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1. INTRODUCTION 

Let (JP, Q) = 1 and a and /? (a > /?) be the roots of x
2
 - Px + Q = 0. The Lucas sequence 

Un - Un(P, Q) and "associated" Lucas sequence Vn - Vn{P, Q) are defined, respectively, by 

v a
n
-p

n
 a n d vn^a

n
^ji\n>^ (0) 

a- P 

In 1878 Lucas ([10], p. 225) obtained the following formula: 

±Qr"rIUinr=FIUr,r>\. 

Setting Q = ±l, it is seen immediately that, if P
2 - 4 g > 0 , then v

Z^=ll/U2nr is irrational, 

since Ur and Fr are integers, a - J3 is irrational, and [from (0)] /T = (Vr -Ur(a- /?)) / 2 is 

irrational. Special cases of this result were re-discovered in the mid-1970s for Fn = Un(l, -1) [6], 

[7], [9] (see [8] for a number of different methods for summing Y^=Qll Fr) 

It was now known until recently whether £*=1 \IUg{n) is irrational for any values of the par-

ameters P and Q if g{n)^2
n
r. Then, in 1987, Badea [3] answered a question posed by Erdos 

and Graham [5] when he proved that H™=01/ F2n+1 *
s irrational. Andre-Jeannin [2] has shown 

that, if P > 0 and Q = ±1, Z^=11/ U„ is irrational, and in a recent work [4], Badea proved that 

Z^=11 / Ug{n) is irrational for P > 0 and Q < 0 if g(n +1) > 2g(w) - 1 for all sufficiently large n. 

In this paper we show that, for all Lucas sequences with P > 0, (P, g) = 1, and P
2
 - 4Q > 0, 

E^=11 / Ug(„) is irrational if g(n +1) > 2g(^) for all sufficiently large w, and show that if g(n +1) > 

2g"(w)-l for all sufficiently large 7? and g(n) is even, the result holds for all such positive 

parameters P and Q. We obtain similar results for Z^Li 1 IVg(n) 

Let £*=il/«fc be a series such that ak+l >a\ > 1 for k > 1, and denote the partial sum 

E£=11 /ak by x„ /yn , where x„ andyn = a}...a„ are natural numbers. If, now, E^Li \lak = alb,a 

and * natural numbers, then alb = xnl yn+ E^=11 / aw+yt; that is, 

0<ay„-bx„=b.±^^. 
Jc=l

 u
n+k 

The sequence {•̂ ~-}°°_ is decreasing if k = 1 and strictly decreasing if k > 1 (implying E^=1 ^ - ^ 

is a strictly decreasing junction of n\ since the ratio of the n
th and (w +1)81 term is 

d
n+k+l ^ u»+& 
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which equals 1 if k = 1 and is > 1 if k > 1. But this implies {ayn -bxn}™=l is a strictly decreasing 

sequence of natural numbers, which is impossible; hence, S^=1 llak is irrational. We thus have 

Theorem A: Let n > 0. If {an} is a sequence of integers, except for at most a finite number of 

terms that are noninteger rationals, and an+l >a
2
n>\ for all large w, then the series T^=zQllarl is 

an irrational number. 

This result will suffice to prove Theorems 1, 2, and 4, and all but part (ii) of Theorem 3; for 

the latter, we require the following stronger criterion due to Badea [2] (rephrased to apply to 

sequences containing some negative and/or noninteger terms): 

Theorem B: Let n>0. If {an} is a sequence of integers, except for at most a finite number 

of terms that are noninteger rationals, and an+l > a
2
 - an +1 > 0 for all large n, then the series 

H™=0l/an is an irrational number. 

The meanings of U„ and Vn are extended to negative subscripts by defining U_n - -Un I Q
n 

and V_n =Vn I Q
n
. With these definitions, the following known relations hold for all integers m 

[proofs are readily obtained from (0)]. 

u2m = umvm, ( i ) 

U2m+l=U
2
m+l-QUl (2) 

Vlm=Vl-2Q\ (3) 

Vm>Um. (4) 

2e THE THEOREMS 

We assume that Q*0, P>1, and the discriminant D = P
2
 -2Q>0. It is known—and 

easily shown from (0)—that this assumption assures that {Un} and {Vn} are increasing sequences 

of positive integers. 

The proof of the following theorem, for Q < 0, is given in [4], but is included here for com-

pleteness. 

Theorem 1: Let g be an integer-valued function such that g(n +1) > 2g(ri) - 1 > 1 for all large n. 

The series Z^=0 1 / Ug(n) is irrational except possibly when Q > 0 and g(n) is odd for infinitely 

many values of«. 

Proof: Let an = Ug(n) for all n > 0 and let N be such that g(n +1) > 2g(n) -1 > 1 for n > N. 

Assume now that n> N. 

Case 1. g{n +1) odd. Let m = m{n) be such that g(n +1) = 2m +1. Assume Q is negative. 

By (2), 

a
n+l ~ ^g{n+l) ~ &2m+l

 =
 ^m+l ~ Q^m

 >
 ^m+V 

Then 2m +1 = g(n +1) implies m +1 = [g(n +1) +1] / 2 > g(n), so U
2
m+l > U

2
g{n). Hence, 
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Case 2. g(n +1) even. Since g(n +1) > 2g(n) -1 and g(n +1) is an even integer, g(n +1) > 

2g(ri). Letg(n + l) = 2rn. By (1) and (4), 

a
*+l =

 U
g(n+l) =

 U
2m = UmVm > U

2
m. 

Since rn-g(n + l)/2>g(n), we again have an+1 >a\. Hence, by Theorem A, Z * = 0 l / ^ ( n ) *s 

irrational in each case. 

Theorem, 2: The series E^=01 / ^goo *s irrational if g is an integer-valued function such that 

g(n +1) > 2g(ri) > 1 for all sufficiently large n. 

Proof: Assume that TV > 1 is such that g(n +1) > 2g(n) > 1 for all n> N, and let n > N. By 

Theorem 1, the theorem is true if g{n +1) is even. Let g(n +1) = 2m +1 and let an = Ug^. Since 

m = [g(n +1) -1 ] / 2 > g(n) - 1 / 2 is an integer, m > g(n). By (1) and (4), 

<*n+i =
 u
im+i > U2m = UmVm >U

2
m> U

2
g(n) = a 2 , 

proving the theorem. 

We now prove similar theorems for the series T^=0l/Vg{ny In 1987 Badea [3] proved that 

Z^Lo IIL2n is irrational (using Theorem B), and, more generally (in [4]), that Z^=0 l/^g(«) *s irm
~ 

tional if Q = - 1 and g{n +1) > 2g(n). Andre-Jeannin [1] gave a direct proof that, for all positive 

integers k, H™=0(±l)
n
 /Vn„ is irrational, and (in [2]) proved that H^=0l/Vn is irrational. Our 

Theorem 3 includes Badea's results and, for P > | g + l|, Andre-Jennin's result that E*=01/J^2„ is 

irrational. 

Lemma 1: Let k be a positive integer. If P > | g + l|, then, for all sufficiently large integers m, 

*Qm<vm-i 

Proof: It is easily seen that | p |=|(P - JD) / 21 < 1 if and only if P >\Q +1|, and that a > 1 for 

all P and g . Hence, there exists an integer M such that, if m > M , then | /? |w < 1 / 2k and a™ > 4. 

It follows that 

kQ
m
=ka

m
p

m
<ka

m
\p\

m
<a

m
/2<a

m
+p

m
-l = Vm-l 

It is readily shown that lim^^^ V2n+l IV
2
 = a > 1, and this result is sufficient to prove part (i) 

of Theorem 3. However, it is of interest that V2n+l > V
2 for all n, with one exception. 

Lemma 2: lfn>0, then V2n+l > V
2, with equality holding only when (P, Q, ri) - (3,2,1). 

Proof: Let r = fila and let 

„ , a
2x+l

+p
2x+l

 1 a ( l+r 2 * + 1 ) 1 

f(x) = ——--1 = —̂  T^-h xreal. 
; ( a x + ^ x ) (1 + r*)2 

We first observe that / ( I ) > 0. Now, since P 2 - 4 0 > 0, 

f(l) = V3/V
2
-l = (P

2
-3Q)/P-l>P/4-l, 
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s o / ( l ) > 0 i f P > 4 , o r l fg<0. Since P
2
 - 4Q > 0 implies Q < 0 for P = 1 or 2, / ( l ) < 0 only if 

P = 3 or 4 and Q > 0. The reader may. readily determine that, if P = 3 or 4, / ( I ) > 0 with equal-
ity holding only when P = 3 and 2 = 2 . ' 

Casel. /?>0. Then0<r< l . Now, 

or 
_ (l + rx) : 

/w^r"-,"
hr

>». 
implying that / i s a strictly increasing function of x; since / (« ) = V2n=l IV

2 - 1 and / ( l ) > 0, we 

conclude that F2B=1 >V
2
. 

Caste 2. y?<0. If n is odd, by (3), 

Vn
2
=V2n+2Q"=V2n+2(apy<V2n; 

hence, V2n+l -V
2

 > V2n+l-V2n > 0. Assume now that n is even. We let t = -/31 a (so 0 < t < 1), 

define 

. a(l-t
2x+1

) 

find that g is a strictly increasing function of x, and conclude, since g(n) = f(ri) with t = -r, that 

F2„+1 > V
2 in this case, as well. 

Theorem 3: Let g be an integer-valued function such that g{n +1) > 2g-(w) > 1 for all large n. 

Then Z^=0 1 / Vg^ is irrational 

(i) if g{n) is an odd integer for all large n, or 

(ii) i fP> |g + l|. 

Proof: Let aw = Vg(<n) for all w > 0 and let N > 1 be such that g(n +1) > 2g(w) > 1 for w > # . 

Assume now that n> N. 

(i) Assume that g(n +1) is odd and let g(n +1) = 2m +1; since iw = [#(« +1) -1] / 2 > g(n) -

1 / 2 is an integer, m > g(n). Then, by Lemma 2, 

a
»+l =

 V
g(n+l) =

 V
2m+l > Vl *

 V
g(n) = <*!> 

proving (i). 

(ii) Assume that P>\Q + l\. We make the additional assumption that, if r>g(n), then 

Vr-l> 2Q
r (possible by Lemma 1). By part (i), we may assume that g(n +1) is even; let g(n +1) 

= 2m. Then, by (3), 

®n+i=Vg(n+l)=V2m=V*-2Q
m
. 

By Lemma 1, 2Q
m
 <Vm-\ and, since m > g(n), Vm > Vg^n), from which it follows that 

^+i=K-2Q
m
>V'-Vm+l = Vm(Vm-l) + l>a

2
-an + l. 

This proves part (ii), by Theorem B. 
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Theorem 4: The series £^=01 / Vg(„) is irrational if g is an integral-valued function such that 

g(n +1) > 2g(n) +1 > 1 for all sufficiently large n. 

Proof: Assume that g(n +1) > 2g(n) +1 > 1 for all n > some integer N > 1, and let an - Vg(<n). 

If n > N and g(n + l) is odd, then aw+1 >a^ by Theorem 3. Assume g(n + l) is even and let 

g(n + \) = 2m; then, since m>g(n) + l/2 is an integer, 7w>g-(«) + l, i.e., m-l>g(ri). By 

Lemma 2, 

a
n+\

 = *g(w+l) = ' 2 / w > ^2/w-l ~ *2(/w-l)+l >
 'm-l ~ ^g(w) = a « » 

proving the result by Theorem A. 

Examples: Since Fw = U„ (1, -1) , it is apparent that 

±\IFr, ±VFrk, and £ l / F , + 1 

«=0 n=0 w=0 

are special cases of Theorem 1. Other examples of series whose sum is irrational are 

f^l/U^ (c>lmdb>2) and J l / C ^ , * £ - l . 

In fact, it is readily seen that, for {U„} any Lucas sequence, J^=0l/Ug(n) is irrational if g(n) = 

ch
n
 - / ( « ) , where c > 1, b > 2, and/is an integer-valued function such that / ( « +1) < 2f{ri) for 

all large n, provided g(n) > 1 for all large n if could be, for example, any polynomial in n with 

positive leading coefficient). Similar examples illustrating Theorems 3 and 4 are readily obtained. 

It is interesting that the sum of the series Z^=0 l/U2nr, r > 1, found by Lucas for Q = ±l is 

not known for any other value of Q. Also, the sum of Z^=0 HVrr is not known (however, see 

[1]), for any value of Q, nor is the sum of any of the other series whose irrationality we have 

shown in this paper. 
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