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For any positive integer £, let ¢(k) and o (k) be the number of positive integers less than or
equal to & and relatively prime to & and the sum of divisors of £, respectively.

In [6] we have shown that ¢(F,) 2 Fy, and that o(F,) < F,, and we have also determined
all the cases in which the above inequalities become equalities. A more general inequality of this
type was proved in [7].

In [8] we have determined all the positive solutions of the equation ¢(x™ - y™) = x" + y" and
in [9] we have determined all the integer solutions of the equation §(|x™ + y™|) =|x" + y"|.

In this paper, we present the following theorem.

Theorem:
{1} The only solutions of the equation
¢(F, ) =27, (1
are obtained for n=41 +£2 +3 +4 +5 +6 +9.
{2) The only solutions of the equation
#(L,|)=2", 2
are obtained for n=0,+1, +£2, +£3.
(3) The only solutions of the equation
o(£,)=27, 3)
are obtained for n=11,£2,+4, 8.
{4) The only solutions of the equation
o(lL,h=2" 4
are obtained for n =11, +2, +4.
Let 723 be a positive integer. It is well known that the regular polygon with # sides can be

constructed with the ruler and the compass if and only if ¢(n) is a power of 2. Hence, the above
theorem has the following immediate corollary.

Corollary:
(1) The only regular polygons that can be constructed with the ruler and the compass and
whose number of sides is a Fibonacci number are the ones with 3, 5, 8, and 34 sides, respectively.
{2} The only regular polygons that can be constructed with the ruler and the compass and
whose number of sides is a Lucas number are the ones with 3 and 4 sides, respectively.

The question of finding all the regular polygons that can be constructed with the ruler and the
compass and whose number of sides » has various special forms has been considered by us
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previously. For example, in [10] we found all such regular polygons whose number of sides n
belongs to the Pascal triangle and in [11] we found all such regular polygons whose number of
sides n is a difference of two equal powers.

We begin with the following lemmas.

Lemma 1:
() F,=@)™"F, and L, =(-1)"L,.
2 2F,.,,=F.L,+LF, and2L,  =5FF+L]L,.
(3) F,=FL,and L, = [ +2(-)™".
(4) I2-SE?=4(-1).
Proof: See(2]. O

Lemma 2:

(1) Let p>5 be a prime number. If (—f,—) =1, then p|F, ;. Otherwise, p|F,,;.

2 (&, F,)=F,,, for all positive integers m and ».

(3) fm|nand n/misodd,then L, |L,.

(4) Let p and n be positive integers such that p is an odd prime. Then (Z,, F,)>2 if and
only if p|n and n/p is even.

Proof: (1) follows from Theorem XXII in [1].
(2) follows either from Theorem VI in {1] or from Theorem 2.5 in [3] or from the Main
Theorem in [12].

(3) follows either from Theorem VII in [1] or from Theorem 2.7 in [3] or from the Main
Theorem in [12].

(4) follows either from Theorem 2.9 in [3] or from the Main Theorem in [12]. O

Lemma 3: Let k >3 be an integer.
(1) The period of (F,), -, modulo 2* is 2¢71-3.
(2) Eu.,=2" (mod2*"). Moreover, if F, =0 (mod 2*), then n=0 (mod2*72-3).

(3) Assume that n is an odd integer such that F, = +1(mod2*). Then F, =1(mod2*) and
n=+1(mod2*1.3).

Proof: (1) follows from Theorem 5 in [13].

(2) The first congruence is Lemma 1 in [4]. The second assertion follows from Lemma 2 in
[5].

(3) We first show that F, # —1(mod2¥). Indeed, by (1) above and the Main Theorem in [4],
it follows that the congruence F, =-1(mod2¥) has only one solution # (mod2*'-3). Since
F, = -1, it follows that n= -2 (mod 2¥"!-3). This contradicts the fact that # is odd.

We now look at the congruence F, =1(mod 2*). By (1) above and the Main Theorem in [4],
it follows that this congruence has exactly three solutions » (mod 2¥~!-3). Since F, = F, = F, =1,
it follows that 7= +1,2 (mod 2*7'-3). Since # is odd, it follows that 7= +1 (mod 2¢~'-3). [
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Lemma 4: Let k 23 be a positive integer. Then
~ {2’”‘3 ~1(mod2¥**)  if k =1(mod2),

#7245 1(mod 25 if & = 0 (mod 2).

Proof: One can check that the asserted congruences hold for £ =3 and 4. We proceed by
induction on k. Assume that the asserted congruence holds for some & > 3.
Suppose that £ is odd. Then L, =2°*'3-1+2***/ for some integer /. Using Lemma 1(3), it
follows that
L2k+l - L;k -2 = ((2k+13 _ 1)2 + 2k+5](2k+13 _ 1)2 + 22k+812) -2
= (213 -1)* - 2 (mod 2*%).
Hence,

L e =229 - 2523 4 1 -2 = 22429 4. 242(-3) — 1 (mod 2**%).

Since k >3. it follows that 2k +2 >k +5. Moreover, since —3 =5 (mod 2°), the above congru-
ence becomes

Ly =225 1(mod 2*%).

The case k even can be dealt with similarly. 0

Proof of the Theorem: In what follows, we will always assume that n > 0.

(1) We first show that if @¢(F,)=2", then the only prime divisors of n are among the
elements of the set {2,3,5}. Indeed, assume that this is not the case. Let p>5 be a prime
number dividing n. Since F,[F,, it follows that $(F,)|$(F,)=2". Hence, §(F,)=2". It
follows that

F=2p i, ©)

where />0, k >0, and p, < p, <--- < p, are Fermat primes.
Notice that /=0 and p, >5. Indeed, since p>5 is a prime, it follows, by Lemma 2(2), that
F, is coprime to F, for 1<m<5. Since F;=2,F =3, and F; =35, it follows that /=0 and

n>3.
Hence, p,>5 foralli=1,.., k. Write p,=22" + for some a; >2. It follows that

P =4"" +1=2(mod 5).

Since (&)= (%)=-1, it follows, by the quadratic reciprocity law, that (7,‘5—) =-1. It follows, by

Lemma 2(1), that p, | F, ,,. Hence,
P l(Fp’ Fp1+1) = Ep,plﬂ)'

The above divisibility relation and the fact that p is prime, forces p|p, +1= 22" +1). Hence,

p12*" 7 +1. Thus,
p<2¥ 41 ©6)
On the other hand, since

k
F,=]1G* +1)=1(mod2*"),

i=
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it follows, by Lemma 3(3), that p = +1(mod 22“~'3). In particular,
p=2""13-1 (7
From inequalities (6) and (7), it follows that 22" 7'3—-1<2%""1+1 or 2% <2. This implies that

a, = 0 which contradicts the fact that a; > 2.
Now write 77 =2°3?5°. We show that a < 2. Indeed, if a > 3, then 21 = F; | F,, therefore

312=9Q2) |¢(F,) =27,
which is a contradiction. We show that 5 <2. Indeed, if b > 3, then 53| I, | F;,, therefore
1352=¢(53) |$(F;) =2,

which is a contradiction. Finally, we show that ¢ <1. Indeed, if ¢ > 2, then 3001| F5 | F,, there-
fore
313000 = $(3001) | $(F;) = 2",

which is again a contradiction. In conclusion, 7|2%-3%-5=180. One may easily check that the
only divisors z of 180 for which ¢(F)) is a power of 2 are indeed the announced ones.

(2) Since ¢(2)=¢(1)=1=2" and ¢(3)=¢(4)=2", it follows that »=0,1,23 lead to
solutions of equation (2). We now show that these are the only ones. One may easily check that
n#4,5 Assume that n>6. Since ¢(L,)=2", it follows that

anzl'pl'“”pk’ (8)
where />0 and p, <---<p, are Fermat primes. Write p,=22" +1. Clearly, p,>3. The
sequence (L,),», is periodic modulo 8 with period 12. Moreover, analyzing the terms L, for
s=0,1,...,11, one notices that .. £0 (mod 8) for any s=0,1,...,11. It follows that /<2 in
equation (8). Since n>6, it follows that L, >18. In particular, p,>5 for some i=1,... k.

.21
From the equation
L3 -SE} =(-1)"-4, ©)
it follows easily that 5/L,. Thus, p,>5. Hence, p, =22" +1 for some o, >2. It follows that
p; =1 (mod 4) and
p =4 41= (1" +1=2 (mod 5).

In particular, (%) =(%)=-1. Hence, by the quadratic reciprocity law, it follows that (’%) =-1as
well. On the other hand, reducing equation (9) modulo p,, it follows that

SE? = (-1)"1-4 (mod p). (10)

Since p, =1 (mod 4), it follows that ((—‘—2'11) =1. From congruence (10), it follows that (;f—) =1
which contradicts the fact that (;f—) =-1.

(3) Since 0(1)=1=2°,0(3)=4=2% and o(21)=32=2’, it follows that n=1,2,4,8 are
solutions of equation (3). We show that these are the only ones. One can easily check that
n#3,56,7. Assume now that there exists a solution of equation (3) with »>8. Since
o(F,)=2", it follows easily that F, =¢,----- gy, where g, <:--<gq, are Mersenne primes. Let

2
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g; =2% —1, where p, >2 is prime. In particular, g, =3 (mod 4). Reducing equation (9) modulo
g, it follows that
I2=(-1)"-4 (modg,). (1)

Since ¢, =3 (mod 4), it follows that (“]—1) =~1. From congruence 11, it follows that 2|n. Let
n=2m. Since F,=F, =F, L, and since F, is a square free product of Mersenne primes, it
follows that F, is a square free product of Mersenne primes as well. In particular, o(F,)=2".
Inductively, it follows easily that 7 is a power of 2. Let n=2', where >4. Then, n,=2""
Moreover, since L, |F, L, =F,, it follows that L, is a square free product of Mersenne primes

as well. Write
L,=q{-q, (12)

where g/ <---<gj. Let g/ =27 —1 for some prime number p/. The sequence (I,),, is periodic
modulo 3 with period 8. Moreover, analyzing L for s=0,1,..., 7, one concludes that 3| L, only
for s=2,6. Hence, 3| L, if and only if s=2 (mod 4). Since 7> 4, it follows that 8|2 ' =n,.
Hence, 3fL, and 3L, ,,. In particular, p{>2. We conclude that all p/ are odd and ¢/ = 27 -1
=2-1=1 (mod 3). From equation (12), it follows that [, =1 (mod 3). Reducing relation

L = Lf,l 12 —2 modulo 3, it follows that 1 =1-2 = ~1 (mod 3), which is a contradiction.

(4) We first show that equation (4) has no solutions for which 7 >1 is odd. Indeed, assume
that o(Z,) = 2™ for some odd integer n. Let p|n be a prime. By Lemma 2(2), we conclude that
L,|L,. Since o(l,) is a power of 2, it follows that L, is a square free product of Mersenne
primes. Since L, is a divisor of L,, it follows that L, is a square free product of Mersenne
primes as well. Write L, =¢q,-*---¢,, where g, <---<g, are prime numbers such that g, =2" —
for some prime p, >2. We show that p, >2. Indeed, assume that p, = 2. In this case, ¢, =3. It
follows that 3| L,. However, from the proof of (3), we know that 3| L, if and only if s=2 (mod
4). This shows that p, = 3.

Notice that L, ==*1(mod2”). It follows that Lf) ~1=0(mod2”*). Since p is odd, it
follows, by Lemma 1(4), that

2 2 _

L,-5F, =4 (13)
or IZ—1=5(FZ-1). It follows that F; ~1=0(mod2”""). Hence, F,=+l(mod2”). From
Lemma 3(3), we conclude that p = +1(mod 277'3). In particular,

p=2713-1, (14)

On the other hand, reducing equation (13) modulo ¢,, we conclude that SFP2 =4 (mod q,), there-
fore (3)=1. By, Lemma 2(1), it follows that ¢;|F,_;. Since ¢|L, and Fy, = F,L,, it follows
that q{F,. Hence, q |[(F,, F} 1) =Fapq-1- Since F, =1, we conclude that p|q =1=
22771~ 1). In particular,

p<2mio1, (15)

From inequalities (14) and (15), it follows that 2773 —-1< 277"~ 1, which is a contradiction.
Assume now that 7 >4 is even. Write n=2'rn, where », is odd. Let

Ln:ql”'“qlw (16)
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where g; <:--<gq, are prime numbers of the Mersenne type. Let g, =27 —1. Clearly, g, =3
(mod 4) for all i=1,..,k. Reducing the equation I2-5F?=4 modulo g,, we obtain that
—5F*=4 (mod ¢,). Since (—:]—1) =1, it follows that (_qs_) =-1. From Lemma 2(1), we conclude
that g, | F ,) = F,,,. We now show that 7 < p;—1. Indeed, assume that this is not the case. Since
1> p, it follows that 27 |2'n =n. Hence, q,|F,, | F,. Since q,|L,, it follows, by Lemma 1(4),
that ¢, {4, which is a contradiction. So, 1< p,—1. We now show that » =1. Indeed, since
t+1<p <p, q|L,|F,, and g, | F,, , it follows, by Lemma 2(2), that g, |(F,, an) :F(2n,2h) =
F,... Hence, q;|F,. =F,L,. We show that n,=1. Indeed, since t+1<p, <p, ¢, |L,| F,,
and g, |F,,, it follows, by Lemma 2(2), that g, |(F,, F,,,) =F(2m m) =

F,L,. We show that g |L,. Indeed, for if not, then g, |F,. Since 2'|n, it follows that
qg;|F, | F,. Since g;|L,, it follows, by Lemma 1(4), that q*|4, which is a contradiction. In

F,.. Hence, g,|Fyn =

I3

conclusion, g; | L,, foralli=1,..., k. Since g, are distinct primes, it follows that

In particular, L,, > L, = L,,, . This shows that n = 1. Hence, n=2".

Since n > 4; it follows that # >3. It is apparent that g, #3, since, as previously noted, 3| L,
if and only is s = 2 (mod 4), whereas n=2" =0 (mod 4). Hence, p, >3 foralli=1,...,k. More-
over, since g; = 27 — 1 are quadratic nonresidues modulo 5, it follows easily that p, =3 (mod 4).
In particular, if £ > 2, then p, =2 p, +4.

Now since £ > 3, it follows, by Lemma 4, that

L, =2"a-1 (mod2™%), amn

where a €{3,5}. On the other hand, from formula (16) and the fact that p, > p, +4 whenever
k =2, it follows that

L, = fI(zp,- - =(-DF- (=27 +1)=2Pb+1 (mod27*4). (18)
i=1

where b €{1,7}. One can notice easily that congruences (17) and (18) cannot hold simultane-
ously for any 7 < p,—1. This argument takes care of the situation £ 22. The case £ =1 follows
from Lemma 3 and the fact that 7 < p, — 1 by noticing that
— — 1 t+4
27 ~1=1,,=2"".3-1 (mod2™")

implies 277"~ = 3 (mod 2*), which is impossible.

The above arguments show that equation (4) has no even solutions 7 >4. Hence, the only
solutions are the announced ones. U
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