Fibonacci Quarterly 1993 (31,2): 134-137

SOME POLYNOMIAL IDENTITIES FOR THE FIBONACCI AND LUCAS NUMBERS

Derek Jennings

University of Southampton, Highfield, Southampton, SO9 5NH, England
(Submitted June 1991)
It is well known that
(a) $F_{3 n}=F_{n}\left\{5 F_{n}^{2}+3(-1)^{n}\right\}$

Less well known are:
(b) $F_{5 n}=F_{n}\left\{25 F_{n}^{4}+25(-1)^{n} F_{n}^{2}+5\right\}$;
(c) $F_{7 n}=F_{n}\left\{125 F_{n}^{6}+175(-1)^{n} F_{n}^{4}+70 F_{n}^{2}+7(-1)^{n}\right\}$.

In this paper we are concerned with proving a general formula which encompasses the above identities. That is, expresses $F_{m n}$ as a polynomial in F_{n} for odd m. Also we prove two additional formulas which express $F_{m n} / F_{n}$ as a polynomial in the Lucas numbers L_{n}. Our first theorem is

Theorem 1:

$$
F_{(2 q+1) n}=F_{n} \sum_{k=0}^{q}(-1)^{n(q+k)} \frac{2 q+1}{q+k+1} 5^{k}\binom{q+k+1}{2 k+1} F_{n}^{2 k}, n, q \geq 0 .
$$

Taking $q=1,2$, and 3, respectively in Theorem 1 gives us (a), (b), and (c) above. From Theorem 1 a couple of well-known results follow as corollaries.

Corollary 1.1: For $n \geq 0, p$ prime, we have

$$
F_{p n} \equiv\left(\frac{5}{p}\right) F_{n}(\bmod p) .
$$

Proof: Take $p=2 q+1, p$ prime, in Theorem 1, and by Euler's criterion, we have

$$
5^{\frac{(p-1)}{2}} \equiv\left(\frac{5}{p}\right)(\bmod p) .
$$

Corollary 1.2: For prime p and q, we have $F_{p q} \equiv F_{p} F_{q}(\bmod p q)$.
Proof: From Corollary 1.1 with $n=1$ and $n=q$, we have

$$
F_{p} \equiv\left(\frac{5}{p}\right)(\bmod p) \text { and } F_{p q} \equiv\left(\frac{5}{p}\right) F_{q}(\bmod p), \text { respectively. }
$$

Hence, $F_{p q} \equiv F_{p} F_{q}(\bmod p)$.
Similarly, $F_{p q} \equiv F_{p} F_{q}(\bmod q)$.

Proof of Theorem 1: First we need two lemmas.

Lemma (i):

$$
\left(x^{2 m}+\frac{1}{x^{2 m}}\right)+\left(x^{2 m-2}+\frac{1}{x^{2 m-2}}\right)+\cdots+\left(x^{2}+\frac{1}{x^{2}}\right)+1=\sum_{k=0}^{m} \frac{2 m+1}{m+k+1}\binom{m+k+1}{2 k+1}\left(x-\frac{1}{x}\right)^{2 k}
$$

Lemma (ii):

$$
\begin{aligned}
& \left(x^{2 m}+\frac{1}{x^{2 m}}\right)-\left(x^{2 m-2}+\frac{1}{x^{2 m-2}}\right)+\cdots+(-1)^{m+1}\left(x^{2}+\frac{1}{x^{2}}\right)+(-1)^{m} \\
& =\sum_{k=0}^{m}(-1)^{m+k} \frac{2 m+1}{m+k+1}\binom{m+k+1}{2 k+1}\left(x+\frac{1}{x}\right)^{2 k}
\end{aligned}
$$

Now, from $F_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}$, where $\alpha+\beta=1$ and $\alpha \beta=-1$, we have for integer $p \geq 1, n \geq 1$,

$$
\begin{equation*}
\frac{F_{p n}}{F_{n}}=\frac{\alpha^{p n}-\beta^{p n}}{\alpha_{n}-\beta_{n}}=x^{p-1}+x^{p-2} y+x^{p-3} y^{2}+\cdots+x y^{p-2}+y^{p-1} \tag{1.1}
\end{equation*}
$$

where $x=\alpha^{n}, y=\beta^{n}=(-1)^{n} / x$.
Now, for odd p, the RHS of (1.1) is

$$
\begin{aligned}
& \left(x^{p-1}+\frac{1}{x^{p-1}}\right)+(-1)^{n}\left(x^{p-3}+\frac{1}{x^{p-3}}\right)+\cdots+\left(x^{2}+\frac{1}{x^{2}}\right)+(-1)^{n}, p \equiv 3(\bmod 4) \\
& \left(x^{p-1}+\frac{1}{x^{p-1}}\right)+(-1)^{n}\left(x^{p-3}+\frac{1}{x^{p-3}}\right)+\cdots+(-1)^{n}\left(x^{2}+\frac{1}{x^{2}}\right)+1, p \equiv 1(\bmod 4)
\end{aligned}
$$

and $x+\frac{1}{x}=\alpha^{n}+\frac{1}{\alpha^{n}}=\alpha^{n}+(-1)^{n} \beta^{n}$. So that

$$
\begin{array}{ll}
x+\frac{1}{x}=(\alpha-\beta) F_{n} & \text { for odd } n \\
x-\frac{1}{x}=(\alpha-\beta) F_{n} & \text { for even } n \tag{1.3}
\end{array}
$$

Since $\alpha-\beta=\sqrt{5}$, we have, from (1.2) and (1.3),

$$
\begin{align*}
& \left(x+\frac{1}{x}\right)^{2}=5 F_{n}^{2} \quad \text { for odd } n \tag{1.4}\\
& \left(x-\frac{1}{x}\right)^{2}=5 F_{n}^{2} \quad \text { for even } n \tag{1.5}
\end{align*}
$$

So if we take $p=2 m+1$, and assume n is even, we have, from (1.1),

$$
\frac{F_{p n}}{F_{n}}=\left(x^{2 m}+\frac{1}{x^{2 m}}\right)+\left(x^{2 m-2}+\frac{1}{x^{2 m-2}}\right)+\cdots+\left(x^{2}+\frac{1}{x^{2}}\right)+1
$$

Now apply Lemma (i) and use (1.5) to give Theorem 1 for even n. Similarly, setting $p=2 m+1$ and assuming n is odd, we have, from (1.1),

$$
\frac{F_{p n}}{F_{n}}=\left(x^{2 m}+\frac{1}{x^{2 m}}\right)-\left(x^{2 m-2}+\frac{1}{x^{2 m-2}}\right)+\cdots+(-1)^{m+1}\left(x^{2}+\frac{1}{x^{2}}\right)+(-1)^{m} .
$$

Now apply Lemma (ii) and use (1.4) to give Theorem 1 for odd n. To complete the proof of Theorem 1, it only remains to prove Lemmas (i) and (ii). These can be proved by induction. For example, to prove Lemma (i), we set

$$
P_{m}(x)=\left(x^{2 m}+\frac{1}{x^{2 m}}\right)+\left(x^{2 m-2}+\frac{1}{x^{2 m-2}}\right)+\cdots+\left(x^{2}+\frac{1}{x^{2}}\right)+1
$$

and use

$$
\left(x^{2}+\frac{1}{x^{2}}\right)\left(x^{2 m}+\frac{1}{x^{2 m}}\right)=\left(x^{2 m-2}+\frac{1}{x^{2 m-2}}\right)+\left(x^{2 m+2}+\frac{1}{x^{2 m+2}}\right)
$$

to give

$$
\left(x^{2}+\frac{1}{x^{2}}\right) P_{m}(x)=P_{m+1}(x)+P_{m-1}(x) .
$$

Hence,

$$
\begin{equation*}
P_{m+1}(x)=\left\{\left(x-\frac{1}{x}\right)^{2}+2\right\} P_{m}(x)-P_{m-1}(x) . \tag{1.6}
\end{equation*}
$$

Then substitute the summation on the RHS of the identity in Lemma (i) for $P_{m}(x)$ and $P_{m-1}(x)$ in (1.6). Some careful work then gives $P_{m+1}(x)$ in the same form as the summation in Lemma (i). This proves Lemma (i). Lemma (ii) is proved in a similar manner, and this completes the proof of Theorem 1.

For our next theorem we need some additional lemmas; these can be proved by induction in a way similar to that used to prove Lemma (i).

Lemma (iii):

$$
\left(x^{2 m}+\frac{1}{x^{2 m}}\right)-\left(x^{2 m-2}+\frac{1}{x^{2 m-2}}\right)+\cdots+(-1)^{m+1}\left(x^{2}+\frac{1}{x^{2}}\right)+(-1)^{m}=\sum_{k=0}^{m}\binom{m+k}{2 k}\left(x-\frac{1}{x}\right)^{2 k} .
$$

Lemma (iv):

$$
\left(x^{2 m}+\frac{1}{x^{2 m}}\right)+\left(x^{2 m-2}+\frac{1}{x^{2 m-2}}\right)+\cdots+\left(x^{2}+\frac{1}{x^{2}}\right)+1=\sum_{k=0}^{m}(-1)^{m+k}\binom{m+k}{2 k}\left(x+\frac{1}{x}\right)^{2 k} .
$$

Again from (1.1) with $p=2 m+1$, and noting that

$$
\begin{array}{ll}
x-\frac{1}{x}=\alpha^{n}+\beta^{n}=L_{n} & \text { for odd } n \\
x+\frac{1}{x}=\alpha^{n}+\beta^{n}=L_{n} & \text { for even } n \tag{1.8}
\end{array}
$$

we have, from (1.7), (1.8), and Lemmas (iii) and (iv),
Theorem 2:

$$
F_{(2 q+1) n}=F_{n} \sum_{k=0}^{q}(-1)^{(n+1)(q+k)}\binom{q+k}{2 k} L_{n}^{2 k}, \quad n, q \geq 0
$$

A well-known formula follows as a corollary by taking $n=1$; since $L_{1}=1$, we have

Corollary 2.1:

$$
F_{2 q+1}=\sum_{k=0}^{q}\binom{q+k}{2 k}
$$

Our final theorem is similarly derived from the following two lemmas.

Lemma (v):

$$
\left(x^{2 m-1}-\frac{1}{x^{2 m-1}}\right)-\left(x^{2 m-3}-\frac{1}{x^{2 m-3}}\right)+\cdots+(-1)^{m}\left(x^{3}-\frac{1}{x^{3}}\right)+(-1)^{m-1}\left(x-\frac{1}{x}\right)=\sum_{k=1}^{m}\binom{m+k-1}{2 k-1}\left(x-\frac{1}{x}\right)^{2 k-1}
$$

Lemma (vi):

$$
\left(x^{2 m-1}+\frac{1}{x^{2 m-1}}\right)+\left(x^{2 m-3}+\frac{1}{x^{2 m-3}}\right)+\cdots+\left(x^{3}+\frac{1}{x^{3}}\right)+\left(x+\frac{1}{x}\right)=\sum_{k=1}^{m}(-1)^{m+k}\binom{m+k-1}{2 k-1}\left(x+\frac{1}{x}\right)^{2 k-1} .
$$

Using Lemmas (v) and (vi) along with (1.1) gives

Theorem 3:

$$
F_{2 q n}=F_{n} \sum_{k=1}^{q}(-1)^{(n+1)(q+k)}\binom{q+k-1}{2 k-1} I_{n}^{2 k-1}, \quad n \geq 0, q \geq 1
$$

Again taking $n=1$ gives us a well-known formula as a corollary.

Corollary 3.1:

$$
F_{2 q}=\sum_{k=1}^{q}\binom{q+k-1}{2 k-1}
$$

The reader may notice that we appear to have one theorem missing. Namely, a theorem that expresses $F_{2 q n}$ as a polynomial F_{n}. However, to obtain such a formula we would need to be able to express the LHS of Lemma (v) exactly in powers of $\left(x+\frac{1}{x}\right)$ for odd n in (1.1), and the LHS of Lemma (vi) exactly in powers of $\left(x-\frac{1}{x}\right)$ for even n in (1.1), neither of which is possible.
AMS Classification number: 11B39

*) \&

