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Abstract
Let, as usual, F,, and L, denote the nth Fibonacci number and the nth Lucas
number, respectively. In this paper, we consider the Fibonacci numbers Fy, F3, ..., F}.

Let n > 1 be an integer such that 4n+2 <t <4n—+5 and m = Fop 0+ Foniqa = Lopys.
We prove that the integers FoFop 2, F3Fon 1o, ..., FiFo, 1o modulo m all belong to the
interval [Foy, 41, 3Fp+2]. Furthermore, the endpoints of the interval [Fb,41,3Fby,+2] are
obtained only by the integers FyFs, o and Fy,492Fb,12, respectively.

1 Introduction

Let my,ma, ... be positive integers. Cusick and Pomerance [4] discuss the quantity x where

K:= sup min ||zm,|.
z€(0,1)

Here, for x € R, ||z| is distance to the nearest integer. Observe that if we have a finite
number of integers mq, ms, ..., m, and

L.
Ky := max — min |km;|n,,
m=m +m; M, 7
1<k<m/2

where |z|,, denotes the absolute value of the absolutely least remainder of z mod m, then by
a remark of Haralambis [5] we have that x = k;. The quantity x has become an important
quantity now; it is involved in the well-known Lonely Runner conjecture. This conjecture,
due to Bienia et al. [2], is stated as follows:



Suppose n runners having nonzero distinct constant speeds run laps on a unit-
length circular track. Then there is a time at which all the n runners are simul-
taneously at least 1/(n + 1) units from their common starting point.

The original form of this conjecture, as given by Wills [8] and Cusick [3], is as follows:
Suppose my, ma, ..., m, be n positive integers. Then k > 1/(n + 1).

This is an interpretation also due to Liu and Zhu [7]. In the present paper we show that
if the integers my, ms, ..., m, in the definition of x are Fy, Fj,..., F; and n > 1 be an integer
such that 4n + 2 <t <4n + 5, then

Foni1
D R
Fopio+ Fopia

This also confirms the lonely runner conjecture in the case where the speeds of the runners
are Fy, F3, ..., F}.

2 Main Results

Let M = {Fy, F3,...,F;}. Let n > 1 be an integer such that 4n +2 < t < 4n + 5 and
m = Fopio+ Fopniq = Lopis. The above bound about x may be obtained using Theorem 5
and k1. The lonely runner conjecture is also satisfied in the special case n = 0. In this special
case the set of speeds may be {Fy}, {Fy, F3}, {Fy, F3, Fy}, and { F3, F3, Fy, F5}. Taking x = %,

%, }1, and % in the definition of x for the sets { Fy}, {Fa, F3}, {Fy, F3, Fy}, and { Fy, F3, Fy, F5},

respectively, we see that the lonely runner conjecture is satisfied.
In this section, we use the following identities and these identities may be found in Koshy

[6].
1. Cassini’s identity: FZ? — F, 1 F, 1 = (—1)""1.
2. 2+ F2 | = Foppa.
3. d’Ocagne’s identity: F,,Fyi1 — Fru1F = (—1)"Fryn.
4. Fo = Y10 Foir.
5. Fopy1 —1=3"" | Fy.
Lemma 1. (a) FoFy, 0 = FipisFonie (mod m).
(b) FsFy,i0 = —FipiaFonio (mod m).
(¢c) F3F5, 190 = Fypi3Fo,,0 (mod m).
(d) FyFsp 9 = —FinioFon o (mod m).



Proof.  (a) We have

mFyo = (Fapgo + Fonga) Fongo
= L 22n+2 + Fonyalon o
= F22n+2 + (Fongs 4+ Fonya) (Fonts — Fony1)
= Fj o+ Fois+ FonisFonio — FonssFon1 — FoniaFons
= Fyg+ Fonis + (Fongo + Fong1) Fonta — Foni3Fong1 — FopyoFonia
= Foo+ s+ Fog — FonyaFonp
= Fyo+ Fy s+ (—1)*""  (using Cassini’s identity)
= Fi5—1 (using the identityF,f + F,3+1 = F2n+1) .

Hence we get

FinisFonio = (1 + mF2n+2)F2n+2 = Fonqo = Foloyio (mod m)

(b) We have

FoFonio = FupisFongo (mod m) (by (a))
- (F4n+6 - F4n+4)F2n+2

- F4n+6F2n+2 - F4n+4F2n+2
= (L2n+3F2n+3)F2n+2 — FiniaFonio (since L,F, = an)

_F4n+4F2n+2 (mod m) (as m = L2n+3) .

(C) FsFo, 0 = (FQ + Fl)F2n+2 = (F4n+5 - F4n+4)F2n+2 = Finy3Fongo (mod m).

(d) FyFonio = (Fs + FQ)F2n+2 = (F4n+3 - F4n+4>F2n+2 = —Fipialo, 0 (mod m).
]

Lemma 2. FT+5F2n+2 = (Fr+4 + Fr+3)F2n+2 = €F4n+1_7~F2n+2 (mod m) for each 0 S r S
2n — 2, where

| 1, if rois even;
‘<= —1, if r is odd.

Proof. Using the recurrence relation F,,.; = F,, + F,,_; for n > 1 and Lemma 1, the proof

follows by induction on 7. O
Thus in order to examine the integers FyFo, 10, F5F5, 10, ..., Fini5F5, 19 modulo m, it is
sufficient to examine only the integers FyFy, 19, F3F5,19, ..., F5,13F5, 5 modulo m.

Lemma 3. (a) FyFy, 0 = Fy,yo (mod m).
(b) F35F5, 0 = —Fy,13 (mod m).
(c) FyFs,19 = —Fy,1 (mod m).
(d) Fs5Fo,19 = 2F5, 19 — Fy,11 (mod m).



Proof.  (a) FoFb,io = Fopio (mod m) (as Fy = 1).
(b) F3Foni0 =2F5, 10 = —(Foni1 + Fonio) = —Fopys (mod m).
(¢) FuFonio = (Fo + F3)Fonyo = Fonyo — Fonyz = —Fony (mod m).

(d) F5F2n+2 = 5an+2 = 2F2n+2 — F2n+1 (mod m)
[l

We observe that in all above four congruences if R is the remainder then we have, Fy, 1 <
|R| < %, 1.e., we have that the positive remainder is always in the interval [(Foni1,3Fo10].
Inductively, we can prove that

Fopyz = Fop1- b5 + Fopo i Fy
for each 0 < k < 2n — 3. Hence we have

FopisiFonte = (Fono1—xds + Fon_o i Fy) Fonio

= Fop 1 1k(2F540 — Fopy1) — Fop o 1 Foiq (mod m)  (using (c), (d) of Lemma 3)
Fop1-iFonto + Fon1—i(Fong1 + Fon) — Fon1—pFong1 — Fopn—a i Font
Fon1 - wFonya + Fon 1 3 Fon — Fon o 1 Fonya
= oy pFopio+ (=1 *F,, (using d’Ocagne’s identity) .

Thus we get
Fonis—iFonyo = Fop 1 Fopyo + €Fopy, (mod m), ... (1)

where
] 41, if k is even;
| =1, if kis odd.
Lemma 4. Let Ry = Fo, 1 1 Fonio + €Fory for each 0 < k < 2n — 3, where

| 1, if kois even;
“T\ =1, ifk is odd.

Then Fynpy < |Rilm < 2.

Proof. We partition the set {0,1,2,...,2n — 3} into the sets As, A3, Ay, and As where

Mm—1—i
Ai:{Zn—l—i—élt:Ogtg {%J}

for each 2 <7 < 5. Notice that

. +1, if k € A3U As;
€= -1, 1f]€€A2UA4

We consider the following cases:



Case I: (k € Ay). Clearly (1) implies that
F6+4tF2n+2 = F2+4tF2n+2 — Fon 1 (mod m)

t =0= FsFopi0 = FoFy, 0 — Foy 1 = Fopio — Foq (mod m). Observe that Fy,q <
F2n+2 anfl < m/2

t=1= FioFy 0 = FsFonio — Fop 5 = Fopyo — Foy 1 — Fy, 5 (mod m). Observe that
Fopp1 < Fopyo — Fopy — Fops <m/2.

Inductively, we let t = L%J In this case £ = 1 or k = 3 depending on n is even or
odd. If £ =1, then we have

FQ,HQFQ”H = Iy, oFo, 00— F3 = F2n+2—(F2n 1+ Fop 5+ -+ F3) (mod m). Observe that
Fonv1 < Fopyo— (Fop 1+ Fyy 5+ -+ F3) < m/2 as we have the identity Fy, = E?:_Ol Fyiiq.

If £ = 3, then we have

FQnF2n+2 FQn 4F2n+2 - F5 F2n+2 - (an 1 +F2n 5 +- +F5) (mod m) Observe that
Foni1 < Fopyo— (Fop1+ Foy 54+ -+ F5) < m/2 as we have the identity Fy, = Z;:ol Fyiiq.

Case II: (k € Aj3). Clearly (1) implies that
FrinFonto = FaspatFonyo + Fopo_gy  (mod m).

t=0= FiFo 0= FsFs 0+ Fy 0 = —Fopy3+ Fy o (mod m). Observe that Fy, 1 <
| — Fopis + an,Q‘ < m/2

t=1= Fi1Fonio = FiFs 0+ Foy 6 = —Fouiz + Fop o+ Fo, 6 (mod m). Observe that
Foni1 < | — Fopss + Fop—o + Fop_g| < m/2.

Inductively, we let t = L%J. In this case £k = 0 or k = 2 depending on n is even or
odd. If £ =0, then we have

FonisFonio = Fop 1Fopio+ Fy = —Fop i3+ (Fyy o+ Fop g+ -+ Fy) (mod m). Observe
that F2n+1 < ‘—F2n+3+(F2n_2+F2n_6+' : '—|—F2)| < m/2 as we have F2n+3—(F2n_2+F2n_6+

A Fy) = Fopi1 + Fopyo — (Fop—o+ Foy_g+ - - - + F») and the identity Fo,y1 —1=>"1  Fy
If £ = 2, the result follows from the above case k = 0.

Case III: (k € Ay). Clearly (1) implies that
F8+4tF2n+2 F4+4tF2n+2 — Fop 3 (mod m)

t=0= FsFonio = FuFy 0 — Foy 3 = —Fopyqg — Fyy3 (mod m). Observe that Fy, 1 <
F2n+1 + Iy, 3 < TTL/2

t =1= FioFy, .0 = FsFy,i0 — Fo 7 = —(Fopy1 + Foy 3 + Fo,7) (mod m). Observe
that F2n+1 < F2n+1 4+ Fop_3+ Fh,_7 < m/2

Inductively, we let t = L%J In this case £ = 1 or kK = 3 depending on n is odd or even.
If £k =1, then we have

F2n+2F2n+2 FQn 2F2n+2 Fg = —(F2n+1 -+ anfg —+ F2n77 + ...+ Fg) (mod m) Observe
that Fy, 1 + Fop 3+ Fop7+ ...+ F3 < m/2 as we have the identity F, = Z?:_()l Foip1.

If £ = 3. It follows from the above case k = 1.

Case IV: (k € Aj;) Clearly (1) implies that

For1Fonto = FspatFonso + Fopygy  (mod m).
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t=0= FoFyi0 = F5Fopio+ Fopy = 2F5, 10 — Fopiq + Fo,—q (mod m). Observe that
Fopp1 < 2Fpni9 — Fopgy + Fopy <m/2.

t=1= Fi3Fs,10 = FoFop o+ Fon s = 2F5, 90— Fopy1+ Fop_g+ Fo, s (mod m). Observe
that F2n+1 < 2F2n+2 — F2n+1 4+ Fopyq + F5, 5 < m/2

Inductively, we let ¢ = [#2-%|. In this case k = 0 or k = 2 depending on n is odd or even.
If £ =0, then we have

FonisFonio = Fop 1 Fopio+ Fo = 2F5, 10 — Fopi1 + (Fop_a + Fop s+ ...+ F3) (mod m).
Observe that Fy,y1 < 2F50 — Fopiq + (Fopa + Fon-s + ... + F2) < m/2 as we have
2Fo10 — Fopy1+ (Fona+ Fop g+ ...+ F2) = Fopo+ Fop + (Fopa+ Fop s+ ...+ Fy) <
Fopio + Fopi1 — 1 < m/2 using the identity Fo, 1 — 1 =" Fy

If £ =2. It follows from the above case k = 0. ]

Theorem 5. Let Fy, F5, ..., Fy be the Fibonacci numbers and let n > 1 be an integer
such that 4n +2 < t < 4n + 5 and m = Fo,10 + Fopigy = Loyi3. Then the integers
FoFo, 0, F3Fs 0, ..., FyFo, o modulo m all belong to the interval [Fo, 11, 3F,10]. Moreover,
both the endpoints of the interval [Fopi1,3Fon 2] are obtained only by the integers FyFs, o
and Fy, 1o F5, o, Tespectively.

Proof. Lemma 3 and Lemma 4 together prove the theorem. O
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