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A FURTHER NOTE ON LUCASIAN NUMBERS

Lawrence Somer

1. INTRODUCTION

This paper will extend and unify the results in [4] by completely determining all Lucasian
numbers which are terms in certain Lucas sequences. Our specification of all Lucasian numbers
will be based on results obtained in [1] in which all terms in particular Lucas sequences which
do not have any primitive prime divisors are found.

Before proceeding, we will recall some definitions and known results. Qur notation will
be the same as that in [4]. Let u(r, s) and v(r, 8) be Lucas sequences which satisfy the same
second-order recursion relation

Wni2 = TWpiy + 8Wy (1)

and have initial terms up = 0, u; = 1, vg = 2, vy = r respectively, where r and s are integers.
Associated with the sequences u(r, s) and v(r, 5) is the characteristic polynomial

flx)y=z-rz—s (2)

with characteristic roots @ and B. Let D = r? + 4s = (a — 8)? be the discriminant of both
u(r, $) and v(r, s). By the Binet formulas

up = (o" — f%)/(a - B) @)

and
vy = a® + 8. (4)
The recurrences u(r, s) and v(r, s) are said to be degenerate if @8 = —s = 0 or a/f is a root

of unity. It follows from (3) and (4) that u, or v, can be equal to zero for n > 1 only if both
u(r, s) and v(r, s) are degenerate.
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The integer m is a divisor of the recurrence w(r, s) satisfying the relation (1) if m | wy
for some n > 1. The prime p is a primitive prime divisor of w,, n > 1, if p | w, but p Jw;
for 1 < 7 < n. Given the Lucas sequence v(r, s}, the integer m is called Lucasian if m is a
divisor of v(r,$). In our main theorem, Theorem 2.6, we will show that if u(r, 8) and v(r,s)
are nondegenerate and ged(r, s) = 1, then u,, is not Lucasian if n > 27. Theorem 2.6 will also
find all terms u, and vp such that @ > 1, b > 1, and u, | .

A related question is to determine all @ and b such that ¢ > 1, b > 1, and v, | up.
We will answer this question completely in Theorem 2.8 when both v(r,s) and u(r,s) are
nondegenerate and ged(r, s) = 1.

2. THE MAIN RESULTS

For reference, we will give the main results of [4] in Theorems 2.1-2.4. Theorems 2.6 and
2.8 will then generalize Theorems 2.1, 2.2 and 2.4.

Theorem 2.1: Let u(r, s) and v(r, s) be nondegenerate Lucas sequences for which ged(r,s) = 1
and D > 0. Let a and b be positive integers. Then u, | vp if and only if one of the following
conditions also holds. For convenience, the value of u, is given in these conditions. The
expressions 7 = % given below means that r can be any integer.

) a=1,r=2x% s=x, b=x% u=1;

(i) a=2,|r|=1o0r2 s=12 b=1% ug=r1=1;
(i) a=2, |r|>3, s==x b=1(mod 2),uy = r = vy;
(iv) a=3,[r|=1, s=1, b=0(mod 3), uz = 2;

(v) a=4, |r[=1,8=+%, b=2 (mod 4), ug = vz =72+ 2s.
In particular, u,, is not Lucasian if n > 5.
Theorem 2.2: Let u(r, 5) and v(r, s) be nondegenerate Lucas sequences for which ged(r, s) = 1
and D < 0. Then uy, is not Lucasian for n > 452268,

Theorem 2.3: Let u(r, s) and v(r, 8) be nondegenerate Lucas sequences for which ged(r,s) >
1. Then there exists a constant N(r,s) dependent on r and s such that u,, is not Lucasian for
n > N(r,s).
Theorem 2.4: Let u(r, 5) and v(r, 5) be nondegenerate Lucas sequences for which ged(r,s) =1
and D > 0. Let a and b be positive integers. If |v,| > 3, then v,|up if and only if 2alb. If
[val < 2, then v,|up if and only if one of the following two conditions also holds (the value of
v, i8 given for convenience):
Ha=1lrj=1, s=%x b=x, vy =1
(i) a=1, |r|=2, s = 1(mod 2), b= 0(mod 2), v1 =7 = us.
Remark 2.5: The proofs of Theorem 2.1 and 2.4 given in [4] depend partly on the fact that
if D > 0, then u(r, s) is strictly increasing for n > 2 and v(r, 8) is strictly increasing for n > 1.
Theorem 2.6: Let u(r, s) and v(r, s) be nondegenerate Lucas sequences for which ged(r, 5) =
1. Let a and b be positive integers. Then v, is Lucasian and u,|v, if and only if one of the
following conditions also holds. For convenience, the value of u, is given in these conditions.
Na=1,r=% s=%, b=, u; =1
({) a=2 |rl=1o0r2,s=x%, b=x%, up=v1 =71
(i) a=2, |r| 23, s =%, b= 1(mod 2), ug = vy =1r;
(ivi a=3, r=+%, s =41 —r2 b= * u3 = +1;
(v} a=3, r=1 (mod 2), s =+2—r% b=0(mod 3), uz = £2;
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(vi) a=4, |r|=1, s =%, b=2(mod 4), us = vy
(vii) a =4, r = 1(mod 2), s ={£1-—r2)/2, b= L(mod 2), ug = Fup = +v; = +r;
(vili) a=05, |r| =1, s == ~2, b=x, up=~1;
(ix) a=5, |rj=1, §=~3, b=x%, us=1;
(x) a=5,|r|=12, s=—55, b==x, us = 1;
(xi) a=5, [r]|=12, s=-377, b=x*, us = 1;
(xii) a =6, r==%, s=+1 12 b= 3(mod 6), ug = Fva;
xiil) a=7, |r|=1, 8= -5, b=*, uyr=1;
(xiv) a =8, |r]=1, s = -2, b= 2(mod 4), ug = ug = vy = +3;
(xv) a=10, |r|=1, s = =2, b= 5(mod 10), uyg = ~vs = +11;
(xvi) @ =10, |r] =1, s = -3, b= 5(mod 10), ujp = vs = £31;
(xvil) @ =10, jr| =12, s = =55, b = 5(mod 10), uip = v5 = +44868;
(xviil) @ =10, |r| =12, s = =377, b= 5(mod 10), uyo = vs = +5519292;
(xix) a=13, |r|=1, s = ~2, b=#, uyz —1;
(xx) a=14,|r| =1, s = —5,b= 7 (mod 14),us4 = v7 = +£559;
(xxi) a =26, |r|=1, s = ~2, b =13 (mod 26), usg = —v33 = +181.
Remark 2.7: By Theorem 2.6, if u(r, s) is nondegenerate and ged(r, s) = 1, then there exist
only 12 possible indices n for which u,, can be Lucasian. It is noteworthy that for the Lucas se-
quences u(+1, —2), u, is Lucasian for 10 of these indices, namely n = 1,2,3,4,5, 6, 8, 10, 13, 26.
The only other nondegenerate Lucas sequences u(r, s) for which ged(r, s) = 1 and u,, is Lu-
casian for 5 or more indices n are u(+1, —3) and u(+1,—-5). For u(+1, —3), u, is Lucasian
for the 6 indices n = 1,2,3,4,5,10, while for u{%1,—5), u, is Lucasian for the § indices
n=124,714.
Theorem 2.8: Let u(r, s) and v(r, s) be nondegenerate Lucas sequences for which ged(r, s) =
1. Let a and b be positive integers. Then w,|up if and only if one of the following conditions
also holds. For convenience, the value of v, is given in condition (ii)-(vii).
(1) 2alb, r=x, s=x;
({l) a=1,|r|=1, s=%, b=x, v; =1}
(i) e=2, r=1(mod 2), s=(£1—7%)/2, b= x, vy = £1;
(iv) a=2, r=0(mod 2), s=(+£2~-7%)/2, b= 0 (mod 2), v; = +2;
(V) a=4,|r|=18=-2, b=%, ug=1;
(vi) a=4, |r]|=2, s=-7, b=0 (mod 2), vy = 2;
(vil) @ =5, |r] =2, s=~3, b=0 (mod 2), vs = £2.
Remark 2.9: Theorem 2.6 generalizes Theorems 2.1 and 2.2, which were proven in [4]. The-
orem 2.8 generalizes Theorem 2.4 which was also proved in [4]. As contrasted to the proofs of
Theorems 2.1, 2.2, and 2.4, the proofs of Theorems 2.6 and 2.7, which will be given in Section
4, do not treat the cases D) > 0 and D < 0 separately.

The key result in proving Theorems 2.6 and 2.8 is Theorem 2.10 given below which is
the main theorem of [1]. :

Theorem 2.10: Let u(r, 5) be a nondegenerate Lucas sequence for which ged(r, s) = 1. Then
U, has a primitive prime divisor if n > 30. Moreover u,, has no primitive prime divisor only
ifn=1234,5,6,78,10,12 13,18, or 30.

Remark 2.11: Consider all nondegenerate Lucas sequences u(r, 8) for which ged(r,s) = 1.
Tables 1 and 3 of [1] list all terms un,n > 1, which have no primitive prime divisors. We
note that in [1], the authors define a prime p to be a primitive prime divisor of u, if plu, but
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p { Dujuz ... un~1. In contrast to this definition, we do not include p as a primitive prime
divisor of u, if p|D, but p fu, for 1 <k < n.
For reference, Theorem 2.12 lists all degenerate Lucas sequences u(r, s) and v(r, s).

Theorem 2.12: The Lucas sequences u(r,s) and v(r,s) are degenerate if and only if one of
the following conditions holds:
(i) s=0.

(i) a/f=1and D=1r%+45=0.

(i) «/f = —1, r =0 and 5 = N for some non-zero integer N.

(iv) a/B is a primitive cube root of unity, r = N, and s = —N? for some non-zero integer N.

(v) a/B is a primitive fourth root of unity, r = 2N, and s == —2N? for some non-zero integer
N.

(vi) a/B is a primitive sixth root of unity, 7 = 3N, and s = ~3N? for some non-zero integer
N.

Proof: This is proved in [9, p. 613]. i}

3. NECESSARY LEMMAS AND DEFINITIONS

The following lemmas and definition will be needed for the proofs of Theorems 2.6 and
2.8. Lemmas 3.1, 3.2, 3.3, and 3.5 are well-known (and follow readily from (1), (3), and (4)).
Lemma 3.1: us, = Uy vy

Lemma 3.2:

tn(—r,8) = (=1)" ug(r, 5). ()

un(=1,8) = (=1)"wn(r, 5). (6)

It follows from Lemma 3.2 that, u,(—r, 5) is Lucasian if and only if u,(r, 8) is Lucasian.
Lemma 3.3: Consider the Lucas sequences u(r, s) and v(r, ). Then u,|uin for alli > 1 and
'Un]'U(2j+1)n for all j > 0. ]
Lemma 3.4: If u, is not Lucasian, and alc, then u, is not Lucasian.
Proof: By Lemma 3.3, ug|u.. It is now evident that u,. is not Lucasian if u, is not Lucasian.
O

Lemma 3.5: Let u(r, s) and v(r, s) be Lucas sequences for which 2 J ged(r, 3). O

(i) Suppose r is odd and s is even. Then 2 fu, and 2 J v, for n > 1.

(i) Suppose r and s are both odd. Then 2|u, if and only if 3|n, and 2|v, if and only if 3|n.
(iii) Suppose r is even and s is odd. Then 2|u,, if and only if 2|r, and 2|v, for all n > 0.
Lemma 3.6: Let v(r, s) be a Lucas sequence for which 2 [ ged(r, 5).

(i) I r and s are both odd and 2% || vs for some positive integer k, then 2 || v, for n =

0 (mod 6) and 2* || v, for n = 3 (mod 6). Recall that 2% || @ if 2*|a, but 28+ Ja.

(i) If r is even and s is odd and 2¥ || v; = r, then 2 || vg, and 2* || vy, for all n > 0.
Proof: This is proved in (8]. 0O
Definition 3.7: For the Lucas sequence u(r, 8) the rank of appearance of the positive integer
m in u(r,s), denoted by w(m), is the least positive integer n, if it exists, such that m|u,. The
rank of appearance of m in v(r, s), denoted by @W(m), is defined similarly.

Lemma 3.8: Let u(r, s) and v(r, s) be Lucas sequences for which ged(r,s) = 1. Let p be an
odd prime. If w(p) is odd, then @G(p) does not exist and u,(y) is not Lucasian.
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Proof: This was proved by Carmichael [2, p. 47]. ]

Lemma 3.9: Let u(r, 5) and v(r, s) be Lucas sequences for which ged{r, s) = 1. Suppose that
p is an odd prime and w(p) = 2n. Then &(p) = n.

Proof: This is proved in Proposition 2(iv) of [7]. 0

Definition 3.10: The 2-valuation of the integer n, denoted by [n]; is the largest integer k
such that 2%|n.

Lemma 3.11: Let v(r, s) be a Lucas sequence for which ged(r,s) = 1. Suppose that u, is
Lucasian and that p and ¢ are distinct odd prime divisors of u,. Then [W(p)]2 = [(@(¢)]a.
Proof: This is proved in Proposition 2(ix) of [7]. O
Lermma 3.12: Let u(r, 8) and v(r, s) be nondegenerate Lucas sequences for which ged(r,s) = 1.
Let a and b be positive integers and let d = gcd(a, b).

(i) ged(ua,us) = ug;

.. _ [ vaif [a]z = [b]2,
() ged(va, v5) = { 1 or 2 otherwise;
vq if [a]z > [blz,
1 or 2 otherwise.

(i) ged(ua vp) = {

Proof: This is proved in [6] and [3, section 5]. o]

Lemma 3.13; Let u(r, 5) and v(r, 5) be nondegenerate Lucas sequences for which ged(r, s) = 1.
Then m|u, if and only if w(m)|n. Moreover, if m > 3, then mlv, if and only if @(m)|n and
[@(m)]z = [n]2.

Proof: The results follow from Lemmas 3.3. and 3.12. ]

Lemma 3.14: Let u(r, 8) be nondegenerate Lucas sequence for which 2 | ged(r, 5). If r is even,
s is odd, and 4|a, then u, is not Lucasian. If r and s are both odd and 6|a, then u, is not
Lucasian. If r and s are both odd and 6|a, the u, is not Lucasian. If r and s are both odd,
4lus, and 3|a, then u, is not Lucasian.

Proof: First suppose that r is even and s is odd. By Lemma 3.5 (iii), 2|v, for all n > 0.
Moreover, 1y = v; = r. Suppose that 2% || r. By Lemma 3.6 (ii), 2¢*! } v, for any n > 0.
However, 2|vz, and hence by Lemma 3.1, 2¥*uy = wuaw,. Thus, u4 is not Lucasian, and
conseuqently by Lemma 3.4, u, is not Lucasian if 4|a.

Now suppose that both r and s are odd. By Lemma 3.5(ii), 2|us and 2]vs. Suppose that
2% || v3. By Lemma 3.6 (i), 2¥*! J v, for any n > 0. However, 2¥+1|ug = u3v;3. Therefore, ug
is not Lucasian, and hence by Lemma 3.4, u, is not Lucasian if 6|a.

Finally, suppose that in addition to r and s both being odd, 4}us. Since uz = r? + s, this
can occur only if 8 = 3 (mod 4). However, then vz = r{r? + 35) = 2 (mod 4) , and 2 || v3. By
Lemma 3.6 (i), it follows that 4 is not a divisor of v(r, s). Since uslug; for all £ > 1 by Lemma
3.3, we see that 4|ug, for all t > 1. Hence, u, is not Lucasian if 3|a. ]

Lemma 3.15: Let u(r, 8) and v(r, 8) be nondegenerate Lucas sequences for which ged(r, s) = 1.

Then u, is Lucasian for a > 1 if and only if at least one of the following four conditions holds:
(i) a is odd and u, = %1;

(1) ais even and ug/9 = £1;

(iii) a is even, 1,2 is Lucasian, and v,y = £1;
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(iv) a =3 and u, = +2.

Proof: We first show sufficiency. The sufficiency of (i) is obvious. The sufficiency of (ii) and
(iii) follow from the fact that us = /29,2 by Lemma 3.1. The sufficiency of (iv) follows from
the fact that by Lemma 3.5, 2|u, for a > 1 only if 2|v,.

We now show necessity. Suppose first that a is odd, u, # =1, and u, is Lucasian. If u,
has an odd prime divisor p, then by Lemma 3.13, w(p)|a and hence w(p) is odd. It now follows
from Lemmas 3.4 and 3.8 that u, is not Lucasian.

Now assume that u, > 2 and u, is a power of 2. By Lemma 3.5, we must have that » and
s are both odd and 3|a. Since 2|us = r2 + s, we see that u, has no primitive prime divisor
if @ > 3. It now follows from Theorem 2.10 that ¢ must equal 3. By Lemma 3.14, u, is not
Lucasian if 4Juz. Hence, a = 3 and u, = :+2. By our above discussion, we see that if a is odd
and u, is Lucasian, then either u, = 1 or a = 3 and u, = +2.

At this point, we assume that a i8 even, ug/s # +1, and vy/s # *+1. Suppose that 2jug/s.
By Lemma 3.5, either r and s are both odd, or r is even and s is odd. If r and s are both odd,
then 3|(a/2) and 2|ve/2 by Lemma 3.5. Suppose that 2* || vs. Then 25¥!|ug = ugvs, and

hence 2%y, by Lemma 3.3. Thus, u, is not Lucasian by Lemma 3.6 (i). If r is even
and s is odd, then a/2 is even by Lemma 3.5. Moreover, by Lemma 3.5 (iii), 2]u, for all
n > 0. Suppose that 2* || v;. Then 2*|uy = r = vy, and hence 2F|u,/; by Lemma 3.3. Then

26+ |y, = ug/ava/2, and u, is not Lucasian by Lemma 3.6 (ii).

Next suppose that 2|, . Since 2 J u,/ by our above arguments, we see by Lemma 3.5
that r is even, s is odd, and a/2 is odd. Then u,/, has an odd prime divisor. By our earlier
discussion and Lemma 3.4, it follows that both u,/2 and u, are not Lucasian.

The only remaining case to consider is the one in which %,/ has an odd prime divisor p
and v,/ has an odd prime divisor ¢. Since ged(ugy2,v4/2) = 1 or 2 by Lemma 3.12 (iii), p # ¢.
Suppose that 2¢ || a. If t = 1, then w(p)|(a/2) and w(p) is odd by Lemma 3.13. Thus, both
U2 and u, are not Lucasian by Lemmas 3.4 and 3.8. Consequently we must have that ¢ > 2.
By Lemmas 3.13 and 3.9, it follows that

[@(p)la <t -2 ™

Since glv, 2, we see by Lemma 3.13 that

@(g)e=t—-1. (8)

Since pglu, it now follows from Lemma 3.11 and (7) and (8) that u, is not Lucasian. Hence, if
a is even and u, is Lucasian, then ug s = 1 or vyyg = +1. We note further that if vy = +1
and u, is Lucasian, then u,/; is also Lucasian since 1, = 1,/9v,/3. Necessity is thus shown
and our result follows.

Remark 3.16: Suppose that u(r, s) and v(r,s) are nondegenerate, ged(r,s) = 1, and u, is
Lucasian. We note that if v,/s = %1, then us = ug/9va/2 = $ugp. It now follows from
Lemma 3.15 that if it is not the case that a = 3 and u, = +2, then either u, or u,/; has no
primitive prime divisor. In what follows, we will apply the results of [1], which determine all
n such that u, has no primitive prime divisor to find all a for which u,, is not Lucasian and it
is not the case that a = 3 and u, = +2.
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Lemma 3.17: Let u(r, s) be a nondegenerate Lucas sequence for which ged(r,s) = 1. Ifa is
odd, then u, is not Lucasian if a > 12, a # 14, and a # 26.

Proof: Suppose that a is odd, a > 9 and a # 13. By Lemma 3.15, if u, were to be Lucasian,
then 4, must equal £1, and consequently u, would have no primitive prime divisor. It now
follows from Theorem 2.10 that u, is not Lucasian.

We pow assume that a = 18, a = 30, or a = 60. By our earlier discussion, ug and u;s
are both not Lucasian. Thus, u, is not Lucasian by Lemma 3.4. Now assume that a is even
and either a = 22 or a > 28. By our previous argument, we can assume that a # 30, a # 36,
and a # 60. If u, were to be Lucasian, then by Remark 3.16, either u, /s or u, would have no
primitive prime divisors. Therefore, by Theorem 2.10, u, is not Lucasian in this case also.

We next suppose that a = 20 and u, is Lucasian. By Theorem 2.10, ug has a primitive
prime divisor. Thus by Lemma 3.15 and Remark 3.16, u;p = &1 and u;0 has no primitive
prime divisor. By Table 1 of [1], the only recurrences u(r, s) for which u;¢ has no primitive
prime divisor are u(+2, —3), u(%5,—7), and u(+5, —18). We see by inspection that in each
case, uyg # +1. Hence, ugo is not Lucasian.

Now assume that a = 16 and u, is Lucasian. Since uje has a primitive prime divisor
by Theorem 2.10, we see by Lemma 3.15 and Remark 3.16 that ug = 1. By Table 1 of {1},
the only recurrences u(r,s) for which ug has no primitive prime divisor are u(+2,—7) and
u(41,~2). In each case, we see by inspection that ug # 1. Thus u;¢ is not Lucasian.

We finally suppose that a = 12 and u, is Lucasian. By Lemma 3.15 either ug = %1 or
vg = £1. First assume that ug = 1. Since ug = uavs, vz = r(r2 = 3s) = £1. Thus, r = +1.
Then 72+ 3s = 35+ 1 = %1. Hence, 35 = —2, which is impossible, or 3s = 0 and s = 0, which
is excluded by the assumption that u(r, s) is nondegenerate. Therefore, by Lemma 3.15 and
Remark 3.16, vg = =1 and u;2 has no primitive prime divisor. Since vg = =1, it follows from
Lemma 3.5 that r is odd and s is even. By Table 1 of [1], the only recurrences u(r, 3) for which
7 is odd and s is even and u;2 has no primitive prime divisor are u(+1, —2) and u(:t1, —4). In
both cases, we see that for the corresponding Lucas sequence, v(r, s), ve # 1. Thus, u3z is
not Lucasian. By Lemma 3.4, ugy4 is also not Lucasian. (m}

Lemma 3.18: Suppose that u(r,s) and v(r, s) are nondegenerate Lucas sequences for which
ged(r,s) = 1. Suppose that a is even, uy /s = %1, |ug| > 3, and T(vey2) = a/2. Then u,lvp if
and only if b = a/2 (mod a).

Proof: Since u, = %,/39,/2 by Lemma 3.1, u, = £v,/3. Note that b = a/2 (mod a) if and
only if b = (2k + 1){a/2) for some k > 0. The result now follows from Lemma 3.12 (ii). O

4. PROOFS OF THE MAIN THEOREMS

We are now ready for the proofs of Theorems 2.6 and 2.8.

Proof of Theorem 2.8: A substantial part of this proof deals with examining nondegenerate
Lucas sequences u(r, ) for which ged(r, s) = 1 and either ug/2 or u, has no primitive prime
divisor. Since there exist infinitely many such Lucas sequences when a/2ora =1, 2, 3,4 or
6 by Table 3 of [1], we will treat these cases separately.

If u, = 1, then clearly u,|v, for all n > 1. The result for the case in which @ = 1 now
follows since u; = 1. Suppose that @ = 2. Then uz = r = v;. If [r] = 1 or 2, then us|v, for all
n by our above observation and by Lemma 3.5 (iii). If |r| > 3, then condition (iii) holds for
Lemma 3.18.
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Now assume that a = 3. By Lemma 3.15, uz is Lucasian only if uz = £1 or ug = 2.
We note that ug = r2 4+ ¢ = £1 if and only if s = 1 — r?, and condition (iv) is satisfied. If
uz = r2 + 8 = +2, then s = £2 — r?. Hence, & = r {(mod 2). Consequently, r and s are both
odd since ged(r, s) = 1. By Lemma 3.5 (ii), it follows that condition (v) holds.
Next suppose that a = 4. By Lemma 3.15 either up = r = 1 or vy = r? + 28 = £1. If
up = £1, then
Ug = Ugvg = Fug = 2(r? 4+ 28) = (25 + 1). 9

We claim that |vs] > 3. Suppose that v, = +1. By (9), either 2s4+1=1o0or 2s+1 = —1.
If 25+ 1 = 1, then s = 0, which is excluded since u(r, s) and v(r,s) are both nondegenerate.
If 2s+ 1 = —1, then u(r, s) and v(r, s) would be degenerate by Theorem 2.12 (iv), contrary to
assumption. Noting that v = 25+ 1 is odd, we see that jus| = |v2| > 3. Since vy = r = 41,
it follows from Lemma 3.18 that condition (vi) holds. If vy = 7% 4 2¢ = +1, then

Ug — UgVUg — :i:ug =ddr= 3:1}1. (10)

Moreover, vg = =1 if and only if s = (£1 —7%)/2 and 7 = 1 (mod 2). If r = +1, then
s == 0 which contradicts the fact that both u(r,s) and v(r,s) are nondegenerate. Hence,
Jual = Jug| = |r| = Jv1] > 3. We now see by Lemma 3.18 that condition (vii) holds.

We now assume that a = 6. By Lemma 3.15, either uz = %1 or vg3 = +1. However, by
the treatment of the case a == 12 in the latter part of the proof of Lemma 3.17, we see that
vz cannot equal 1. Thus u3 = +1. Then ug = uzvs = Fvs. We will show that |vz] > 3 and
@(vs) = 3. Since uz = r? + 3, it will then follow from Lemma 3.18 that condition (xii) holds.

We note that vz # 0 since v(r, s) is nondegenerate. Suppose that

0 < |us] = |r(r® + 3s)| < 2.

Then r = %1 or r = £2. Substituting these values into s = 1 — r?, and noting that s # 0, we
obtain a value for Jua] = |r(r? + 3s)] > 3 in each case.

We now claim that @(v3) = 3. f W(va) < 3, then by Lemmas 3.3 and 3.12, @(v3) = 1 and
lv1] = |va|. If |v1] = |vs], then, since r # 0, r2 + 3s = £1. Since, also, 7% + s = %1, we have
s == 0 or %1; but s % 0 by Theorem 2.12 (i), and r2 + s = %1 is not possible for an integer
T # 0 if s = £1. Hence, |v1] # |vs], and it follows that condition (xii) holds.

We next suppose that ¢ = 8. By Lemma 3.15, ug = %1 or v4 = £1. First suppose that

Uy = ugvg = 7(r® + 25) = +1.

Then r = 41 and r2+2s = 25+1 = 41. If 2s-+1 = 1, then s = 0, which is excluded since u(r, 5)
is nondegenerate. If 2s + 1 = —1, then r = +1 and s = —1, which is also excluded by Lemma
2.12 (iv) since u(r, ) is nondegenerate. Now assume that v, = +1. Then ug = usvs = Fuy,
and ug has no primitive prime divisor. By Table 1 of [1], the only recurrences u(r, s) for which
ug has no primitive prime divisor are u(+2, —7) and u(+1, —~2). By inspection, we see that
va(£2, —7) = 2, while v4(£1, —2) = 1. We further observe that if r = +1 and s = —2, then

Uug = Ug — :i:’l)g = ﬂ:?),

while
Ug == U] = +1.
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It now follows from Lemma 3.18 that condition (xiv) holds.

We now assume that @ > 5 and a is odd. By Lemmas 3.15 and 3.17, it follows a = 5, 7,
or 13 and u, = 1. Then u, has no primitive prime divisor. By examining Table 1 of [1] and
evaluating the term u, in all recurrences u(r, ) for which u, has no primitive prime divisor,
we see that u, is Lucasian if and only if one of the conditions (viii), (ix), (x), (xi), (xiii), or
(xix} holds.

Finally, we suppose that a > 10 and a is even. By Lemmas 3.15 and 3.17, we see that
a = 10, 14, or 26 and either vg/; = £1 or ugss = £1. If vyp = £1, then u, = ugpavqa2 =
+u,;7, and u, has no primitive prime divisor. By Theorem 2.10, u, has a primitive prime
divisor if @ = 14 or 26. Thus, v,/» can equal %1 only if a = 10. From Table 1 or [1], we
see that u1o(r, 8) has no primitive prime divisor only if 7 = +2, 3 = -3, r = 5,8 = -7,
or 7 = 45, s = —18. In each case, we observe that vs(r,s) # 1. Hence, we must have
that u,/ = +1. Since a/2 > 5 and a/2 is odd, we obtain all the values of r and s for which
g2 = *1 from conditions (viii) - (xi), (xiii), and (xix). By inspection of these recurrences
u(r, s) and the corresponding recurrences v(r, 8}, we obtain the values of u,(r, 3} and ascertain
that |uq(r, s)| > 3 and @(ve/2(r, 8)) = a/2. It follows from Lemma 3.18 that conditions (xv) -
(xviii), (xx), and (xxi) hold. The results now follow. 0

Proof of Theorem 2.8: By Theorem 2.4, if |v,| > 3, then v,|u, if and only if 2a}b. Thus,
we can asume that |us| = 1 or 2. First suppose that v, = £1. Then uz, = *u,, and uz, i8
Lucasian if u, is Lucasian. Using this observation, the proof of Theorem 2.6 determines all
instances in which v, = %1 in the course of finding all terms ug, which are Lucasian. It follows
from conditions (ii), (vii), and (xiv) of Theorem 2.6 that v, = =1 if and only if conditions (ii},
(ii1), or (v) of Theorem 2.8 hold.

We now assume that v, = +2. ffa = 1 and v; = r = %2, it follows from Lemma 3.5 (iii)
that v,|up if and only if 2alb. Now suppose that @ = 2 and vp = r? + 25 = +2. It follows that
vy = £2 if and only if 5 = (+2 — r2)/2 and r is even. Lemma 3.5 (iil) now implies that vg|us
if and only if condition (iv) of Theorem 2.8 holds.

Next assume that a = 3 and vz = r(r? + 3s) = £2. Then |r| =1 or 2. If r = %1, then

r?4+3s=3s+1=42

Then 3s = 1, which is impossible, or 3s = —3, which yields r = +1, s = —1. However, this
case is excluded by Theorem 2.12 (iv), since v(r, 8) is nondegenerate.

Finally, assume that a > 4. By Lemma 3.5, we see that w(2) < 3. Hence ug, = ug¥,
has no primitive prime divisor. From Table 1 of [1], we find that there are exactly 10 Lucas
sequences u(r,s) for which some term ugn, has no primitive prime divisor for n > 4. By
examining each of these recurrences, we see that v, = +2 for @ > 4 if and only if r and s have
the values given in conditions (vi) and (vii) of Theorem 2.8. We note that by Lemma 3.5 (iii),
if |r| = 2 then 2|u,, if and only if 2|n. The result now follows. O
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