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Abstract

Let, as usual, Fn and Ln denote the nth Fibonacci number and the nth Lucas
number, respectively. In this paper, we consider the Fibonacci numbers F2, F3, . . . , Ft.

Let n ≥ 1 be an integer such that 4n+2 ≤ t ≤ 4n+5 and m = F2n+2+F2n+4 = L2n+3.

We prove that the integers F2F2n+2, F3F2n+2, . . . , FtF2n+2 modulo m all belong to the
interval [F2n+1, 3F2n+2]. Furthermore, the endpoints of the interval [F2n+1, 3F2n+2] are
obtained only by the integers F4F2n+2 and F4n+2F2n+2, respectively.

1 Introduction

Let m1,m2, . . . be positive integers. Cusick and Pomerance [4] discuss the quantity κ where

κ := sup
x∈(0,1)

min
i

‖xmi‖.

Here, for x ∈ R, ‖x‖ is distance to the nearest integer. Observe that if we have a finite
number of integers m1,m2, . . . ,mn and

κ1 := max
m=mj+ml

1≤k≤m/2

1

m
min

i
|kmi|m,

where |x|m denotes the absolute value of the absolutely least remainder of x mod m, then by
a remark of Haralambis [5] we have that κ = κ1. The quantity κ has become an important
quantity now; it is involved in the well-known Lonely Runner conjecture. This conjecture,
due to Bienia et al. [2], is stated as follows:
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Suppose n runners having nonzero distinct constant speeds run laps on a unit-
length circular track. Then there is a time at which all the n runners are simul-
taneously at least 1/(n+ 1) units from their common starting point.

The original form of this conjecture, as given by Wills [8] and Cusick [3], is as follows:

Suppose m1,m2, . . . ,mn be n positive integers. Then κ ≥ 1/(n+ 1).

This is an interpretation also due to Liu and Zhu [7]. In the present paper we show that
if the integers m1,m2, . . . ,mn in the definition of κ are F2, F3, . . . , Ft and n ≥ 1 be an integer
such that 4n+ 2 ≤ t ≤ 4n+ 5, then

κ ≥
F2n+1

F2n+2 + F2n+4

.

This also confirms the lonely runner conjecture in the case where the speeds of the runners
are F2, F3, . . . , Ft.

2 Main Results

Let M = {F2, F3, . . . , Ft}. Let n ≥ 1 be an integer such that 4n + 2 ≤ t ≤ 4n + 5 and
m = F2n+2 + F2n+4 = L2n+3. The above bound about κ may be obtained using Theorem 5
and κ1. The lonely runner conjecture is also satisfied in the special case n = 0. In this special
case the set of speeds may be {F2}, {F2, F3}, {F2, F3, F4}, and {F2, F3, F4, F5}. Taking x = 1

2
,

1
3
, 1
4
, and 1

4
in the definition of κ for the sets {F2}, {F2, F3}, {F2, F3, F4}, and {F2, F3, F4, F5},

respectively, we see that the lonely runner conjecture is satisfied.
In this section, we use the following identities and these identities may be found in Koshy

[6].

1. Cassini’s identity: F 2
n − Fn+1Fn−1 = (−1)n−1.

2. F 2
n + F 2

n+1 = F2n+1.

3. d’Ocagne’s identity: FmFn+1 − Fm+1Fn = (−1)nFm−n.

4. F2n =
∑n−1

i=0 F2i+1.

5. F2n+1 − 1 =
∑n

i=1 F2i.

Lemma 1. (a) F2F2n+2 ≡ F4n+5F2n+2 (mod m).

(b) F2F2n+2 ≡ −F4n+4F2n+2 (mod m).

(c) F3F2n+2 ≡ F4n+3F2n+2 (mod m).

(d) F4F2n+2 ≡ −F4n+2F2n+2 (mod m).
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Proof. (a) We have

mF2n+2 = (F2n+2 + F2n+4)F2n+2

= F 2
2n+2 + F2n+4F2n+2

= F 2
2n+2 + (F2n+3 + F2n+2)(F2n+3 − F2n+1)

= F 2
2n+2 + F 2

2n+3 + F2n+3F2n+2 − F2n+3F2n+1 − F2n+2F2n+1

= F 2
2n+2 + F 2

2n+3 + (F2n+2 + F2n+1)F2n+2 − F2n+3F2n+1 − F2n+2F2n+1

= F 2
2n+2 + F 2

2n+3 + F 2
2n+2 − F2n+3F2n+1

= F 2
2n+2 + F 2

2n+3 + (−1)2n+1 (using Cassini’s identity)

= F4n+5 − 1
(

using the identityF 2
n + F 2

n+1 = F2n+1

)

.

Hence we get

F4n+5F2n+2 = (1 +mF2n+2)F2n+2 ≡ F2n+2 = F2F2n+2 (mod m).

(b) We have

F2F2n+2 ≡ F4n+5F2n+2 (mod m) (by (a))

= (F4n+6 − F4n+4)F2n+2

= F4n+6F2n+2 − F4n+4F2n+2

= (L2n+3F2n+3)F2n+2 − F4n+4F2n+2 (since LnFn = F2n)

≡ −F4n+4F2n+2 (mod m) (as m = L2n+3) .

(c) F3F2n+2 = (F2 + F1)F2n+2 ≡ (F4n+5 − F4n+4)F2n+2 ≡ F4n+3F2n+2 (mod m).

(d) F4F2n+2 = (F3 + F2)F2n+2 ≡ (F4n+3 − F4n+4)F2n+2 ≡ −F4n+2F2n+2 (mod m).

Lemma 2. Fr+5F2n+2 = (Fr+4 + Fr+3)F2n+2 ≡ ǫF4n+1−rF2n+2 (mod m) for each 0 ≤ r ≤
2n− 2, where

ǫ =

{

+1, if r is even;
−1, if r is odd.

Proof. Using the recurrence relation Fn+1 = Fn + Fn−1 for n ≥ 1 and Lemma 1, the proof
follows by induction on r.

Thus in order to examine the integers F2F2n+2, F3F2n+2, . . . , F4n+5F2n+2 modulo m, it is
sufficient to examine only the integers F2F2n+2, F3F2n+2, . . . , F2n+3F2n+2 modulo m.

Lemma 3. (a) F2F2n+2 ≡ F2n+2 (mod m).

(b) F3F2n+2 ≡ −F2n+3 (mod m).

(c) F4F2n+2 ≡ −F2n+1 (mod m).

(d) F5F2n+2 ≡ 2F2n+2 − F2n+1 (mod m).
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Proof. (a) F2F2n+2 ≡ F2n+2 (mod m) (as F2 = 1).

(b) F3F2n+2 = 2F2n+2 ≡ −(F2n+1 + F2n+2) = −F2n+3 (mod m).

(c) F4F2n+2 = (F2 + F3)F2n+2 ≡ F2n+2 − F2n+3 = −F2n+1 (mod m).

(d) F5F2n+2 = 5F2n+2 ≡ 2F2n+2 − F2n+1 (mod m).

We observe that in all above four congruences if R is the remainder then we have, F2n+1 ≤
|R| ≤ m

2
, i.e., we have that the positive remainder is always in the interval [F2n+1, 3F2n+2].

Inductively, we can prove that

F2n+3−k = F2n−1−kF5 + F2n−2−kF4

for each 0 ≤ k ≤ 2n− 3. Hence we have

F2n+3−kF2n+2 = (F2n−1−kF5 + F2n−2−kF4)F2n+2

≡ F2n−1−k(2F2n+2 − F2n+1)− F2n−2−kF2n+1 (mod m) (using (c), (d) of Lemma 3)

= F2n−1−kF2n+2 + F2n−1−k(F2n+1 + F2n)− F2n−1−kF2n+1 − F2n−2−kF2n+1

= F2n−1−kF2n+2 + F2n−1−kF2n − F2n−2−kF2n+1

= F2n−1−kF2n+2 + (−1)2n−2−kF2+k (using d’Ocagne’s identity) .

Thus we get
F2n+3−kF2n+2 ≡ F2n−1−kF2n+2 + ǫF2+k (mod m), . . . (1)

where

ǫ =

{

+1, if k is even;
−1, if k is odd.

Lemma 4. Let Rk = F2n−1−kF2n+2 + ǫF2+k for each 0 ≤ k ≤ 2n− 3, where

ǫ =

{

+1, if k is even;
−1, if k is odd.

Then F2n+1 < |Rk|m < m
2
.

Proof. We partition the set {0, 1, 2, . . . , 2n− 3} into the sets A2, A3, A4, and A5 where

Ai =

{

2n− 1− i− 4t : 0 ≤ t ≤

⌊

2n− 1− i

4

⌋}

,

for each 2 ≤ i ≤ 5. Notice that

ǫ =

{

+1, if k ∈ A3 ∪ A5;
−1, if k ∈ A2 ∪ A4.

We consider the following cases:
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Case I: (k ∈ A2). Clearly (1) implies that

F6+4tF2n+2 ≡ F2+4tF2n+2 − F2n−1−4t (mod m).

t = 0 ⇒ F6F2n+2 ≡ F2F2n+2 − F2n−1 ≡ F2n+2 − F2n−1 (mod m). Observe that F2n+1 <
F2n+2 − F2n−1 < m/2.

t = 1 ⇒ F10F2n+2 ≡ F6F2n+2 − F2n−5 ≡ F2n+2 − F2n−1 − F2n−5 (mod m). Observe that
F2n+1 < F2n+2 − F2n−1 − F2n−5 < m/2.

Inductively, we let t = ⌊2n−3
4

⌋. In this case k = 1 or k = 3 depending on n is even or
odd. If k = 1, then we have

F2n+2F2n+2 ≡ F2n−2F2n+2−F3 ≡ F2n+2−(F2n−1+F2n−5+· · ·+F3) (mod m). Observe that
F2n+1 < F2n+2− (F2n−1+F2n−5+ · · ·+F3) < m/2 as we have the identity F2n =

∑n−1
i=0 F2i+1.

If k = 3, then we have
F2nF2n+2 ≡ F2n−4F2n+2−F5 ≡ F2n+2− (F2n−1+F2n−5+ · · ·+F5) (mod m). Observe that

F2n+1 < F2n+2− (F2n−1+F2n−5+ · · ·+F5) < m/2 as we have the identity F2n =
∑n−1

i=0 F2i+1.

Case II: (k ∈ A3). Clearly (1) implies that

F7+4tF2n+2 ≡ F3+4tF2n+2 + F2n−2−4t (mod m).

t = 0 ⇒ F7F2n+2 ≡ F3F2n+2 + F2n−2 ≡ −F2n+3 + F2n−2 (mod m). Observe that F2n+1 <
| − F2n+3 + F2n−2| < m/2.

t = 1 ⇒ F11F2n+2 ≡ F7F2n+2 + F2n−6 ≡ −F2n+3 + F2n−2 + F2n−6 (mod m). Observe that
F2n+1 < | − F2n+3 + F2n−2 + F2n−6| < m/2.

Inductively, we let t = ⌊2n−4
4

⌋. In this case k = 0 or k = 2 depending on n is even or
odd. If k = 0, then we have

F2n+3F2n+2 ≡ F2n−1F2n+2+F2 ≡ −F2n+3+(F2n−2+F2n−6+ · · ·+F2) (mod m). Observe
that F2n+1 < |−F2n+3+(F2n−2+F2n−6+· · ·+F2)| < m/2 as we have F2n+3−(F2n−2+F2n−6+
· · ·+F2) = F2n+1+F2n+2− (F2n−2+F2n−6+ · · ·+F2) and the identity F2n+1− 1 =

∑n
i=1 F2i

If k = 2, the result follows from the above case k = 0.

Case III: (k ∈ A4). Clearly (1) implies that

F8+4tF2n+2 ≡ F4+4tF2n+2 − F2n−3−4t (mod m).

t = 0 ⇒ F8F2n+2 ≡ F4F2n+2 − F2n−3 ≡ −F2n+1 − F2n−3 (mod m). Observe that F2n+1 <
F2n+1 + F2n−3 < m/2.

t = 1 ⇒ F12F2n+2 ≡ F8F2n+2 − F2n−7 ≡ −(F2n+1 + F2n−3 + F2n−7) (mod m). Observe
that F2n+1 < F2n+1 + F2n−3 + F2n−7 < m/2.

Inductively, we let t = ⌊2n−5
4

⌋. In this case k = 1 or k = 3 depending on n is odd or even.
If k = 1, then we have

F2n+2F2n+2 ≡ F2n−2F2n+2−F3 ≡ −(F2n+1+F2n−3+F2n−7+ . . .+F3) (mod m). Observe
that F2n+1 + F2n−3 + F2n−7 + . . .+ F3 < m/2 as we have the identity F2n =

∑n−1
i=0 F2i+1.

If k = 3. It follows from the above case k = 1.

Case IV: (k ∈ A5) Clearly (1) implies that

F9+4tF2n+2 ≡ F5+4tF2n+2 + F2n−4−4t (mod m).
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t = 0 ⇒ F9F2n+2 ≡ F5F2n+2 + F2n−4 ≡ 2F2n+2 − F2n+1 + F2n−4 (mod m). Observe that
F2n+1 < 2F2n+2 − F2n+1 + F2n−4 < m/2.

t = 1 ⇒ F13F2n+2 ≡ F9F2n+2+F2n−8 ≡ 2F2n+2−F2n+1+F2n−4+F2n−8 (mod m). Observe
that F2n+1 < 2F2n+2 − F2n+1 + F2n−4 + F2n−8 < m/2.

Inductively, we let t = ⌊2n−6
4

⌋. In this case k = 0 or k = 2 depending on n is odd or even.
If k = 0, then we have

F2n+3F2n+2 ≡ F2n−1F2n+2 + F2 ≡ 2F2n+2 − F2n+1 + (F2n−4 + F2n−8 + . . .+ F2) (mod m).
Observe that F2n+1 < 2F2n+2 − F2n+1 + (F2n−4 + F2n−8 + . . . + F2) < m/2 as we have
2F2n+2 − F2n+1 + (F2n−4 + F2n−8 + . . . + F2) = F2n+2 + F2n + (F2n−4 + F2n−8 + . . . + F2) <
F2n+2 + F2n+1 − 1 < m/2 using the identity F2n+1 − 1 =

∑n
i=1 F2i

If k = 2. It follows from the above case k = 0.

Theorem 5. Let F2, F3, . . . , Ft be the Fibonacci numbers and let n ≥ 1 be an integer
such that 4n + 2 ≤ t ≤ 4n + 5 and m = F2n+2 + F2n+4 = L2n+3. Then the integers
F2F2n+2, F3F2n+2, . . . , FtF2n+2 modulo m all belong to the interval [F2n+1, 3F2n+2]. Moreover,
both the endpoints of the interval [F2n+1, 3F2n+2] are obtained only by the integers F4F2n+2

and F4n+2F2n+2, respectively.

Proof. Lemma 3 and Lemma 4 together prove the theorem.
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