AN IDENTITY INVOLVING THE LUCAS NUMBERS AND STIRLING NUMBERS

GUODONG LIU

ABSTRACT. In this paper, we obtain an identity involving the Lucas numbers and Stirling numbers.

1. Introduction and Results

The Fibonacci sequence $\{F_n\}$ and the Lucas sequence $\{L_n\}(n \in \mathbb{N} = \{0, 1, 2, \ldots\})$ are defined by the second-order linear recurrence sequences:

$$F_{n+2} = F_{n+1} + F_n, F_0 = 0, F_1 = 1 (1.1)$$

and

$$L_{n+2} = L_{n+1} + L_n, L_0 = 2, L_1 = 1, (1.2)$$

respectively. Clearly, we have

$$L_{n+1} = F_{n+2} + F_n \qquad (n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}).$$
 (1.3)

These sequences play a very important role in the study of the theory and application of mathematics. Therefore, the various properties of F_n and L_n were investigated by many authors (see [1, 2, 4, 5, 6]). The main purpose of this paper is to prove an identity involving the Lucas numbers and Stirling numbers. That is, we shall prove the following main conclusion.

Theorem. Let $n \geq k \ (n, k \in \mathbb{N})$. Then

$$\sum_{\substack{v_1, \dots, v_k \in \mathbb{N} \\ v_1 + \dots + v_k = n}} \frac{L_{v_1} L_{v_2} \dots L_{v_k}}{v_1 v_2 \dots v_k} = \frac{k!}{n!} \sum_{j=k}^n (-1)^{j-k} (n-j)! \binom{n}{j} \binom{j}{n-j} s(j,k), \tag{1.4}$$

where the s(n,k) are the Stirling numbers of the first kind defined by (see [3])

$$x(x-1)(x-2)\cdots(x-n+1) = \sum_{k=0}^{n} s(n,k)x^{k},$$
(1.5)

or by the following generating function

$$(\log(1+x))^k = k! \sum_{n=k}^{\infty} s(n,k) \frac{x^n}{n!}.$$
 (1.6)

2. Definition and Lemma

Definition. For a real or complex parameter x, the generalized Fibonacci numbers $F_n^{(x)}$, which are defined by

$$\left(\frac{1}{1-t-t^2}\right)^x = \sum_{n=0}^{\infty} F_n^{(x)} t^n. \tag{2.1}$$

AN IDENTITY INVOLVING THE LUCAS NUMBERS AND STIRLING NUMBERS

The numbers $F_{n-1}^{(1)} = F_n$ are the ordinary Fibonacci numbers.

Lemma. Let $n \geq k (n \in \mathbb{N})$ and

$$\delta(n,k) := \sum_{j=k}^{n} (-1)^{j-k} (n-j)! \binom{n}{j} \binom{j}{n-j} s(j,k). \tag{2.2}$$

Then

$$n!F_n^{(x)} = \sum_{k=1}^n \delta(n,k)x^k.$$
 (2.3)

Proof. By (2.1) and (1.5), we have

$$\sum_{n=0}^{\infty} F_n^{(x)} t^n = \left(\frac{1}{1-t-t^2}\right)^x = \sum_{j=0}^{\infty} {x+j-1 \choose j} (t+t^2)^j$$

$$= \sum_{j=0}^{\infty} {x+j-1 \choose j} t^j \sum_{n=0}^{j} {j \choose n} t^n$$

$$= \sum_{j=0}^{\infty} {x+j-1 \choose j} \sum_{n=j}^{2j} {j \choose n-j} t^n$$

$$= \sum_{n=0}^{\infty} \sum_{j=0}^{n} {j \choose n-j} {x+j-1 \choose j} t^n,$$
(2.4)

which readily yields

$$n!F_n^{(x)} = n! \sum_{j=0}^n \binom{j}{n-j} \binom{x+j-1}{j}$$

$$= n! \sum_{j=0}^n \frac{1}{j!} \binom{j}{n-j} (x+j-1)(x+j-2) \cdots (x+1)x$$

$$= \sum_{j=0}^n (n-j)! \binom{n}{j} \binom{j}{n-j} \sum_{k=1}^j (-1)^{j-k} s(j,k) x^k$$

$$= \sum_{k=1}^n \sum_{j=k}^n (-1)^{j-k} (n-j)! \binom{n}{j} \binom{j}{n-j} s(j,k) x^k = \sum_{k=1}^n \delta(n,k) x^k.$$

This completes the proof of Lemma.

Remark 1. Setting n = 1, 2, 3, 4 in Lemma, we get

$$1!F_1^{(x)} = x, 2!F_2^{(x)} = 3x + x^2, 3!F_3^{(x)} = 8x + 9x^2 + x^3,$$

and

$$4!F_4^{(x)} = 42x + 59x^2 + 18x^3 + x^4.$$

MAY 2008/2009 137

3. Proof of the Theorem

Proof of the Theorem. By applying the Lemma, we have

$$k!\delta(n,k) = n! \frac{d^k}{dx^k} F_n^{(x)}|_{x=0}.$$
(3.1)

On the other hand, it follows from (2.1) that

$$\sum_{n=k}^{\infty} \frac{d^k}{dx^k} F_n^{(x)}|_{x=0} t^n = \left(\log \frac{1}{1-t-t^2}\right)^k.$$
 (3.2)

Thus, by (3.1) and (3.2), we have

$$k! \sum_{n=k}^{\infty} \delta(n,k) \frac{t^n}{n!} = \left(\log \frac{1}{1-t-t^2}\right)^k.$$
 (3.3)

By

$$\frac{d}{dt}\log\frac{1}{1-t-t^2} = \frac{1+2t}{1-t-t^2} = \sum_{n=0}^{\infty} F_n^{(1)}t^n + 2t\sum_{n=0}^{\infty} F_n^{(1)}t^n$$

we have

$$\log \frac{1}{1 - t - t^2} = \sum_{n=0}^{\infty} F_n^{(1)} \frac{t^{n+1}}{n+1} + 2 \sum_{n=0}^{\infty} F_n^{(1)} \frac{t^{n+2}}{n+2} = \sum_{n=0}^{\infty} F_{n+1} \frac{t^{n+1}}{n+1} + 2 \sum_{n=0}^{\infty} F_{n+1} \frac{t^{n+2}}{n+2}$$

$$= \sum_{n=0}^{\infty} F_{n+1} \frac{t^{n+1}}{n+1} + 2 \sum_{n=1}^{\infty} F_n \frac{t^{n+1}}{n+1} = \sum_{n=0}^{\infty} (F_{n+1} + 2F_n) \frac{t^{n+1}}{n+1} = \sum_{n=0}^{\infty} L_{n+1} \frac{t^{n+1}}{n+1}$$

$$= \sum_{n=0}^{\infty} L_n \frac{t^n}{n}$$
(3.4)

which yields

$$k! \sum_{n=k}^{\infty} \delta(n,k) \frac{t^n}{n!} = \left(\sum_{n=1}^{\infty} \frac{L_n}{n} t^n \right)^k = \sum_{n=k}^{\infty} \left(\sum_{\substack{v_1, \dots, v_k \in \mathbb{N} \\ v_1 + \dots + v_k = n}} \frac{L_{v_1} L_{v_2} \dots L_{v_k}}{v_1 v_2 \dots v_k} \right) t^n.$$
 (3.5)

By (3.5), we have

$$\delta(n,k) = \frac{n!}{k!} \sum_{\substack{v_1, \dots, v_k \in \mathbb{N} \\ v_1 + \dots + v_k = n}} \frac{L_{v_1} L_{v_2} \cdots L_{v_k}}{v_1 v_2 \cdots v_k}.$$
(3.6)

By (3.6) and (2.2), we may immediately deduce the following

$$\sum_{\substack{v_1, \dots, v_k \in \mathbb{N} \\ v_1 + \dots + v_k = n}} \frac{L_{v_1} L_{v_2} \cdots L_{v_k}}{v_1 v_2 \cdots v_k} = \frac{k!}{n!} \sum_{j=k}^n (-1)^{j-k} (n-j)! \binom{n}{j} \binom{j}{n-j} s(j,k). \tag{3.7}$$

This completes the proof of the Theorem.

AN IDENTITY INVOLVING THE LUCAS NUMBERS AND STIRLING NUMBERS

Remark 2. Setting k = 1 in (3.7) and noting that $s(j,1) = (-1)^{j-1}(j-1)!$ $(j \in \mathbb{N})$ (see [3]), we have

$$L_n = \sum_{j=1}^n \frac{n}{j} \binom{j}{n-j}.$$
 (3.8)

ACKNOWLEDGEMENT

This work was supported by the Guangdong Provincial Natural Science Foundation (No. 8151601501000002).

References

- [1] Y. Bugeaud, F. Luca, M. Mignotte, and S. Siksek, On Fibonacci Numbers with Few Prime Divisors, Proc. Japan Acad. Ser. A Math. Sci., 81 (2005), 17–20.
- [2] R. L. Duncan, Applications of Uniform Distribution to the Fibonacci Numbers, The Fibonacci Quarterly, **5.2** (1967), 137–140.
- [3] C. Jordan, Calculus of Finite Differences, New York, Chelsea, 1965.
- [4] L. Kupers, Remark on a Paper by R. L. Duncan Concerning the Uniform Distribution mod 1 of the Sequence of the Logarithms of the Fibonacci Numbers, The Fibonacci Quarterly, 7.5 (1969), 465–466.
- [5] G. Liu, Formulas for Convolution Fibonacci Numbers and Polynomials, The Fibonacci Quarterly, **40.4** (2002), 352–357.
- [6] N. Robbins, Fibonacci Numbers of the Forms $pX^2 \pm 1$, $pX^3 \pm 1$, Where p is Prime, Applications of Fibonacci Numbers, Kluwer Acad. Publ., Dordrecht, 2 (1986), 77–88.

MSC2000: 11B39, 11B73

Department of Mathematics, Huizhou University, Huizhou, Guangdong, 516015, P. R. China

E-mail address: gdliu@pub.huizhou.gd.cn

MAY 2008/2009 139