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For any positive integer k, let <f>(k) and a(k) be the number of positive integers less than or 

equal to k and relatively prime to k and the sum of divisors ofk, respectively. 

In [6] we have shown that 0(Fn) > F^n) and that a(Fn) < Fa{ri) and we have also determined 

all the cases in which the above inequalities become equalities. A more general inequality of this 

type was proved in [7]. 

In [8] we have determined all the positive solutions of the equation $(xm - ym) = x" + y" and 

in [9] we have determined all the integer solutions of the equation $(\xm
 + ym

 |) = \xn + yn\. 

In this paper, we present the following theorem. 

Theorem: 

(1) The only solutions of the equation 

H\Fn\) = 2m, (1) 

are obtained for n = +1, ± 2, ± 3, + 4, ± 5, ± 6, ± 9. 

(2) The only solutions of the equation 

*(l4l) = 2
m
, (2) 

are obtained for n = 0, ± 1, ± 2, ± 3. 

(3) The only solutions of the equation 

^( |FJ) = 2"-, (3) 

are obtained for n = ±1, ± 2, ± 4, ± 8. 

(4) The only solutions of the equation 

^(I4l) = 2
m

, (4) 
are obtained for n = ±1, ± 2, ± 4. 

Let n > 3 be a positive integer. It is well known that the regular polygon with n sides can be 

constructed with the ruler and the compass if and only if $(n) is a power of 2. Hence, the above 

theorem has the following immediate corollary. 

Comllaiy: 

(1) The only regular polygons that can be constructed with the ruler and the compass and 

whose number of sides is a Fibonacci number are the ones with 3, 5, 8, and 34 sides, respectively. 

(2) The only regular polygons that can be constructed with the ruler and the compass and 

whose number of sides is a Lucas number are the ones with 3 and 4 sides, respectively. 

The question of finding all the regular polygons that can be constructed with the ruler and the 

compass and whose number of sides n has various special forms has been considered by us 
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previously. For example, in [10] we found all such regular polygons whose number of sides n 

belongs to the Pascal triangle and in [11] we found all such regular polygons whose number of 

sides n is a difference of two equal powers. 

We begin with the following lemmas. 

Lemma 1: 

(1) F_n = (-\rlFn and L_n = (-1)"4. 

(2) 2Fm+n = FmK + LnFm and 2Lm+n = 5FmF„ + LmLn. 

(3) F2n=FnLnmdL2n = 4 + 2(-irl. 

(4) L2
n-5Fn

2 = 4(-iy. 

Proof: See [2]. • 

Lemma 2: 

(1) Let p > 5 be a prime number. If (7) = 1, then p \ Fp_x. Otherwise, p \ Fp+l. 

(2) (Fm, Fn) = i ^ W) for all positive integers m and n. 

(3) If rn \n and nlm is odd, then Lm \Ln. 

(4) Let p and n be positive integers such that p is an odd prime. Then ( i Fn)>^ if and 

only if /? I w and nl pis even. 

Proof: (1) follows from Theorem XXII in [1]. 

(2) follows either from Theorem VI in [1] or from Theorem 2.5 in [3] or from the Main 

Theorem in [12]. 

(3) follows either from Theorem VII in [1] or from Theorem 2.7 in [3] or from the Main 

Theorem in [12]. 

(4) follows either from Theorem 2.9 in [3] or from the Main Theorem in [12]. • 

Lemma 3: Let k > 3 be an integer. 

(1) The period of {Fn)n>o modulo 2k
 is 2k'1 -3. 

(2) F2k_2.3 = 2k
 (mod 2k+l). Moreover, if Fn s 0 (mod 2k\ then n = 0 (mod 2k~2

 • 3). 

fjj Assume that n is an odd integer such that Fn = ±l (mod 2k). Then i^ = 1 (mod 2k) and 

w = ±l(mod2^
1
-3). 

Proof: (1) follows from Theorem 5 in [13]. 

(2) The first congruence is Lemma 1 in [4]. The second assertion follows from Lemma 2 in 
[5]. 

(3) We first show that Fn£-\ (mod 2k). Indeed, by (1) above and the Main Theorem in [4], 

it follows that the congruence Fn = -1 (mod 2k) has only one solution n (mod2
X:

~
1
-3). Since 

F_2 = - 1 , it follows that n = -2 (mod 2k~l
 • 3). This contradicts the fact that n is odd. 

We now look at the congruence Fn = 1 (mod 2k). By (1) above and the Main Theorem in [4], 

it follows that this congruence has exactly three solutions n (mod2*
-1

 -3). Since F_l=Fl = F2 = l, 

it follows that n = ±1,2 (mod 2k~l
 • 3). Since n is odd, it follows that n = ±1 (mod 2k~l

 -3). • 
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Lemma 4: Let k > 3 be a positive integer. Then 

[2*
+1

3-l(mod2*
+4

) if k = 1 (mod 2), 

2
* " [2*

+1
5-1 (mod2k+4) ifk^O(mod2). 

Proof: One can check that the asserted congruences hold for k = 3 and 4. We proceed by 

induction on k. Assume that the asserted congruence holds for some k > 3. 

Suppose that k is odd. Then L2k = 2*
+1

3 - 1 + 2k+4l for some integer /. Using Lemma 1(3), it 

follows that 

L2k+l = L\k - 2 = ((2
fc+1

3 -1)
2
 + 2*

+5
/(2*

+1
3 -1)

2
 + 2

2
*

+8
/
2
) - 2 

Es(2*
+1

3-l)
2
-2(mod2*

+5
). 

Hence, 

L2k+l SE2
2
*

+2
9-2*

+2
3 + 1-2E2

2
*

+ 2
9 + 2*

+2
(-3)-1 (mod2k+5). 

Since k>3. it follows that 2k + 2 > k + 5. Moreover, since -3 = 5(mod2
3
), the above congru-

ence becomes 

L2&+1=2
fc+2

5-l(mod2^
5
). 

The case k even can be dealt with similarly. D 

Proof of the Theorem: In what follows, we will always assume that n > 0. 

(1) We first show that if $(Fn) = 2m, then the only prime divisors of n are among the 

elements of the set {2,3,5}. Indeed, assume that this is not the case. Let p> 5 be a prime 

number dividing n. Since Fp\Fm it follows that <f>(Fp)\</>(Fn) = 2m. Hence, <f>{Fp) = 2mK It 

follows that 

Fp = 2l
Pl A , (5) 

where / > 0, k > 0, and pi < p2 < • *• < pk are Fermat primes. 

Notice that / = 0 and pl > 5. Indeed, since p > 5 is a prime, it follows, by Lemma 2(2), that 

Fp is coprime to Fm for l<m<5. Since F3 = 2,F4 = 3, and F5 = 5, it follows that 1 = 0 and 

Pl>5. 
Hence, pi > 5 for all i = 1,..., *. Write pf = 2

2
"' + for some at > 2. It follows that 

A = 4
2a,-1

+l = 2(mod5). 

Since (%f) = (f) = - 1 , it follows, by the quadratic reciprocity law, that (-^) = - 1 . It follows, by 

Lemma 2(1), that px \Fpi+l. Hence, 

Pi\(Fp,Fpi+l) = FiPfPi+iy 

The above divisibility relation and the fact that p is prime, forces p \ px +1 = 2(2
2a,_1

 +1). Hence, 

/ ? | 2
2 a ,

-
1
 + l. Thus, 

p<22°x'l^l (6) 

On the other hand, since 

^ = fl(2
2a

' +D-l(mod2
2a

'), 
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it follows, by Lemma 3(3), that p = ±1 (mod 2
2
"

1
 *3). In particular, 

p>22a'-l3-l (7) 

From inequalities (6) and (7), it follows that 2
2
*'~

1
3 - 1 < 2

2
"'"

1
 +1 or 2

2
"

1
 < 2. This implies that 

ax - 0 which contradicts the fact that al>2. 

Now write n = 2a3bSc. We show that a < 2. Indeed, if a > 3, then 21 = Fs \ Fn, therefore 

3|12=0(21)|0(FJ = 2'», 

which is a contradiction. We show that b < 2. Indeed, if b > 3, then 531F27 | i^, therefore 

13|52 = *(53) |r t /y = 2», 

which is a contradiction. Finally, we show that c < 1. Indeed, if c > 2, then 30011F251 i^, there-

fore 

313000 = 0(3001) |0(FJ = 2
W

, 

which is again a contradiction. In conclusion, w |2
2
 -3

2
 -5 = 180. One may easily check that the 

only divisors n of 180 for which (f>{Fn) is a power of 2 are indeed the announced ones. 

(2) Since 0(2) = 0(1) = 1 = 2° and 0(3) = 0(4) = 2
1
, it follows that n = 0,1,2,3 lead to 

solutions of equation (2). We now show that these are the only ones. One may easily check that 

n * 4,5. Assume that n>6. Since </>(Ln) = 2
W

, it follows that 

Ln = 2l-Pl—pk, (8) 

where / > 0 and P\<"'<Pk &
r
e Fermat primes. Write pi=22°Ci -hi. Clearly, pt>3. The 

sequence {Ln)n>0 is periodic modulo 8 with period 12. Moreover, analyzing the terms Ls for 

5 = 0,1,..., 11, one notices that Ls^0 (mod 8) for any 5 = 0,1,..., 11. It follows that / < 2 in 

equation (8). Since /i>6, it follows that Zw>18. In particular, p>5 for some / = 1,...,£. 

From the equation 

L2
n-5F„2 = (-l)"-4, (9) 

it follows easily that 5|ZW. Thus, pi > 5. Hence, pi = 2
2
"' +1 for some af>2. It follows that 

pt = 1 (mod 4) and 

Pi EE 42ai~l +1 EE (-I)
2
"

1
"

1
 +1 EE 2 (mod 5). 

In particular, f~j = (y) = - 1 . Hence, by the quadratic reciprocity law, it follows that (-~j = -1 as 

well. On the other hand, reducing equation (9) modulo pf, it follows that 

5F„2^(-irl-4(modPi). (10) 

Since pt = 1 (mod 4), it follows that r"^" J = 1. From congruence (10), it follows that iy\ = 1, 

which contradicts the fact that (~J = - 1 . 

(3) Since a{\) = 1 = 2°, a(3) = 4 = 2
2
, and a(21) = 32 = 2

5
, it follows that n = 1,2,4,8 are 

solutions of equation (3). We show that these are the only ones. One can easily check that 

/t*3,5,6,7. Assume now that there exists a solution of equation (3) with n>$. Since 

a(Fn) = 2m, it follows easily that Frj = ql--'-qky where qx <-<qk are Mersenne primes. Let 

52 [FEB. 



EQUATIONS INVOLVING ARITHMETIC FUNCTIONS OF FIBONACCI AND LUCAS NUMBERS 

qi = 2Pi
 - 1 , where pi > 2 is prime. In particular, qt = 3 (mod 4). Reducing equation (9) modulo 

qi9 it follows that 

Z*==(-l)M(mod f t). (11) 

Since qi s 3 (mod 4), it follows that (^-) = - l . From congruence 11, it follows that 2|w. Let 

n-2nv Since Fn = F2f7i = FniLni and since Fn is a square free product of Mersenne primes, it 

follows that Fni is a square free product of Mersenne primes as well. In particular, a(Fn ) = 2
m
*. 

Inductively, it follows easily that n is a power of 2. Let n - 2', where t>4. Then, nx - 2
M

. 

Moreover, since LWj |i^LWi =i^ , it follows that L is a square free product of Mersenne primes 

as well. Write 

Lki=q[..:.qi9 (12) 

where qj < • • • < q[. Let g/ = 2
P
* - 1 for some prime number pj. The sequence (L„)w>0 is periodic 

modulo 3 with period 8. Moreover, analyzing Ls for s = 0,1,..., 7, one concludes that 3| L5 only 

for s = 2, 6. Hence, 31L5 if and only if j = 2 (mod 4). Since t > 4, it follows that 812'"
1
 = wr. 

Hence, 3|L„ and 3\L /2. In particular, p[>2. We conclude that all p/ are odd and q\-2p>i-\ 

= 2 — 1 = 1 (mod 3). From equation (12), it follows that L =1 (mod 3). Reducing relation 

Ln = L^/2 - 2 modulo 3, it follows that 1 = 1 — 2 = —1 (mod 3), which is a contradiction. 

(4) We first show that equation (4) has no solutions for which n > 1 is odd. Indeed, assume 

that d(Ln) = 2m
 for some odd integer n. Let p \ n be a prime. By Lemma 2(2), we conclude that 

Lp \Ln. Since cr(Zw) is a power of 2, it follows that Ln is a square free product of Mersenne 

primes. Since Lp is a divisor of Ln, it follows that Lp is a square free product of Mersenne 

primes as well. Write Lp=ql---qk, where qx<--<qk are prime numbers such that qi - 2Pi - 1 

for some prime pi>2. We show that px>2. Indeed, assume that px = 2. In this case, qx = 3. It 

follows that 31 Lp. However, from the proof of (3), we know that 31 Ls if and only if s = 2 (mod 

4). This shows that pl > 3. 

Notice that Lp = ±l(mod2^). It follows that L2
p-l = 0(mod2

/?1+1
). Since/? is odd, it 

follows, by Lemma 1(4), that 

L2
p-5F* = -4 (13) 

or 4 - 1 = 5(Fp
2
 -1) . It follows that F2

 - 1 = 0 (mod 2^
+1

). Hence, Fp = ±1 (mod 2*). From 

Lemma 3(3), we conclude that p = ±l (mod 2
A
~

1
3). In particular, 

p > 2 ^ -
!
3 - l . (14) 

On the other hand, reducing equation (13) modulo ql9 we conclude that 5Fp = 4 (mod qx\ there-

fore (̂ -) = 1. By; Lemma 2(1), it follows that qx \ Fqx_x. Since qx \ Lp and F2p = FpLp, it follows 

that qx\F2p. Hence, ft|(/
r
2p,Fft.1) = F(2pfft.1). Since F2 = l, we conclude that p | f t = l = 

2(2
/?1

"
1
-l). In particular, 

^ < 2 ^ ~
1
- 1 . (15) 

From inequalities (14) and (15), it follows that 2
Pl

"
1
3 - 1 < 2Pl~l -1, which is a contradiction. 

Assume now that n > 4 is even. Write n = 2fnl9 where nx is odd. Let 

4 = * • - • * > (
16

) 
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where qx <-<qk are prime numbers of the Mersenne type. Let qt -2
Pi

 - 1 . Clearly, qi =3 

(mod 4) for all / = !,...,&. Reducing the equation l}n-SF^-4 modulo qi9 we obtain that 

-5F% = 4 (mod qt). Since {—-^ = - 1 , it follows that (jfy = - 1 . From Lemma 2(1), we conclude 

that qi |i^.+1 = i ^ . We now show that t <px-l. Indeed, assume that this is not the case. Since 

t > ply it follows that 2Pl
 |2

r
/?j = n. Hence, qx \F2Pl \Fn. Since qx \ Ln, it follows, by Lemma 1(4), 

that qx\4, which is a contradiction. So, t<px-l. We now show that nx = l. Indeed, since 

t + l<px<pi, qi\Ln\F2n, and qt\F2R9 it follows, by Lemma 2(2), that qt,\(F2n,F2Pl) =F{2n2Pi) = 

F2,+l. Hence, qt \ F2,+l = F2tL2t. We show that nx = 1. Indeed, since * +1 < px < pi? qt\Ln\F2ri, 

and qi \ F2P), it follows, by Lemma 2(2), that qt | (F2„, F2fl.) = F(2w 2fl) = F2,+l. Hence, g71 F2,+l = 

F2,L2,. We show that qt \L2,. Indeed, for if not, then qi \F2,. Since 2' \n, it follows that 

qi\F2,\F„. Since ^ |Z„, it follows, by Lemma 1(4), that qf |4, which is a contradiction. In 

conclusion, qt \ L2, for all / = 1,..., k. Since #, are distinct primes, it follows that 

In particular, Z2/ >Ln-L2tn . This shows that ^ = 1. Hence, n = 2
f
. 

Since w> 4; it follows that / > 3. It is apparent that qx * 3, since, as previously noted, 31Z5 

if and only is s = 2 (mod 4), whereas w = 2
r
 = 0 (mod 4). Hence, pt > 3 for all / = 1,..., k. More-

over, since q{ - 2Pi - 1 are quadratic nonresidues modulo 5, it follows easily that pi = 3 (mod 4). 

In particular, if k > 2, then p2 > px + 4. 

Now since t > 3, it follows, by Lemma 4, that 

Z2 /^2'
+ 1

tf-l (mod2'
+4

), (17) 

where a e {3,5}. On the other hand, from formula (16) and the fact that p2 > px +4 whenever 

k > 2, it follows that 

k 

Li* = r i (
2 A

-
1

) = H)* - ( -2
A

+1)^2^6 ±1 (mod2^
+4

). (18) 
/=i 

where A e{l, 7}. One can notice easily that congruences (17) and (18) cannot hold simultane-

ously for any t < px -1. This argument takes care of the situation k > 2. The case k-\ follows 

from Lemma 3 and the fact that t < px -1 by noticing that 

2* - 1 = L2, SE 2'
+1

 -3-1 (mod 2
f+4

) 

implies 2
/?1

~'~
1
 = 3 (mod2

3
), which is impossible. 

The above arguments show that equation (4) has no even solutions n > 4. Hence, the only 

solutions are the announced ones. D 
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