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AN EXTENSION OF LUCAS’ THEOREM

HONG HU AND ZHI-WEI SUN

(Communicated by David E. Rohrlich)

Abstract. Let p be a prime. A famous theorem of Lucas states that
(

mp+s

np+t

)

≡

(

m

n

)(

s

t

)

(mod p) if m, n, s, t are nonnegative integers with s, t < p. In this paper
we aim to prove a similar result for generalized binomial coefficients defined in
terms of second order recurrent sequences with initial values 0 and 1.

1. Introduction

Let N = {0, 1, 2, · · · }, Z+ = {1, 2, 3, · · · } and Z∗ = Z \ {0}. Fix A, B ∈ Z∗. The
Lucas sequence {un}n∈N is defined as follows:

u0 = 0, u1 = 1 and un+1 = Aun − Bun−1 for n = 1, 2, 3, · · · .(1)

Its companion sequence {vn}n∈N is given by

v0 = 2, v1 = A and vn+1 = Avn − Bvn−1 for n = 1, 2, 3, · · · .(2)

By induction, for n = 0, 1, 2, · · · we have

un =
∑

0≤k<n

αkβn−1−k and vn = αn + βn

where

α =
A +

√
∆

2
, β =

A −
√

∆

2
and ∆ = A2 − 4B.

It follows that

vn = 2un+1 − Aun, u2n = unvn and v2n = v2
n − 2Bn for n ∈ N.

For a, b ∈ Z let (a, b) denote the greatest common divisor of a and b. A nice result
of E. Lucas asserts that if (A, B) = 1, then (um, un) = |u(m,n)| for m, n ∈ N (cf.
L. E. Dickson [1]).

In the case A2 = B = 1, by induction on n ∈ N we find that un = 0 if 3 | n, and

un =

{

1 if A = −1 & 3 | n − 1, or A = 1 & n ≡ 1, 2 (mod 6);

−1 if A = −1 & 3 | n + 1, or A = 1 & n ≡ −1,−2 (mod 6).
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We set [n] =
∏

0<k≤n uk for n ∈ N, and regard an empty product as value 1. For

n, k ∈ N with [n] 6= 0, we define the Lucas u-nomial coefficient [ n
k ] as follows:

[

n
k

]

=

{

[n]
[k][n−k] if n ≥ k,

0 otherwise.
(3)

In the case A = 2 and B = 1, [ n
k ] is exactly the binomial coefficient

(

n
k

)

; when
A = q+1 and B = q where q ∈ Z and |q| > 1, [ n

k ] coincides with Gaussian q-nomial
coefficient

(

n
k

)

q
because uj = (qj − 1)/(q − 1) for j = 0, 1, 2, · · · . For generalized

binomial coefficients formed from an arbitrary sequence of positive integers, the
reader is referred to the elegant paper of D. E. Knuth and H. S. Wilf [5].

Let d > 1 and q > 0 be integers with d | uq. If (A, B) = 1 and d ∤ uk for
k = 1, · · · , q − 1, then for any n ∈ N we have

d | un ⇐⇒ d divides (un, uq) = |u(n,q)| ⇐⇒ q = (n, q) ⇐⇒ q | n;

this property is usually called the regular divisibility of {un}n∈N. If (d, uk) = 1 for
all 0 < k < q, then we write q = d∗ and call d a primitive divisor of uq while q is
called the rank of apparition of d. When (A, B) = 1, q = d∗, n ∈ N and q ∤ n, we
have

(d, un) = ((d, uq), un) = (d, (un, uq)) = (d, u(n,q)) = 1.

When p is an odd prime not dividing B, p∗ exists because p | up−(∆

p
) as is well

known where (−) denotes the Legendre symbol. On the other hand, drawing upon
some ideas of A. Schinzel [6], C. L. Stewart [7] proved in 1977 that if A is prime
to B and α/β is not a root of unity, then un has a primitive prime divisor for each
n > e452267; P. M. Voutier [9] conjectured in 1995 that the lower bound e452267 can
be replaced by 30.

For m ∈ Z we use Zm to denote the ring of rationals in the form a/b with
a ∈ Z, b ∈ Z+ and (b, m) = 1. When r ∈ Zm, by x ≡ r (mod m) we mean that x
can be written as r + my with y ∈ Zm.

For convenience we set R(q) = {x ∈ Z : 0 ≤ x < q} for q ∈ Z+.
Our main result is as follows.

Theorem. Suppose that (A, B) = 1, and A 6= ±1 or B 6= 1. Then uk 6= 0 for

every k = 1, 2, 3, · · · . Let q ∈ Z+, m, n ∈ N and s, t ∈ R(q). Then
[

mq + s
nq + t

]

≡
(

m

n

) [

s
t

]

u
(nq+t)(m−n)+n(s−t)
q+1 (mod wq)(4)

where wq is the largest divisor of uq prime to u1, · · · , uq−1. If q or m(n+t)+n(s+1)
is even, then

[

mq + s
nq + t

]

≡
(

m

n

) [

s
t

]

(−1)(mt−ns)(q−1)B
q

2
((nq+t)(m−n)+n(s−t)) (mod wq).(5)

Remark 1. Providing (A, B) = 1 and q ∈ Z+, (uq,
∏

0<k<q uk) = 1 if and only if

ud = ±1 for all proper divisors d of q (this is because (uq, uk) = |u(q,k)|); therefore
uq is prime to u1, · · · , uq−1 if q is a prime.

When A = 2 and B = 1, we have uk = k for all k ∈ N, hence the Theorem yields
Lucas’ theorem which asserts that

(

mp + s

np + t

)

≡
(

m

n

)(

s

t

)

(mod p),
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where p is a prime and m, n, s, t are nonnegative integers with s, t < p. In the case
A = a + 1 and B = a where a ∈ Z and |a| > 1, as uq+1 = (aq+1 − 1)/(a − 1) =
auq +1 ≡ 1 (mod uq) for q ∈ Z+, our Theorem implies Theorem 3.11 of R. D. Fray
[2].

Theorem 3 of B. Wilson [10] follows from our Theorem in the special case A =
1, B = −1 and s ≥ t. Wilson used a result of Kummer concerning the highest
power of a prime dividing a binomial coefficient; see Knuth and Wilf [5] for various
generalizations of Kummer’s theorem. Our proof of the Theorem is more direct;
we don’t use Kummer’s theorem in any form.

Example. (i) Set A = 4 and B = 1. Then

u0 = 0, u1 = 1, u2 = 4, u3 = 15, u4 = 56, u5 = 209, u6 = 780.

Clearly p = 13 is the largest primitive divisor of u6 = 780. By the Theorem,
[

71
25

]

=

[

11 × 6 + 5
4 × 6 + 1

]

≡
(

11

4

) [

5
1

]

(−1)11×1−4×5 = 330 × u5 × (−1)

≡− 330 × 209 ≡ −5 × 1 ≡ 8 (mod 13).

(ii) Take A = 1 and B = −7. Then w3 = u3 = 8 and u4 = 15. By the Theorem,
[

35
10

]

=

[

11 × 3 + 2
3 × 3 + 1

]

≡
(

11

3

)[

2
1

]

1510(11−3)+3(2−1) ≡ 3 (mod 8).

2. Several lemmas

Lemma 1. Let n and k be positive integers with n > k and [n] 6= 0. Then
[

n
k

]

= uk+1

[

n − 1
k

]

− Bun−k−1

[

n − 1
k − 1

]

.(6)

If 2 | A and 2 ∤ B, then [ n
k ] ≡

(

n
k

)

(mod 2).

Proof. Clearly the right hand side of (6) coincides with

uk+1
[n − 1]

[k][n − 1 − k]
− Bun−k−1

[n − 1]

[k − 1][n − k]

=
[n − 1]

[k][n − k]
(uk+1un−k − Bukun−k−1) =

[

n
k

]

,

where in the last step we use the identity uk+1ul − Bukul−1 = uk+l which can be
easily proved by induction on l ∈ Z+.

Now suppose that 2 ∤ (A − 1)B. Then u1, u3, u5, · · · are odd and u2, u4, u6, · · ·
are even. If

[

n − 1
k

]

≡
(

n − 1

k

)

(mod 2) and

[

n − 1
k − 1

]

≡
(

n − 1

k − 1

)

(mod 2),

then (6) yields that
[

n
k

]

≡(k + 1)

(

n − 1

k

)

− (n − k − 1)

(

n − 1

k − 1

)

≡(k + 1)

(

n

k

)

− n

(

n − 1

k − 1

)

=

(

n

k

)

(mod 2).

So [ n
k ] ≡

(

n
k

)

(mod 2) by induction.
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Remark 2. In light of Lemma 1, by induction, if n ∈ N and [n] 6= 0, then [ n
k ] ∈ Z

for all k ∈ N. This was also realized by W. A. Kimball and W. A. Webb [4]. In
1989 Knuth and Wilf [5] proved that generalized binomial coefficients, formed from
a regularly divisible sequence of positive integers, are always integral.

Lemma 2. Let q be a positive integer. Then u2
q+1 ≡ Bq (mod uq). If 2 | q, then

uq+1 ≡ −Bq/2 (mod d) for any primitive divisor d of uq.

Proof. As
(

uq uq−1

uq+1 uq

)

=

(

uq−1 uq−2

uq uq−1

) (

A 1
−B 0

)

= · · · =

(

u1 u0

u2 u1

) (

A 1
−B 0

)q−1

,

we have u2
q − uq−1uq+1 = Bq−1 and hence u2

q+1 ≡ −Buq−1uq+1 ≡ Bq (mod uq).

Now assume that q = 2n where n ∈ Z+. Let d be a primitive divisor of uq. Since
unvn = uq ≡ 0 (mod d) and (d, un) = 1, we have d | vn and hence

uq+1 =
Auq + vq

2
=

Aunvn + v2
n − 2Bn

2
= un+1vn − Bn ≡ −Bn (mod d).

This ends the proof.

Lemma 3. Let k, q ∈ Z+. Then

ukq+l ≡ uk
q+1ul (mod uq) for l = 0, 1, 2, · · · .(7)

If uq 6= 0, then

ukq

kuq
≡ uk−1

q+1 + (k − 1)A
uq

2
(mod uq).(8)

Proof. Let l ∈ N. By Lemma 2 of Z.-W. Sun [8],

ukq+l =

k
∑

r=0

(

k

r

)

ck−rur
qul+r

where c = −Buq−1 = uq+1 − Auq. Clearly ukq+l ≡ uk
q+1ul (mod uq). In the case

uq 6= 0,

ukq

kuq
=

k
∑

r=1

1

k

(

k

r

)

ck−rur−1
q ur =

k
∑

r=1

(

k − 1

r − 1

)

ur−1
q

r
ck−rur.

For any prime p and integer r > 3 we have

pr−2 ≥ (1 + 1)r−2 ≥ 1 + (r − 2) + 1 = r,

therefore ur−2
q /r ∈ Zuq

for r = 3, 4, · · · . If 2 | uq and 2 ∤ A, then 2 ∤ B (otherwise

uq ≡ uq−1 ≡ · · · ≡ u1 6≡ 0 (mod 2)), as u2
q+1 ≡ Bq (mod uq) we have c ≡ uq+1 ≡

1 (mod 2). Thus (8) holds providing uq 6= 0.

Lemma 4. Assume that (A, B) = 1, q ∈ Z+ and uk 6= 0 for all k ∈ Z+. Then for

any m, n ∈ N and s, t ∈ R(q) we have
[

mq + s
nq + t

]

≡
[

mq
nq

] [

s
t

]

u
t(m−n)+n(s−t)
q+1 (mod wq)(9)

where wq is the largest divisor of uq prime to u1, · · · , uq−1.
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Proof. Let m, n ∈ N and s, t ∈ R(q). If m < n, then mq + s < (m + 1)q ≤ nq + t

and hence
[ mq+s

nq+t

]

= 0 = [ mq
nq ]. If m = n and s < t, then

[ mq+s
nq+t

]

= 0 = [ s
t ]. Below

we assume that m ≥ n and mq + s ≥ nq + t.
As (A, B) = 1, (uq, uq+1) = |u(q,q+1)| = 1. Observe that wq is prime to

uq+1

∏

0<r<q ur, and

[

mq + s
nq + t

]

=

∏

(m−n)q<j≤mq uj
∏

0<j≤nq uj
×

∏

0<r≤s umq+r
∏

0<r≤t unq+r

×
{

∏

0<r≤s−t u−1
(m−n)q+r if s ≥ t,

∏

0≤r<t−s u(m−n)q−r if s < t.

By Lemma 3, ukq+r ≡ uk
q+1ur (mod wq) for any k, r ∈ N. So

[

mq + s
nq + t

]

≡
[

mq
nq

]

×
∏

0<r≤s(u
m
q+1ur)

∏

0<r≤t(u
n
q+1ur)

×
{

∏

0<r≤s−t(u
n−m
q+1 u−1

r ) (mod wq) if s ≥ t,

0 (mod wq) otherwise,

≡
[

mq
nq

]

[s]

[t]
ums−nt

q+1 ×
{

u
(n−m)(s−t)
q+1 /[s− t] (mod wq) if s ≥ t,

0 (mod wq) if s < t,

≡
[

mq
nq

] [

s
t

]

u
t(m−n)+n(s−t)
q+1 (mod wq).

This concludes the proof.

3. Proof of the Theorem

Let us first show that u1, u2, u3, · · · are all nonzero.
If ∆ = 0, then α = β = A/2 and hence

uk =
∑

0≤r<k

αrβk−1−r = k

(

A

2

)k−1

6= 0 for k = 1, 2, 3, · · · .

Suppose that uk = 0 for some k ∈ Z+. Then ∆ 6= 0, α 6= β and αk = βk.
Since the field Q(

√
∆) contains the root α/β 6= ±1 of unity, by Propositions 13.1.5

and 13.1.6 of K. Ireland and M. Rosen [3] there exists a positive integer D such
that ∆ = −D2 and α/β ∈ {±i}, or ∆ = −3D2 and α/β ∈ {±ω,±ω2} where
ω = (−1+

√
−3)/2. In the former case, (A+Di)/(A−Di) ∈ {±i}; hence A2 = D2

and 2B = (A2 − ∆)/2 = D2. This is impossible since A or B is odd. Thus the
latter case happens. Now that

A + D
√
−3

A − D
√
−3

=
A2 − 3D2 + 2AD

√
−3

A2 + 3D2
∈

{−1 ±
√
−3

2
,
1 ±

√
−3

2

}

,

we have A2 − 3D2 = ±2AD and hence A2 ∈ {D2, 9D2}. If A2 = D2, then B =
(A2 − ∆)/4 = D2, hence (A, B) > 1 or A2 = B = 1; if A2 = 9D2, then B =
(A2 − ∆)/4 = 3D2 and hence 3 | (A, B). This leads to a contradiction.
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Next we show (4).
Let u′

0 = 0, u′
1 = 1 and u′

j+1 = vqu
′
j − Bqu′

j−1 for j = 1, 2, 3, · · · . Note that

αq + βq = vq and αqβq = Bq. Fix k ∈ Z+. If ∆ = A2 − 4B 6= 0, then

ukq

uq
=

(αkq − βkq)/(α − β)

(αq − βq)/(α − β)
=

(αq)k − (βq)k

αq − βq
= u′

k;

if ∆ = 0, then α = β = A/2, uq = q(A/2)q−1, ukq = kq(A/2)kq−1 and

u′
k =

∑

0≤r<k

(αq)r(βq)k−1−r = k

(

A

2

)q(k−1)

=
ukq

uq
.

So we always have ukq/uq = u′
k. By (8),

ukq

kuq
≡ rk (mod uq) where rk = uk−1

q+1 +

{

(k − 1)Auq/2 if 2 | uq,

0 otherwise.

Notice that (rk, uq) = 1 if 2 ∤ uq, and (rk, uq/2) = 1 if 2 | uq.
Suppose m > n > 0. We assert that

∏

0≤k<n

u(m−k)q

u(n−k)q
≡

(

m

n

)

u
n(m−n)
q+1 (mod uq).(10)

If 2 ∤ uq or 4 | uq, then (rk, uq) = 1 for all k = 1, 2, 3, · · · , hence

∏

0≤k<n

u(m−k)q

u(n−k)q
=

∏

0≤k<n

m − k

n − k
×

∏

0≤k<n

u(m−k)q/((m − k)uq)

u(n−k)q/((n − k)uq)

≡
(

m

n

)

∏

0≤k<n

um−k−1
q+1 + (m − k − 1)Auq/2

un−k−1
q+1 + (n − k − 1)Auq/2

≡
(

m

n

)

∏

0≤k<n

(

um−n
q+1 + (m − n)A

uq

2

)

≡
(

m

n

)

(

u
n(m−n)
q+1 + n(m − n)A

uq

2

)

≡
(

m

n

)

u
n(m−n)
q+1 +

m(m − 1)

2

(

m − 2

n − 1

)

Auq ≡
(

m

n

)

u
n(m−n)
q+1 (mod uq).

In the case uq ≡ 2 (mod 4), by the above method

∏

0≤k<n

u(m−k)q

u(n−k)q
≡

(

m

n

)

u
n(m−n)
q+1

(

mod
uq

2

)

;

as vq = 2uq+1 − Auq ≡ 0 (mod 2) and B ≡ 1 (mod 2) (otherwise A, u1, u2, u3, · · ·
are all odd), we also have

∏

0≤k<n

u(m−k)q

u(n−k)q
=

∏

0≤k<n

u′
m−k

u′
n−k

≡
(

m

n

)

≡
(

m

n

)

u
n(m−n)
q+1 (mod 2)

by Lemma 1. This proves (10).
Now we claim that

[

mq
nq

]

≡
(

m

n

)

u
(m−n)nq
q+1 (mod wq).(11)

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



AN EXTENSION OF LUCAS’ THEOREM 3477

This is obvious if m ≤ n or n = 0. In the case m > n > 0, if 0 < j < nq and q ∤ j,
then (unq−j , wq) = 1 and

umq−j

unq−j
=

u(m−n)q+nq−j

unq−j
≡ um−n

q+1 (mod wq)

by Lemma 3; thus
[

mq
nq

]

=
∏

0≤j<nq

umq−j

unq−j
=

∏

0≤k<n

u(m−k)q

u(n−k)q
×

∏

0<j<nq
q∤j

umq−j

unq−j

≡
(

m

n

)

u
n(m−n)
q+1 × u

(m−n)(nq−n)
q+1 =

(

m

n

)

u
(m−n)nq
q+1 (mod wq).

In view of (9) and (11),
[

mq + s
nq + t

]

≡
(

m

n

)

u
(m−n)nq
q+1 ×

[

s
t

]

u
t(m−n)+n(s−t)
q+1

≡
(

m

n

) [

s
t

]

u
(nq+t)(m−n)+n(s−t)
q+1 (mod wq).

Finally we say something about (5). If 2 | q, then

(nq + t)(m − n) + n(s − t) ≡ t(m − n) + n(s − t) ≡ mt − ns (mod 2),

and uq+1 ≡ −Bq/2 (mod wq) by Lemma 2. When q is odd and l = m(n+t)+n(s+1)
is even,

(nq + t)(m − n) + n(s − t) ≡ (n + t)(m − n) + n(s − t) ≡ l ≡ 0 (mod 2)

and u2
q+1 ≡ Bq (mod wq) by Lemma 2. Thus (5) follows from (4) if 2 | ql. We are

done.
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