(x) + B,VM}H(x).

Multiplying this expression by x and using the second order difference
equation that the classical Meixner polynomials satisfy,

x AVM#(x) + 1(x) AMA(x) + A, M2#(x) = 0, 15)
we obtain
xMy#A(x) = (x + B,A)ME*(x) + B,(x + 7(x)) AM*(x),  (16)

where the identity VM*(x) = AM}*(x) — AVM*(x) is used. Now if we
apply the operator A to (16), from (15) the equation

x AMy«A(x) = [x — B,7(x)] AMy#(x) — Bah, M3*(x) 17
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is obtained. In the same way if we apply in (16) the operator V and use
(15) we find

x(x — DAVPA(x) = —[(x ~ D7(x) + B,m(x)(A, — 7(x — 1) = 1)
+B,x(A, + AT(x)] AP (x) (18)
—{x =1+ B, (&, — 7(x — 1) — D]A, P.(x).

Now from (16), (17), and (18) we can deduce that the determinant

xMyA(x) a(x) b(x)
x AMp#A(x) c(x) dx)[ =0 (19)
x(x — 1) AVM=4(x) e(x) f(x)

vanishes. Here, for C = B,

a(x) = (x + CA,),
b(x) = C(x + 7(x))
C(X) = —CA,,
d(x) =x - Cr(x)
e(x)=—lx—1+CA, —1—7(x — 1)]A,
f(x) = —[(x = Dy7(x) + Clr(x)(A, — 1 = 7(x — 1)) + x(A, + A7(x))].
If we expanding the determinant in (19) by the first column and divide
by x the theorem follows. 1
The difference equation of the previous theorem takes the form
{x + B.[(1 — p)(x + n + nB,) — yull(x — 1) AVM}#4 (x)
+(x = Dlyw ~ x(1 — w)] AMy=4(x)
+ B {(1 — w)lyu(n + nB, + 2x ~1)
+ (1 - w)x +n?—(x+nB,)(x + n))
+2nB,] — yu(1 + yu)} AMp*A(x) (20)
+(x = Da(l — )M+ (x)
+nB,(1-wWl(1-p)x+n+nB,-B,—1)
= 1= yu]Mp*(x) = 0.

AprPENDIX: THE CLASSICAL MEIXNER POLYNOMIALS

In this appendix we include some formulas for the classical Meixner
polynomials which are useful for obtaining the generalized polynomial
orthogonal with respect to the linear functional U. All the formulas and
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other properties for the classical Meixner polynomials can be found in the
literature; see, for instance, the excellent monograph *‘Orthogonal Polyno-
mials in Discrete Variables,”” by A. F. Nikiforov, S. K. Suslov, and V. B.
Uvarov [7].

In this work we will use monic polynomials, i.e., polynomials with leading
coefficient equal to 1 (P,(x) = x” + lower order terms).

The classical Meixner polynomials of a discrete variable are the polyno-
mial solutions of the second order linear difference equation of hypergeo-
metric type

x AVM1#(x) + 7(x) AMZ*(x) + A, M1#(x) = 0, (21)
where
0<pu<l y>0, 7x)=yu—-—x(1—p) A =n(l—-u
and
Vi(x) = fx) = flx = 1), Af(x) = fx + 1) = flx).

We will use the following two relations for the classical Meixner polyno-
mials,

X VMp#(x) = myrn—1) My#(x) — M1#(x), (22)
n p—1

AMYH(x) = nM31#(x). (23)

These polynomials are orthogonal with respect to the linear functional
M defined in (2). The orthogonality relation is

Vit Yo M — 2
% M,, (x)M,,, (x) F(’)’)F(l + x) 8nm dn) (24)

where d? denotes the square of the norm of the classical Meixner polyno-
mials

d2 — n!(’Y)'l“"
BN D

A consequence of the representation (9) is
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iy = " T(nty)
MO == o)

From the Christoffel-Darboux formula (see [7, p. 14, formula [1.4.18]])

(25)

& My My(y)

>

m=0 d?n

1 MpMyr(y) — My () My*(y)
- X —y dg,_] ’

(26)

=12,..,

we will obtain a useful property for the kernels of the Meixner polynomials.
We put y = 0 in (26) and use (25) and (22). Then

n-1 M,V,;“(x)MZ,,““(O) _ (,u, _ l)n*y—]

>

Yoit
2 Z o VMy#(x). 27)
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