The Fibonacci Quarterly 2000 (38,1): 49-55

EQUATIONS INVOLVING ARITHMETIC FUNCTIONS OF FIBONACCI AND LUCAS NUMBERS

Florian Luca

Mathematical Institute, Czech Academy of Sciences
Žitná 25, 11567 Praha 1, Czech Republic
(Submitted March 1998-Final Revision November 1998)
For any positive integer k, let $\phi(k)$ and $\sigma(k)$ be the number of positive integers less than or equal to k and relatively prime to k and the sum of divisors of k, respectively.

In [6] we have shown that $\phi\left(F_{n}\right) \geq F_{\phi(n)}$ and that $\sigma\left(F_{n}\right) \leq F_{\sigma(n)}$ and we have also determined all the cases in which the above inequalities become equalities. A more general inequality of this type was proved in [7].

In [8] we have determined all the positive solutions of the equation $\phi\left(x^{m}-y^{m}\right)=x^{n}+y^{n}$ and in [9] we have determined all the integer solutions of the equation $\phi\left(\left|x^{m}+y^{m}\right|\right)=\left|x^{n}+y^{n}\right|$.

In this paper, we present the following theorem.
Theorem:
(I) The only solutions of the equation

$$
\begin{equation*}
\phi\left(\left|F_{n}\right|\right)=2^{m} \tag{1}
\end{equation*}
$$

are obtained for $n= \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6, \pm 9$.
(2) The only solutions of the equation

$$
\begin{equation*}
\phi\left(\left|L_{n}\right|\right)=2^{m}, \tag{2}
\end{equation*}
$$

are obtained for $n=0, \pm 1, \pm 2, \pm 3$.
(3) The only solutions of the equation

$$
\begin{equation*}
\sigma\left(\left|F_{n}\right|\right)=2^{m}, \tag{3}
\end{equation*}
$$

are obtained for $n= \pm 1, \pm 2, \pm 4, \pm 8$
(4) The only solutions of the equation

$$
\begin{equation*}
\sigma\left(\left|L_{n}\right|\right)=2^{m} \tag{4}
\end{equation*}
$$

are obtained for $n= \pm 1, \pm 2, \pm 4$.
Let $n \geq 3$ be a positive integer. It is well known that the regular polygon with n sides can be constructed with the ruler and the compass if and only if $\phi(n)$ is a power of 2 . Hence, the above theorem has the following immediate corollary.

Corollary:

(1) The only regular polygons that can be constructed with the ruler and the compass and whose number of sides is a Fibonacci number are the ones with $3,5,8$, and 34 sides, respectively.
(2) The only regular polygons that can be constructed with the ruler and the compass and whose number of sides is a Lucas number are the ones with 3 and 4 sides, respectively.

The question of finding all the regular polygons that can be constructed with the ruler and the compass and whose number of sides n has various special forms has been considered by us
previously. For example, in [10] we found all such regular polygons whose number of sides n belongs to the Pascal triangle and in [11] we found all such regular polygons whose number of sides n is a difference of two equal powers.

We begin with the following lemmas.

Lemma 1:

(1) $F_{-n}=(-1)^{n+1} F_{n}$ and $L_{-n}=(-1)^{n} L_{n}$.
(2) $2 F_{m+n}=F_{m} L_{n}+L_{n} F_{m}$ and $2 L_{m+n}=5 F_{m} F_{n}+L_{m} L_{n}$.
(3) $F_{2 n}=F_{n} L_{n}$ and $L_{2 n}=L_{n}^{2}+2(-1)^{n+1}$.
(4) $L_{n}^{2}-5 F_{n}^{2}=4(-1)^{n}$.

Proof: See [2].

Lemma 2:

(1) Let $p>5$ be a prime number. If $\left(\frac{5}{p}\right)=1$, then $p \mid F_{p-1}$. Otherwise, $p \mid F_{p+1}$.
(2) $\left(F_{m}, F_{n}\right)=F_{(m, n)}$ for all positive integers m and n.
(3) If $m \mid n$ and n / m is odd, then $L_{m} \mid L_{n}$.
(4) Let p and n be positive integers such that p is an odd prime. Then $\left(L_{p}, F_{n}\right)>2$ if and only if $p \mid n$ and n / p is even.

Proof: (1) follows from Theorem XXII in [1].
(2) follows either from Theorem VI in [1] or from Theorem 2.5 in [3] or from the Main Theorem in [12].
(3) follows either from Theorem VII in [1] or from Theorem 2.7 in [3] or from the Main Theorem in [12].
(4) follows either from Theorem 2.9 in [3] or from the Main Theorem in [12].

Lemma 3: Let $k \geq 3$ be an integer.
(1) The period of $\left(F_{n}\right)_{n \geq 0}$ modulo 2^{k} is $2^{k-1} \cdot 3$.
(2) $F_{2^{k-2,3}} \equiv 2^{k}\left(\bmod 2^{k+1}\right)$. Moreover, if $F_{n} \equiv 0\left(\bmod 2^{k}\right)$, then $n \equiv 0\left(\bmod 2^{k-2} \cdot 3\right)$.
(3) Assume that n is an odd integer such that $F_{n} \equiv \pm 1\left(\bmod 2^{k}\right)$. Then $F_{n} \equiv 1\left(\bmod 2^{k}\right)$ and $n \equiv \pm 1\left(\bmod 2^{k-1} \cdot 3\right)$.

Proof: (1) follows from Theorem 5 in [13].
(2) The first congruence is Lemma 1 in [4]. The second assertion follows from Lemma 2 in [5].
(3) We first show that $F_{n} \neq-1\left(\bmod 2^{k}\right)$. Indeed, by (1) above and the Main Theorem in [4], it follows that the congruence $F_{n} \equiv-1\left(\bmod 2^{k}\right)$ has only one solution $n\left(\bmod 2^{k-1} \cdot 3\right)$. Since $F_{-2}=-1$, it follows that $n \equiv-2\left(\bmod 2^{k-1} \cdot 3\right)$. This contradicts the fact that n is odd.

We now look at the congruence $F_{n} \equiv 1\left(\bmod 2^{k}\right)$. By (1) above and the Main Theorem in [4], it follows that this congruence has exactly three solutions $n\left(\bmod 2^{k-1} \cdot 3\right)$. Since $F_{-1}=F_{1}=F_{2}=1$, it follows that $n \equiv \pm 1,2\left(\bmod 2^{k-1} \cdot 3\right)$. Since n is odd, it follows that $n \equiv \pm 1\left(\bmod 2^{k-1} \cdot 3\right)$.

Lemma 4: Let $k \geq 3$ be a positive integer. Then

$$
L_{2^{k}} \equiv \begin{cases}2^{k+1} 3-1\left(\bmod 2^{k+4}\right) & \text { if } k \equiv 1(\bmod 2), \\ 2^{k+1} 5-1\left(\bmod 2^{k+4}\right) & \text { if } k \equiv 0(\bmod 2)\end{cases}
$$

Proof: One can check that the asserted congruences hold for $k=3$ and 4 . We proceed by induction on k . Assume that the asserted congruence holds for some $k \geq 3$.

Suppose that k is odd. Then $L_{2^{k}}=2^{k+1} 3-1+2^{k+4} l$ for some integer l. Using Lemma 1(3), it follows that

$$
\begin{aligned}
L_{2^{k+1}} & =L_{2^{k}}^{2}-2=\left(\left(2^{k+1} 3-1\right)^{2}+2^{k+5} l\left(2^{k+1} 3-1\right)^{2}+2^{2 k+8} l^{2}\right)-2 \\
& \equiv\left(2^{k+1} 3-1\right)^{2}-2\left(\bmod 2^{k+5}\right) .
\end{aligned}
$$

Hence,

$$
L_{2^{k+1}} \equiv 2^{2 k+2} 9-2^{k+2} 3+1-2 \equiv 2^{2 k+2} 9+2^{k+2}(-3)-1\left(\bmod 2^{k+5}\right) .
$$

Since $k \geq 3$. it follows that $2 k+2 \geq k+5$. Moreover, since $-3 \equiv 5\left(\bmod 2^{3}\right)$, the above congruence becomes

$$
L_{2^{k+1}} \equiv 2^{k+2} 5-1\left(\bmod 2^{k+5}\right)
$$

The case k even can be dealt with similarly.
Proof of the Theorem: In what follows, we will always assume that $n \geq 0$.
(1) We first show that if $\phi\left(F_{n}\right)=2^{m}$, then the only prime divisors of n are among the elements of the set $\{2,3,5\}$. Indeed, assume that this is not the case. Let $p>5$ be a prime number dividing n. Since $F_{p} \mid F_{n}$, it follows that $\phi\left(F_{p}\right) \mid \phi\left(F_{n}\right)=2^{m}$. Hence, $\phi\left(F_{p}\right)=2^{m_{1}}$. It follows that

$$
\begin{equation*}
F_{p}=2^{l} p_{1} \cdots \cdot p_{k}, \tag{5}
\end{equation*}
$$

where $l>0, k>0$, and $p_{1}<p_{2}<\cdots<p_{k}$ are Fermat primes.
Notice that $l=0$ and $p_{1}>5$. Indeed, since $p>5$ is a prime, it follows, by Lemma 2(2), that F_{p} is coprime to F_{m} for $1<m \leq 5$. Since $F_{3}=2, F_{4}=3$, and $F_{5}=5$, it follows that $I=0$ and $p_{1}>5$.

Hence, $p_{1}>5$ for all $i=1, \ldots, k$. Write $p_{i}=2^{2^{\alpha_{i}}}+$ for some $\alpha_{i} \geq 2$. It follows that

$$
p_{1}=4^{2^{a_{i}-1}}+1 \equiv 2(\bmod 5) .
$$

Since $\left(\frac{p_{1}}{5}\right)=\left(\frac{2}{5}\right)=-1$, it follows, by the quadratic reciprocity law, that $\left(\frac{5}{p_{1}}\right)=-1$. It follows, by Lemma 2(1), that $p_{1} \mid F_{p_{1}+1}$. Hence,

$$
p_{1} \mid\left(F_{p}, F_{p_{1}+1}\right)=F_{\left(p, p_{1}+1\right)} .
$$

The above divisibility relation and the fact that p is prime, forces $p \mid p_{1}+1=2\left(2^{2^{\alpha_{1}-1}}+1\right)$. Hence, $p \mid 2^{2^{\alpha_{i}-1}}+1$. Thus,

$$
\begin{equation*}
p \leq 2^{2^{\alpha_{i}-1}}+1 . \tag{6}
\end{equation*}
$$

On the other hand, since

$$
F_{p}=\prod_{i=1}^{k}\left(2^{2^{a_{i}}}+1\right) \equiv 1\left(\bmod 2^{2^{\alpha_{i}}}\right),
$$

it follows, by Lemma $3(3)$, that $p \equiv \pm 1\left(\bmod 2^{2^{\alpha_{i}-1}} 3\right)$. In particular,

$$
\begin{equation*}
p \geq 2^{2^{\alpha_{i}-1} 3-1} \tag{7}
\end{equation*}
$$

From inequalities (6) and (7), it follows that $2^{2^{\alpha_{1}}-1} 3-1 \leq 2^{2^{\alpha_{1}}-1}+1$ or $2^{2^{\alpha_{1}}} \leq 2$. This implies that $\alpha_{1}=0$ which contradicts the fact that $\alpha_{1} \geq 2$.

Now write $n=2^{a} 3^{b} 5^{c}$. We show that $a \leq 2$. Indeed, if $a \geq 3$, then $21=F_{8} \mid F_{n}$, therefore

$$
3|12=\phi(21)| \phi\left(F_{n}\right)=2^{m},
$$

which is a contradiction. We show that $b \leq 2$. Indeed, if $b \geq 3$, then $53\left|F_{27}\right| F_{n}$, therefore

$$
13|52=\phi(53)| \phi\left(F_{n}\right)=2^{m},
$$

which is a contradiction. Finally, we show that $c \leq 1$. Indeed, if $c \geq 2$, then $3001\left|F_{25}\right| F_{n}$, therefore

$$
3|3000=\phi(3001)| \phi\left(F_{n}\right)=2^{m},
$$

which is again a contradiction. In conclusion, $n \mid 2^{2} \cdot 3^{2} \cdot 5=180$. One may easily check that the only divisors n of 180 for which $\phi\left(F_{n}\right)$ is a power of 2 are indeed the announced ones.
(2) Since $\phi(2)=\phi(1)=1=2^{0}$ and $\phi(3)=\phi(4)=2^{1}$, it follows that $n=0,1,2,3$ lead to solutions of equation (2). We now show that these are the only ones. One may easily check that $n \neq 4,5$. Assume that $n \geq 6$. Since $\phi\left(L_{n}\right)=2^{m}$, it follows that

$$
\begin{equation*}
L_{n}=2^{l} \cdot p_{1} \cdots \cdot p_{k} \tag{8}
\end{equation*}
$$

where $l \geq 0$ and $p_{1}<\cdots<p_{k}$ are Fermat primes. Write $p_{i}=2^{2^{\alpha_{i}}}+1$. Clearly, $p_{1} \geq 3$. The sequence $\left(L_{n}\right)_{n \geq 0}$ is periodic modulo 8 with period 12. Moreover, analyzing the terms L_{s} for $s=0,1, \ldots, 11$, one notices that $L_{s} \neq 0(\bmod 8)$ for any $s=0,1, \ldots, 11$. It follows that $l \leq 2$ in equation (8). Since $n \geq 6$, it follows that $L_{n} \geq 18$. In particular, $p_{i} \geq 5$ for some $i=1, \ldots, k$. From the equation

$$
\begin{equation*}
L_{n}^{2}-5 F_{n}^{2}=(-1)^{n} \cdot 4 \tag{9}
\end{equation*}
$$

it follows easily that $5 \nmid L_{n}$. Thus, $p_{i}>5$. Hence, $p_{i}=2^{2^{\alpha_{i}}}+1$ for some $\alpha_{i} \geq 2$. It follows that $p_{i} \equiv 1(\bmod 4)$ and

$$
p_{i} \equiv 4^{2_{i}^{\alpha_{i}-1}}+1 \equiv(-1)^{a_{i}-1}+1 \equiv 2(\bmod 5) .
$$

In particular, $\left(\frac{p_{i}}{5}\right)=\left(\frac{2}{5}\right)=-1$. Hence, by the quadratic reciprocity law, it follows that $\left(\frac{5}{p_{i}}\right)=-1$ as well. On the other hand, reducing equation (9) modulo p_{i}, it follows that

$$
\begin{equation*}
5 F_{n}^{2} \equiv(-1)^{n-1} \cdot 4\left(\bmod p_{i}\right) \tag{10}
\end{equation*}
$$

Since $p_{i} \equiv 1(\bmod 4)$, it follows that $\left(\frac{(-1)^{n-1}}{p_{i}}\right)=1$. From congruence (10), it follows that $\left(\frac{5}{p_{i}}\right)=1$, which contradicts the fact that $\left(\frac{5}{p_{i}}\right)=-1$.
(3) Since $\sigma(1)=1=2^{0}, \sigma(3)=4=2^{2}$, and $\sigma(21)=32=2^{5}$, it follows that $n=1,2,4,8$ are solutions of equation (3). We show that these are the only ones. One can easily check that $n \neq 3,5,6,7$. Assume now that there exists a solution of equation (3) with $n>8$. Since $\sigma\left(F_{n}\right)=2^{m}$, it follows easily that $F_{n}=q_{1} \cdots \cdots q_{k}$, where $q_{1}<\cdots<q_{k}$ are Mersenne primes. Let
$q_{i}=2^{p_{i}}-1$, where $p_{i} \geq 2$ is prime. In particular, $q_{i} \equiv 3(\bmod 4)$. Reducing equation (9) modulo q_{i}, it follows that

$$
\begin{equation*}
L_{n}^{2}=(-1)^{n} \cdot 4\left(\bmod q_{i}\right) . \tag{11}
\end{equation*}
$$

Since $q_{i} \equiv 3(\bmod 4)$, it follows that $\left(\frac{-1}{q_{i}}\right)=-1$. From congruence 11 , it follows that $2 \mid n$. Let $n=2 n_{1}$. Since $F_{n}=F_{2 n_{1}}=F_{n_{1}} L_{n_{1}}$ and since F_{n} is a square free product of Mersenne primes, it follows that $F_{n_{1}}$ is a square free product of Mersenne primes as well. In particular, $\sigma\left(F_{n_{1}}\right)=2^{m_{1}}$. Inductively, it follows easily that n is a power of 2 . Let $n=2^{t}$, where $t \geq 4$. Then, $n_{1}=2^{t-1}$. Moreover, since $L_{n_{1}} \mid F_{n_{1}} L_{n_{1}}=F_{n}$, it follows that $L_{n_{1}}$ is a square free product of Mersenne primes as well. Write

$$
\begin{equation*}
L_{n_{1}}=q_{1}^{\prime} \cdots \cdots q_{1}^{\prime}, \tag{12}
\end{equation*}
$$

where $q_{i}^{\prime}<\cdots<q_{l}^{\prime}$. Let $q_{i}^{\prime}=2^{p_{i}^{\prime}-1}$ for some prime number p_{i}^{\prime}. The sequence $\left(L_{n}\right)_{n \geq 0}$ is periodic modulo 3 with period 8. Moreover, analyzing L_{s} for $s=0,1, \ldots, 7$, one concludes that $3 \mid L_{s}$ only for $s=2,6$. Hence, $3 \mid L_{s}$ if and only if $s \equiv 2(\bmod 4)$. Since $t \geq 4$, it follows that $8 \mid 2^{t-1}=n_{1}$. Hence, $3 \backslash L_{n}$ and $3 \nmid L_{n_{1} / 2}$. In particular, $p_{1}^{\prime}>2$. We conclude that all p_{i}^{\prime} are odd and $q_{i}^{\prime}=2^{p_{i}^{\prime}-1}$ $\equiv 2-1 \equiv 1(\bmod 3)$. From equation (12), it follows that $L_{n_{1}} \equiv 1(\bmod 3)$. Reducing relation $L_{n_{1}}=L_{n_{1} / 2}^{2}-2$ modulo 3 , it follows that $1 \equiv 1-2 \equiv-1(\bmod 3)$, which is a contradiction.
(4) We first show that equation (4) has no solutions for which $n>1$ is odd. Indeed, assume that $\sigma\left(L_{n}\right)=2^{m}$ for some odd integer n. Let $p \mid n$ be a prime. By Lemma 2(2), we conclude that $L_{p} \mid L_{n}$. Since $\sigma\left(L_{n}\right)$ is a power of 2 , it follows that L_{n} is a square free product of Mersenne primes. Since L_{p} is a divisor of L_{n}, it follows that L_{p} is a square free product of Mersenne primes as well. Write $L_{p}=q_{1} \cdots \cdots q_{k}$, where $q_{1}<\cdots<q_{k}$ are prime numbers such that $q_{i}=2^{p_{i}}-1$ for some prime $p_{i} \geq 2$. We show that $p_{1}>2$. Indeed, assume that $p_{1}=2$. In this case, $q_{1}=3$. It follows that $3 \mid L_{p}$. However, from the proof of (3), we know that $3 \mid L_{s}$ if and only if $s \equiv 2(\bmod$ 4). This shows that $p_{1} \geq 3$.

Notice that $L_{p} \equiv \pm 1\left(\bmod 2^{p_{1}}\right)$. It follows that $L_{p}^{2}-1 \equiv 0\left(\bmod 2^{p_{1}+1}\right)$. Since p is odd, it follows, by Lemma 1(4), that

$$
\begin{equation*}
L_{p}^{2}-5 F_{p}^{2}=-4 \tag{13}
\end{equation*}
$$

or $L_{p}^{2}-1=5\left(F_{p}^{2}-1\right)$. It follows that $F_{p}^{2}-1 \equiv 0\left(\bmod 2^{p_{1}+1}\right)$. Hence, $F_{p} \equiv \pm 1\left(\bmod 2^{p_{1}}\right)$. From Lemma 3(3), we conclude that $p \equiv \pm 1\left(\bmod 2^{p_{1}-1} 3\right)$. In particular,

$$
\begin{equation*}
p \geq 2^{p_{1}-1} 3-1 . \tag{14}
\end{equation*}
$$

On the other hand, reducing equation (13) modulo q_{1}, we conclude that $5 F_{p}^{2} \equiv 4\left(\bmod q_{1}\right)$, therefore $\left(\frac{5}{q_{1}}\right)=1$. By, Lemma 2(1), it follows that $q_{1} \mid F_{q_{1}-1}$. Since $q_{1} \mid L_{p}$ and $F_{2 p}=F_{p} L_{p}$, it follows that $q_{1} \mid F_{2 p}$. Hence, $q_{1} \mid\left(F_{2 p}, F_{q_{1}-1}\right)=F_{\left(2 p, q_{1}-1\right)}$. Since $F_{2}=1$, we conclude that $p \mid q_{1}=1=$ $2\left(2^{p_{1}-1}-1\right)$. In particular,

$$
\begin{equation*}
p \leq 2^{p_{1}-1}-1 . \tag{15}
\end{equation*}
$$

From inequalities (14) and (15), it follows that $2^{p_{1}-1} 3-1 \leq 2^{p_{1}-1}-1$, which is a contradiction.
Assume now that $n>4$ is even. Write $n=2^{t} n_{1}$, where n_{1} is odd. Let

$$
\begin{equation*}
L_{n}=q_{1} \cdots \cdots q_{k}, \tag{16}
\end{equation*}
$$

where $q_{1}<\cdots<q_{k}$ are prime numbers of the Mersenne type. Let $q_{i}=2^{p_{i}}-1$. Clearly, $q_{i} \equiv 3$ (mod 4) for all $i=1, \ldots, k$. Reducing the equation $L_{n}^{2}-5 F_{n}^{2}=4$ modulo q_{i}, we obtain that $-5 F_{n}^{2}=4\left(\bmod q_{i}\right)$. Since $\left(\frac{-1}{q_{i}}\right)=-1$, it follows that $\left(\frac{s}{q_{i}}\right)=-1$. From Lemma 2(1), we conclude that $q_{i} \mid F_{q_{i}+1}=F_{2^{n}}$. We now show that $t \leq p_{1}-1$. Indeed, assume that this is not the case. Since $t \geq p_{1}$, it follows that $2^{p_{i}} \mid 2^{t} n_{1}=n$. Hence, $q_{1}\left|F_{2^{p_{i}}}\right| F_{n}$. Since $q_{1} \mid L_{n}$, it follows, by Lemma 1(4), that $q_{1} \mid 4$, which is a contradiction. So, $t \leq p_{1}-1$. We now show that $n_{1}=1$. Indeed, since $t+1 \leq p_{1} \leq p_{i}, q_{i}\left|L_{n}\right| F_{2 n}$, and $q_{i} \mid F_{2^{A}}$, it follows, by Lemma 2(2), that $q_{i} \mid\left(F_{2 n}, F_{2^{p}}\right)=F_{\left(2 n, 2^{A}\right)}=$ $F_{2^{t+1}}$. Hence, $q_{i} \mid F_{2^{t+1}}=F_{2^{\prime}} L_{2^{t}}$. We show that $n_{1}=1$. Indeed, since $t+1 \leq p_{1} \leq p_{i}, q_{i}\left|L_{n}\right| F_{2 n}$, and $q_{i} \mid F_{2^{n}}$, it follows, by Lemma 2(2), that $q_{i} \mid\left(F_{2 n}, F_{2^{p_{i}}}\right)=F_{\left(2 n, 2^{p_{i}}\right)}=F_{2^{r+1}}$. Hence, $q_{i} \mid F_{2^{t+1}}=$ $F_{2^{\prime}} L_{2^{\prime}}$. We show that $q_{i} \mid L_{2^{\prime}}$. Indeed, for if not, then $q_{i} \mid F_{2^{\prime}}$. Since $2^{t} \mid n$, it follows that $q_{i}\left|F_{2^{2}}\right| F_{n}$. Since $q_{i} \mid L_{n}$, it follows, by Lemma 1(4), that $q_{i}^{2} \mid 4$, which is a contradiction. In conclusion, $q_{i} \mid L_{2^{\prime}}$ for all $i=1, \ldots, k$. Since q_{i} are distinct primes, it follows that

$$
L_{n}=q_{1} \cdots \cdots q_{k} \mid L_{2^{\prime}} .
$$

In particular, $L_{2^{t}} \geq L_{n}=L_{2^{t} n_{1}}$. This shows that $n_{1}=1$. Hence, $n=2^{t}$.
Since $n>4$; it follows that $t \geq 3$. It is apparent that $q_{1} \neq 3$, since, as previously noted, $3 \mid L_{s}$ if and only is $s \equiv 2(\bmod 4)$, whereas $n=2^{i} \equiv 0(\bmod 4)$. Hence, $p_{i} \geq 3$ for all $i=1, \ldots, k$. Moreover, since $q_{i}=2^{p_{i}}-1$ are quadratic nonresidues modulo 5 , it follows easily that $p_{i} \equiv 3(\bmod 4)$. In particular, if $k \geq 2$, then $p_{2} \geq p_{1}+4$.

Now since $t \geq 3$, it follows, by Lemma 4, that

$$
\begin{equation*}
L_{2^{t}} \equiv 2^{t+1} a-1\left(\bmod 2^{t+4}\right), \tag{17}
\end{equation*}
$$

where $a \in\{3,5\}$. On the other hand, from formula (16) and the fact that $p_{2} \geq p_{1}+4$ whenever $k \geq 2$, it follows that

$$
\begin{equation*}
L_{2^{\prime}}=\prod_{i=1}^{k}\left(2^{p_{i}}-1\right) \equiv(-1)^{k} \cdot\left(-2^{p_{1}}+1\right) \equiv 2^{p_{1}} b \pm 1\left(\bmod 2^{p_{1}+4}\right) . \tag{18}
\end{equation*}
$$

where $b \in\{1,7\}$. One can notice easily that congruences (17) and (18) cannot hold simultaneously for any $t \leq p_{1}-1$. This argument takes care of the situation $k \geq 2$. The case $k=1$ follows from Lemma 3 and the fact that $t \leq p_{1}-1$ by noticing that

$$
2^{p_{1}}-1=L_{2^{\prime}} \equiv 2^{t+1} \cdot 3-1\left(\bmod 2^{t+4}\right)
$$

implies $2^{p_{1}-t-1} \equiv 3\left(\bmod 2^{3}\right)$, which is impossible.
The above arguments show that equation (4) has no even solutions $n>4$. Hence, the only solutions are the announced ones.

ACKNOWLEDGMENTS

I would like to thank the editor for his comments on a previous version of this paper and for pointing out various bibliographical references for the preliminary Lemmas 1-3. I would also like to thank an anonymous referee for suggestions which greatly improved the quality of this paper.

Financial support from the Alexander von Humboldt Foundation is gratefully acknowledged.

REFERENCES

1. R. D. Carmichael. "On the Numerical Factors of Arithmetic Forms $\alpha^{n} \pm \beta^{n}$." Ann. of Math. 15 (1913-1914):30-70.
2. J. H. E. Cohn. "On Square Fibonacci Numbers." J. London Math. Soc. 39 (1964):537-40.
3. Peter Hilton, Jean Pedersen, \& Luc Vrancken. "On Certain Arithmetic Properties of Fibonacci and Lucas Numbers." The Fibonacci Quarterly 33.3 (1995):211-17.
4. Eliot T. Jacobson. "Distribution of the Fibonacci Numbers Mod 2^{k}." The Fibonacci Quarterly 30.3 (1992):211-15.
5. T. Lengyel. "The Order of Fibonacci and Lucas Numbers." The Fibonacci Quarterly 33.3 (1995):234-39.
6. F. Luca. "Arithmetic Functions of Fibonacci Numbers." The Fibonacci Quarterly 37.3 (1999):265-68.
7. F. Luca. "Euler Indicaiors of Lucas Sequences." Bull. Moth. Soc. Sc. Math. Roumanie, Tome 40, 88.3-4 (1997):151-63.
8. F. Luca. "On the Equation $\phi\left(x^{m}-y^{m}\right)=x^{n}+y^{n}$." Bull. Irish Math. Soc. 40.1 (1998):46-55.
9. F. Luca. "On the Equation $\phi\left(\left|x^{m}+y^{m}\right|\right)=\left|x^{n}+y^{n}\right|$." Indian J. of Pure and App. Math 30.2 (1999):183-97.
10. F. Luca. "Pascal's Triangle and Constructible Polygons." To appear in Utilitas Mathematica.
11. F. Luca. "On the Equation $\phi\left(\left|x^{m}-y^{m}\right|\right)=2^{n}$." To appear in Math. Bohemica.
12. Wayne L. McDaniel. "The g.c.d. in Lucas Sequences and Lehmer Number Sequences." The Fibonacci Quarterly 29.1 (1991):24-29.
13. D. D. Wall. "Fibonacci Series Modulo m." Amer. Math. Monihly 67 (1960):525-32.

AMS Classification Numbers: 11A25, 11B39
\% \%

