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1. I N T R O D U C T I O N 

The identities 
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and 

Zj^k~ 4 4 + i ~ 2 - LnLn+l - LQLt (1.2) 

are well known. The right side of (1.2) suggests the notation [LjLj+llfo, which we use throughout 

this paper in order to conserve space. Each time we use this notation, we take j to be the dummy 

variable. 

In [2], motivated by (1.1) and (1.2), together with 
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we obtained several families of similar sums which involve longer products. For example, we 

obtained 
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for m a positive integer. By introducing a second parameter, s, we have managed to generalize all 

of the results in [2], while maintaining their elegance. The object of this paper is to present these 

generalizations, together with several results involving alternating sums, the like of which were 

not treated in [2]. In Section 2 we state our results, and in Section 3 we indicate the method of 

proof. We require the following identities: 
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4+^ + 4 - * = 4 4 , *®ven, (1.9) 

Ln+k + Ln__k=5FnFk, £odd, (1.10) 
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(1.14) 

(1.15) 

Identities (1.5)-(1.12) occur as (5)-(12) in Bergum and Hoggatt [1], while (1.13)-(1.15) can 

be proved with the use of the Binet forms. In some of the proofs we need to recall the well-

known identity F2rj = FnLn. 

2. THE RESULTS 

In this section we list our results in eight theorems, in which s > 0 and m > 0 are integers. In 

some of the theorems the parity of s is important, and the reasons for this become apparent in 

Section 3. Our numbering of Theorems 1-5 parallels that in [2], so that both sets of results can be 

easily compared. 

Theorem 1: 
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Theorem 2: 

2-i ^sk^s(k+l) •' • ^s(k+4m)
F
s(k+2m)

 : 

*=1 

LsjLs(J+l) '' • AsQ+4/w+l) 

SFm s(2m+l) 
s even, 

(2.1) 

(2.2) 

(2.3) 

2d ^sk^s(k+l) ' • • £
J
s(k+2m) '' • ^s(k+4m) ~ 

k=l 

^sj^s{j+l) •'' ^s(j+4m+l) 

^s(2m+l) 

, s odd. (2.4) 

Theorem 3: 
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Theorem 5: 
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For jii = 0 we interpret the suramands in (2.2) and (2.4) as F}k and l£k, respectively. For s 

odd the corresponding sums are then 

k=l L. 
1 ^ = ^ ^ and £ Z ? 'sk 
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which generalize (1.1) and (1.2), respectively. 

Interestingly, for /w = 0, (2.1) and (2.3) provide alternative expressions for the same sum, 

namely, 
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Some special cases of these alternating sums are worthy of note. For m = 0 Theorem 6 yields 
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and 
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An alternative formulation for (2.20) is provided by (2.16). For m - 0 (2.15) becomes 
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( 1) LSjLS(j+i) 

L. 
, s even. 

(2.19) 

(2.20) 
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3. THE METHOD OF PROOF 

Each result in Section 2 can be proved with the use of the method in [2]. However, the 

significance of the parity of s in some of our theorems becomes apparent only when we work 

through the proofs. For this reason, we illustrate the method of proof once more by proving 

(2.4). 

Proof of (2.4): Let /„ denote the sum on the left side of (2.4) and let 
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= 4*4 (n+i) • • • L]{n+2m)... Ls(n+4m) [by (1.11) since s(2m +1) is odd] 

Thus ln-rn=c, where c is a constant. 

Now 
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and this concludes the proof • 
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In contrast, when proving (2.3), we are required to factorize Ls{n+2m)+s(2m+l) - Ls{ri+2m)_s(2m+l) 

for s even, and this requires the use of (1.12). 

As in [2], we conclude by mentioning that the results of this paper translate immediately to 

the sequences defined by 

\Un = PUn-i + U^, Uo = 0, f/, = l, 

Wn=PVn-^Vn_2, V0 = 2, V,=p. 

We simply replace Fn by Un, Ln by Vn, and 5 by p
2
 + 4. 
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