Journal of Integer Sequences, Vol. 16 (2013), Article 13.1.7

On Some Magnified Fibonacci Numbers Modulo a Lucas Number

Ram Krishna Pandey
Department of Mathematics
Indian Institute of Technology Patna
Patliputra Colony, Patna - 800013
India
ram@iitp.ac.in

Abstract

Let, as usual, F_{n} and L_{n} denote the nth Fibonacci number and the nth Lucas number, respectively. In this paper, we consider the Fibonacci numbers $F_{2}, F_{3}, \ldots, F_{t}$. Let $n \geq 1$ be an integer such that $4 n+2 \leq t \leq 4 n+5$ and $m=F_{2 n+2}+F_{2 n+4}=L_{2 n+3}$. We prove that the integers $F_{2} F_{2 n+2}, F_{3} F_{2 n+2}, \ldots, F_{t} F_{2 n+2}$ modulo m all belong to the interval $\left[F_{2 n+1}, 3 F_{2 n+2}\right]$. Furthermore, the endpoints of the interval $\left[F_{2 n+1}, 3 F_{2 n+2}\right]$ are obtained only by the integers $F_{4} F_{2 n+2}$ and $F_{4 n+2} F_{2 n+2}$, respectively.

1 Introduction

Let m_{1}, m_{2}, \ldots be positive integers. Cusick and Pomerance [4] discuss the quantity κ where

$$
\kappa:=\sup _{x \in(0,1)} \min _{i}\left\|x m_{i}\right\| .
$$

Here, for $x \in \mathbb{R},\|x\|$ is distance to the nearest integer. Observe that if we have a finite number of integers $m_{1}, m_{2}, \ldots, m_{n}$ and

$$
\kappa_{1}:=\max _{\substack{m=m_{j}+m_{l} \\ 1 \leq k \leq m / 2}} \frac{1}{m} \min _{i}\left|k m_{i}\right|_{m},
$$

where $|x|_{m}$ denotes the absolute value of the absolutely least remainder of $x \bmod m$, then by a remark of Haralambis [5] we have that $\kappa=\kappa_{1}$. The quantity κ has become an important quantity now; it is involved in the well-known Lonely Runner conjecture. This conjecture, due to Bienia et al. [2], is stated as follows:

Suppose n runners having nonzero distinct constant speeds run laps on a unitlength circular track. Then there is a time at which all the n runners are simultaneously at least $1 /(n+1)$ units from their common starting point.

The original form of this conjecture, as given by Wills [8] and Cusick [3], is as follows:
Suppose $m_{1}, m_{2}, \ldots, m_{n}$ be n positive integers. Then $\kappa \geq 1 /(n+1)$.
This is an interpretation also due to Liu and Zhu [7]. In the present paper we show that if the integers $m_{1}, m_{2}, \ldots, m_{n}$ in the definition of κ are $F_{2}, F_{3}, \ldots, F_{t}$ and $n \geq 1$ be an integer such that $4 n+2 \leq t \leq 4 n+5$, then

$$
\kappa \geq \frac{F_{2 n+1}}{F_{2 n+2}+F_{2 n+4}}
$$

This also confirms the lonely runner conjecture in the case where the speeds of the runners are $F_{2}, F_{3}, \ldots, F_{t}$.

2 Main Results

Let $M=\left\{F_{2}, F_{3}, \ldots, F_{t}\right\}$. Let $n \geq 1$ be an integer such that $4 n+2 \leq t \leq 4 n+5$ and $m=F_{2 n+2}+F_{2 n+4}=L_{2 n+3}$. The above bound about κ may be obtained using Theorem 5 and κ_{1}. The lonely runner conjecture is also satisfied in the special case $n=0$. In this special case the set of speeds may be $\left\{F_{2}\right\},\left\{F_{2}, F_{3}\right\},\left\{F_{2}, F_{3}, F_{4}\right\}$, and $\left\{F_{2}, F_{3}, F_{4}, F_{5}\right\}$. Taking $x=\frac{1}{2}$, $\frac{1}{3}, \frac{1}{4}$, and $\frac{1}{4}$ in the definition of κ for the sets $\left\{F_{2}\right\},\left\{F_{2}, F_{3}\right\},\left\{F_{2}, F_{3}, F_{4}\right\}$, and $\left\{F_{2}, F_{3}, F_{4}, F_{5}\right\}$, respectively, we see that the lonely runner conjecture is satisfied.

In this section, we use the following identities and these identities may be found in Koshy [6].

1. Cassini's identity: $F_{n}^{2}-F_{n+1} F_{n-1}=(-1)^{n-1}$.
2. $F_{n}^{2}+F_{n+1}^{2}=F_{2 n+1}$.
3. d'Ocagne's identity: $F_{m} F_{n+1}-F_{m+1} F_{n}=(-1)^{n} F_{m-n}$.
4. $F_{2 n}=\sum_{i=0}^{n-1} F_{2 i+1}$.
5. $F_{2 n+1}-1=\sum_{i=1}^{n} F_{2 i}$.

Lemma 1. (a) $F_{2} F_{2 n+2} \equiv F_{4 n+5} F_{2 n+2}(\bmod m)$.
(b) $F_{2} F_{2 n+2} \equiv-F_{4 n+4} F_{2 n+2}(\bmod m)$.
(c) $F_{3} F_{2 n+2} \equiv F_{4 n+3} F_{2 n+2}(\bmod m)$.
(d) $F_{4} F_{2 n+2} \equiv-F_{4 n+2} F_{2 n+2}(\bmod m)$.

Proof. (a) We have

$$
\begin{aligned}
m F_{2 n+2} & =\left(F_{2 n+2}+F_{2 n+4}\right) F_{2 n+2} \\
& =F_{2 n+2}^{2}+F_{2 n+4} F_{2 n+2} \\
& =F_{2 n+2}^{2}+\left(F_{2 n+3}+F_{2 n+2}\right)\left(F_{2 n+3}-F_{2 n+1}\right) \\
& =F_{2 n+2}^{2}+F_{2 n+3}^{2}+F_{2 n+3} F_{2 n+2}-F_{2 n+3} F_{2 n+1}-F_{2 n+2} F_{2 n+1} \\
& =F_{2 n+2}^{2}+F_{2 n+3}^{2}+\left(F_{2 n+2}+F_{2 n+1}\right) F_{2 n+2}-F_{2 n+3} F_{2 n+1}-F_{2 n+2} F_{2 n+1} \\
& =F_{2 n+2}^{2}+F_{2 n+3}^{2}+F_{2 n+2}^{2}-F_{2 n+3} F_{2 n+1} \\
& =F_{2 n+2}^{2}+F_{2 n+3}^{2}+(-1)^{2 n+1} \quad(\text { using Cassini's identity) } \\
& \left.=F_{4 n+5}^{2}-1 \quad \text { using the identity } F_{n}^{2}+F_{n+1}^{2}=F_{2 n+1}\right) .
\end{aligned}
$$

Hence we get

$$
F_{4 n+5} F_{2 n+2}=\left(1+m F_{2 n+2}\right) F_{2 n+2} \equiv F_{2 n+2}=F_{2} F_{2 n+2} \quad(\bmod m) .
$$

(b) We have

$$
\begin{aligned}
F_{2} F_{2 n+2} & \equiv F_{4 n+5} F_{2 n+2} \quad(\bmod m) \quad(\text { by } \quad(\mathrm{a})) \\
& =\left(F_{4 n+6}-F_{4 n+4}\right) F_{2 n+2} \\
& =F_{4 n+6} F_{2 n+2}-F_{4 n+4} F_{2 n+2} \\
& =\left(L_{2 n+3} F_{2 n+3}\right) F_{2 n+2}-F_{4 n+4} F_{2 n+2} \quad\left(\text { since } L_{n} F_{n}=F_{2 n}\right) \\
& \equiv-F_{4 n+4} F_{2 n+2} \quad(\bmod m) \quad\left(\text { as } m=L_{2 n+3}\right) .
\end{aligned}
$$

(c) $F_{3} F_{2 n+2}=\left(F_{2}+F_{1}\right) F_{2 n+2} \equiv\left(F_{4 n+5}-F_{4 n+4}\right) F_{2 n+2} \equiv F_{4 n+3} F_{2 n+2}(\bmod m)$.
(d) $F_{4} F_{2 n+2}=\left(F_{3}+F_{2}\right) F_{2 n+2} \equiv\left(F_{4 n+3}-F_{4 n+4}\right) F_{2 n+2} \equiv-F_{4 n+2} F_{2 n+2}(\bmod m)$.

Lemma 2. $F_{r+5} F_{2 n+2}=\left(F_{r+4}+F_{r+3}\right) F_{2 n+2} \equiv \epsilon F_{4 n+1-r} F_{2 n+2}(\bmod m)$ for each $0 \leq r \leq$ $2 n-2$, where

$$
\epsilon= \begin{cases}+1, & \text { if } r \text { is even } \\ -1, & \text { if } r \text { is odd } .\end{cases}
$$

Proof. Using the recurrence relation $F_{n+1}=F_{n}+F_{n-1}$ for $n \geq 1$ and Lemma 1, the proof follows by induction on r.

Thus in order to examine the integers $F_{2} F_{2 n+2}, F_{3} F_{2 n+2}, \ldots, F_{4 n+5} F_{2 n+2}$ modulo m, it is sufficient to examine only the integers $F_{2} F_{2 n+2}, F_{3} F_{2 n+2}, \ldots, F_{2 n+3} F_{2 n+2}$ modulo m.

Lemma 3. (a) $F_{2} F_{2 n+2} \equiv F_{2 n+2}(\bmod m)$.
(b) $F_{3} F_{2 n+2} \equiv-F_{2 n+3}(\bmod m)$.
(c) $F_{4} F_{2 n+2} \equiv-F_{2 n+1}(\bmod m)$.
(d) $F_{5} F_{2 n+2} \equiv 2 F_{2 n+2}-F_{2 n+1}(\bmod m)$.

Proof. (a) $F_{2} F_{2 n+2} \equiv F_{2 n+2}(\bmod m)\left(\right.$ as $\left.F_{2}=1\right)$.
(b) $F_{3} F_{2 n+2}=2 F_{2 n+2} \equiv-\left(F_{2 n+1}+F_{2 n+2}\right)=-F_{2 n+3}(\bmod m)$.
(c) $F_{4} F_{2 n+2}=\left(F_{2}+F_{3}\right) F_{2 n+2} \equiv F_{2 n+2}-F_{2 n+3}=-F_{2 n+1}(\bmod m)$.
(d) $F_{5} F_{2 n+2}=5 F_{2 n+2} \equiv 2 F_{2 n+2}-F_{2 n+1}(\bmod m)$.

We observe that in all above four congruences if R is the remainder then we have, $F_{2 n+1} \leq$ $|R| \leq \frac{m}{2}$, i.e., we have that the positive remainder is always in the interval $\left[F_{2 n+1}, 3 F_{2 n+2}\right]$.

Inductively, we can prove that

$$
F_{2 n+3-k}=F_{2 n-1-k} F_{5}+F_{2 n-2-k} F_{4}
$$

for each $0 \leq k \leq 2 n-3$. Hence we have

$$
\begin{aligned}
F_{2 n+3-k} F_{2 n+2} & =\left(F_{2 n-1-k} F_{5}+F_{2 n-2-k} F_{4}\right) F_{2 n+2} \\
& \equiv F_{2 n-1-k}\left(2 F_{2 n+2}-F_{2 n+1}\right)-F_{2 n-2-k} F_{2 n+1} \quad(\bmod m) \quad(\text { using }(\mathrm{c}),(\mathrm{d}) \text { of Lemma 3) } \\
& =F_{2 n-1-k} F_{2 n+2}+F_{2 n-1-k}\left(F_{2 n+1}+F_{2 n}\right)-F_{2 n-1-k} F_{2 n+1}-F_{2 n-2-k} F_{2 n+1} \\
& =F_{2 n-1-k} F_{2 n+2}+F_{2 n-1-k} F_{2 n}-F_{2 n-2-k} F_{2 n+1} \\
& =F_{2 n-1-k} F_{2 n+2}+(-1)^{2 n-2-k} F_{2+k} \quad \text { (using d'Ocagne's identity). }
\end{aligned}
$$

Thus we get

$$
\begin{equation*}
F_{2 n+3-k} F_{2 n+2} \equiv F_{2 n-1-k} F_{2 n+2}+\epsilon F_{2+k} \quad(\bmod m), \ldots \tag{1}
\end{equation*}
$$

where

$$
\epsilon= \begin{cases}+1, & \text { if } k \text { is even; } \\ -1, & \text { if } k \text { is odd. }\end{cases}
$$

Lemma 4. Let $R_{k}=F_{2 n-1-k} F_{2 n+2}+\epsilon F_{2+k}$ for each $0 \leq k \leq 2 n-3$, where

$$
\epsilon= \begin{cases}+1, & \text { if } k \text { is even; } \\ -1, & \text { if } k \text { is odd. }\end{cases}
$$

Then $F_{2 n+1}<\left|R_{k}\right|_{m}<\frac{m}{2}$.
Proof. We partition the set $\{0,1,2, \ldots, 2 n-3\}$ into the sets A_{2}, A_{3}, A_{4}, and A_{5} where

$$
A_{i}=\left\{2 n-1-i-4 t: 0 \leq t \leq\left\lfloor\frac{2 n-1-i}{4}\right\rfloor\right\},
$$

for each $2 \leq i \leq 5$. Notice that

$$
\epsilon= \begin{cases}+1, & \text { if } k \in A_{3} \cup A_{5} ; \\ -1, & \text { if } k \in A_{2} \cup A_{4} .\end{cases}
$$

We consider the following cases:

Case I: $\left(k \in A_{2}\right)$. Clearly (1) implies that

$$
F_{6+4 t} F_{2 n+2} \equiv F_{2+4 t} F_{2 n+2}-F_{2 n-1-4 t} \quad(\bmod m)
$$

$t=0 \Rightarrow F_{6} F_{2 n+2} \equiv F_{2} F_{2 n+2}-F_{2 n-1} \equiv F_{2 n+2}-F_{2 n-1}(\bmod m)$. Observe that $F_{2 n+1}<$ $F_{2 n+2}-F_{2 n-1}<m / 2$.
$t=1 \Rightarrow F_{10} F_{2 n+2} \equiv F_{6} F_{2 n+2}-F_{2 n-5} \equiv F_{2 n+2}-F_{2 n-1}-F_{2 n-5}(\bmod m)$. Observe that $F_{2 n+1}<F_{2 n+2}-F_{2 n-1}-F_{2 n-5}<m / 2$.

Inductively, we let $t=\left\lfloor\frac{2 n-3}{4}\right\rfloor$. In this case $k=1$ or $k=3$ depending on n is even or odd. If $k=1$, then we have
$F_{2 n+2} F_{2 n+2} \equiv F_{2 n-2} F_{2 n+2}-F_{3} \equiv F_{2 n+2}-\left(F_{2 n-1}+F_{2 n-5}+\cdots+F_{3}\right)(\bmod m)$. Observe that $F_{2 n+1}<F_{2 n+2}-\left(F_{2 n-1}+F_{2 n-5}+\cdots+F_{3}\right)<m / 2$ as we have the identity $F_{2 n}=\sum_{i=0}^{n-1} F_{2 i+1}$.

If $k=3$, then we have
$F_{2 n} F_{2 n+2} \equiv F_{2 n-4} F_{2 n+2}-F_{5} \equiv F_{2 n+2}-\left(F_{2 n-1}+F_{2 n-5}+\cdots+F_{5}\right)(\bmod m)$. Observe that $F_{2 n+1}<F_{2 n+2}-\left(F_{2 n-1}+F_{2 n-5}+\cdots+F_{5}\right)<m / 2$ as we have the identity $F_{2 n}=\sum_{i=0}^{n-1} F_{2 i+1}$.

Case II: $\left(k \in A_{3}\right)$. Clearly (1) implies that

$$
\begin{aligned}
& F_{7+4 t} F_{2 n+2} \equiv F_{3+4 t} F_{2 n+2}+F_{2 n-2-4 t} \quad(\bmod m) . \\
& t=0 \Rightarrow F_{7} F_{2 n+2} \equiv F_{3} F_{2 n+2}+F_{2 n-2} \equiv-F_{2 n+3}+F_{2 n-2}(\bmod m) . \text { Observe that } F_{2 n+1}< \\
& \left|-F_{2 n+3}+F_{2 n-2}\right|<m / 2 . \\
& t=1 \Rightarrow F_{11} F_{2 n+2} \equiv F_{7} F_{2 n+2}+F_{2 n-6} \equiv-F_{2 n+3}+F_{2 n-2}+F_{2 n-6}(\bmod m) . \text { Observe that } \\
& F_{2 n+1}<\left|-F_{2 n+3}+F_{2 n-2}+F_{2 n-6}\right|<m / 2 .
\end{aligned}
$$

Inductively, we let $t=\left\lfloor\frac{2 n-4}{4}\right\rfloor$. In this case $k=0$ or $k=2$ depending on n is even or odd. If $k=0$, then we have
$F_{2 n+3} F_{2 n+2} \equiv F_{2 n-1} F_{2 n+2}+F_{2} \equiv-F_{2 n+3}+\left(F_{2 n-2}+F_{2 n-6}+\cdots+F_{2}\right)(\bmod m)$. Observe that $F_{2 n+1}<\left|-F_{2 n+3}+\left(F_{2 n-2}+F_{2 n-6}+\cdots+F_{2}\right)\right|<m / 2$ as we have $F_{2 n+3}-\left(F_{2 n-2}+F_{2 n-6}+\right.$ $\left.\cdots+F_{2}\right)=F_{2 n+1}+F_{2 n+2}-\left(F_{2 n-2}+F_{2 n-6}+\cdots+F_{2}\right)$ and the identity $F_{2 n+1}-1=\sum_{i=1}^{n} F_{2 i}$

If $k=2$, the result follows from the above case $k=0$.
Case III: $\left(k \in A_{4}\right)$. Clearly (1) implies that

$$
F_{8+4 t} F_{2 n+2} \equiv F_{4+4 t} F_{2 n+2}-F_{2 n-3-4 t} \quad(\bmod m)
$$

$t=0 \Rightarrow F_{8} F_{2 n+2} \equiv F_{4} F_{2 n+2}-F_{2 n-3} \equiv-F_{2 n+1}-F_{2 n-3}(\bmod m)$. Observe that $F_{2 n+1}<$ $F_{2 n+1}+F_{2 n-3}<m / 2$.
$t=1 \Rightarrow F_{12} F_{2 n+2} \equiv F_{8} F_{2 n+2}-F_{2 n-7} \equiv-\left(F_{2 n+1}+F_{2 n-3}+F_{2 n-7}\right)(\bmod m)$. Observe that $F_{2 n+1}<F_{2 n+1}+F_{2 n-3}+F_{2 n-7}<m / 2$.

Inductively, we let $t=\left\lfloor\frac{2 n-5}{4}\right\rfloor$. In this case $k=1$ or $k=3$ depending on n is odd or even. If $k=1$, then we have
$F_{2 n+2} F_{2 n+2} \equiv F_{2 n-2} F_{2 n+2}-F_{3} \equiv-\left(F_{2 n+1}+F_{2 n-3}+F_{2 n-7}+\ldots+F_{3}\right)(\bmod m)$. Observe that $F_{2 n+1}+F_{2 n-3}+F_{2 n-7}+\ldots+F_{3}<m / 2$ as we have the identity $F_{2 n}=\sum_{i=0}^{n-1} F_{2 i+1}$.

If $k=3$. It follows from the above case $k=1$.
Case IV: $\left(k \in A_{5}\right)$ Clearly (1) implies that

$$
F_{9+4 t} F_{2 n+2} \equiv F_{5+4 t} F_{2 n+2}+F_{2 n-4-4 t} \quad(\bmod m)
$$

$t=0 \Rightarrow F_{9} F_{2 n+2} \equiv F_{5} F_{2 n+2}+F_{2 n-4} \equiv 2 F_{2 n+2}-F_{2 n+1}+F_{2 n-4}(\bmod m)$. Observe that $F_{2 n+1}<2 F_{2 n+2}-F_{2 n+1}+F_{2 n-4}<m / 2$.
$t=1 \Rightarrow F_{13} F_{2 n+2} \equiv F_{9} F_{2 n+2}+F_{2 n-8} \equiv 2 F_{2 n+2}-F_{2 n+1}+F_{2 n-4}+F_{2 n-8}(\bmod m)$. Observe that $F_{2 n+1}<2 F_{2 n+2}-F_{2 n+1}+F_{2 n-4}+F_{2 n-8}<m / 2$.

Inductively, we let $t=\left\lfloor\frac{2 n-6}{4}\right\rfloor$. In this case $k=0$ or $k=2$ depending on n is odd or even. If $k=0$, then we have
$F_{2 n+3} F_{2 n+2} \equiv F_{2 n-1} F_{2 n+2}+F_{2} \equiv 2 F_{2 n+2}-F_{2 n+1}+\left(F_{2 n-4}+F_{2 n-8}+\ldots+F_{2}\right)(\bmod m)$. Observe that $F_{2 n+1}<2 F_{2 n+2}-F_{2 n+1}+\left(F_{2 n-4}+F_{2 n-8}+\ldots+F_{2}\right)<m / 2$ as we have $2 F_{2 n+2}-F_{2 n+1}+\left(F_{2 n-4}+F_{2 n-8}+\ldots+F_{2}\right)=F_{2 n+2}+F_{2 n}+\left(F_{2 n-4}+F_{2 n-8}+\ldots+F_{2}\right)<$ $F_{2 n+2}+F_{2 n+1}-1<m / 2$ using the identity $F_{2 n+1}-1=\sum_{i=1}^{n} F_{2 i}$

If $k=2$. It follows from the above case $k=0$.
Theorem 5. Let $F_{2}, F_{3}, \ldots, F_{t}$ be the Fibonacci numbers and let $n \geq 1$ be an integer such that $4 n+2 \leq t \leq 4 n+5$ and $m=F_{2 n+2}+F_{2 n+4}=L_{2 n+3}$. Then the integers $F_{2} F_{2 n+2}, F_{3} F_{2 n+2}, \ldots, F_{t} F_{2 n+2}$ modulo m all belong to the interval $\left[F_{2 n+1}, 3 F_{2 n+2}\right]$. Moreover, both the endpoints of the interval $\left[F_{2 n+1}, 3 F_{2 n+2}\right]$ are obtained only by the integers $F_{4} F_{2 n+2}$ and $F_{4 n+2} F_{2 n+2}$, respectively.

Proof. Lemma 3 and Lemma 4 together prove the theorem.

3 Acknowledgements

The author wishes to thank to the referees for their useful comments.

References

[1] U. Betke and J. M. Wills, Untere Schranken für zwei diophantische ApproximationsFunctionen, Monatsh. Math. 76 (1972), 214-217.
[2] W. Bienia, L. Goddyn, P. Gvozdjak, A. Sebo, and M. Tarsi, Flows, view-obstructions and the lonely runner, J. Combin. Theory Ser. B 72 (1998), 1-9.
[3] T. W. Cusick, View-obstruction problems in n-dimensional geometry, J. Combin. Theory Ser. A 16 (1974), 1-11.
[4] T. W. Cusick and C. Pomerance, View-obstruction problems III, J. Number Theory 19 (1984), 131-139.
[5] N. M. Haralambis, Sets of integers with missing differences, J. Combin. Theory Ser. A 23 (1977), 22-33.
[6] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, 2001.
[7] D. D.-F. Liu and X. Zhu, Fractional chromatic number for distance graphs with large clique size, J. Graph Theory 47 (2004), 129-146.
[8] J. M. Wills, Zwei Sätze über inhomogene diophantische Approximation von Irrationalzahlen, Monatsh. Math. 71 (1967), 263-269.

2010 Mathematics Subject Classification: Primary 11B39.
Keywords: Fibonacci numbers, Lucas numbers, congruences.
(Concerned with sequence $\underline{\text { A000045.) }}$

Received September 28 2012; revised version received January 21 2013. Published in Journal of Integer Sequences, January 262013.

Return to Journal of Integer Sequences home page.

