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Abstract

In this paper, we establish four sum relations for Lucas sequences. As applications,
we derive some combinatorial identities involving Lucas sequences that extend some
known results.

1 Introduction

Given two integer parameters P and Q, the Lucas sequences of the first kind Un = Un(P,Q)
(n ∈ N) and of the second kind Vn = Vn(P,Q) (n ∈ N) are defined by the recurrence relations

U0 = 0, U1 = 1, and Un = PUn−1 − QUn−2 (n ≥ 2), (1)

V0 = 2, V1 = p, and Vn = PVn−1 − QVn−2 (n ≥ 2). (2)

The characteristic equation x2 − Px + Q = 0 of the sequences Un and Vn has two roots
α = (P +

√
D)/2 and β = (P −

√
D)/2 with the discriminant D = P 2 − 4Q. Note that

D1/2 = α−β. Furthermore, D = 0 means x2−Px+Q = 0 has the repeated root α = β = P/2.
It is well known that for any n ∈ N (see [4, pp. 41–44]),

PUn + Vn = 2Un+1, (α − β)Un = αn − βn, Vn = αn + βn. (3)

The Lucas sequences Un and Vn can be regarded as the generalization of many integer
sequences, for example, Fn, Ln, Pn, Qn, Jn, and jn, known as the Fibonacci, Lucas, Pell,
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Pell-Lucas, Jacobsthal, and Jacobsthal-Lucas numbers, according to whether P = 1, Q = −1,
P = 2, Q = −1, or P = 1, Q = −2; see [5] for a good introduction. These numbers play
important roles in many different areas of mathematics, so their numerous elegant properties
have been studied by many authors, see for example, [3, 4].

The idea of the present paper stems from the familiar combinatorial theorem about sets
called the principle of cross-classification. We establish four sum relations for the Lucas
sequences as follows.

Theorem 1. Let n be a positive integer, and let s1, s2, . . . , sn be any non-negative integers.

Then

−
∑

1≤i≤n

Usi

αsi
+

∑

1≤i<j≤n

Usi+sj

αsi+sj
−

∑

1≤i<j<k≤n

Usi+sj+sk

αsi+sj+sk
+ · · · + (−1)n Us1+s2+···+sn

αs1+s2+···+sn

= −D
n−1

2

Us1
Us2

· · ·Usn

αs1+s2+···+sn
, (4)

−
∑

1≤i≤n

Usi

βsi
+

∑

1≤i<j≤n

Usi+sj

βsi+sj
−

∑

1≤i<j<k≤n

Usi+sj+sk

βsi+sj+sk
+ · · · + (−1)n Us1+s2+···+sn

βs1+s2+···+sn

= (−1)nD
n−1

2

Us1
Us2

· · ·Usn

βs1+s2+···+sn
, (5)

∑

1≤i≤n

Vsi

αsi
+

∑

1≤i<j≤n

Vsi+sj

αsi+sj
+

∑

1≤i<j<k≤n

Vsi+sj+sk

αsi+sj+sk
+ · · · + Vs1+s2+···+sn

αs1+s2+···+sn

= 2n − 2 +
Vs1

Vs2
· · ·Vsn

αs1+s2+···+sn
, (6)

∑

1≤i≤n

Vsi

βsi
+

∑

1≤i<j≤n

Vsi+sj

βsi+sj
+

∑

1≤i<j<k≤n

Vsi+sj+sk

βsi+sj+sk
+ · · · + Vs1+s2+···+sn

βs1+s2+···+sn

= 2n − 2 +
Vs1

Vs2
· · ·Vsn

βs1+s2+···+sn
. (7)

Theorem 1 has some applications and can be deduced as the generalization of some
known results. In section 2, we shall make use of Theorem 1 to illustrate its effectiveness.
In section 3, we shall give the proof of Theorem 1.

2 Some applications of Theorem 1

Theorem 2. Let n be a positive integer, and let Cn = Un/Qn, Dn = Vn/Qn, En = U2
n/Qn,

Fn = UnVn/Qn, Gn = V 2
n /Qn. Suppose that the discriminant D is not equal to 0. Then, for

non-negative integers s1, s2, . . . , sn,

−
∑

1≤i≤n

Esi
+

∑

1≤i<j≤n

Esi+sj
−

∑

1≤i<j<k≤n

Esi+sj+sk
+ · · · + (−1)nEs1+s2+···+sn

=

{

D
n−2

2 Ds1+s2+···+sn
Us1

Us2
· · ·Usn

, 2 | n,

−D
n−1

2 Cs1+s2+···+sn
Us1

Us2
· · ·Usn

, 2 ∤ n,
(8)
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−
∑

1≤i≤n

Fsi
+

∑

1≤i<j≤n

Fsi+sj
−

∑

1≤i<j<k≤n

Fsi+sj+sk
+ · · · + (−1)nFs1+s2+···+sn

=

{

D
n
2 Cs1+s2+···+sn

Us1
Us2

· · ·Usn
, 2 | n,

−D
n−1

2 Ds1+s2+···+sn
Us1

Us2
· · ·Usn

, 2 ∤ n,
(9)

∑

1≤i≤n

Fsi
+

∑

1≤i<j≤n

Fsi+sj
+

∑

1≤i<j<k≤n

Fsi+sj+sk
+ · · · + Fs1+s2+···+sn

= Cs1+s2+···+sn
Vs1

Vs2
· · ·Vsn

, (10)

∑

1≤i≤n

Gsi
+

∑

1≤i<j≤n

Gsi+sj
+

∑

1≤i<j<k≤n

Gsi+sj+sk
+ · · · + Gs1+s2+···+sn

= 2n+1 − 4 + Ds1+s2+···+sn
Vs1

Vs2
· · ·Vsn

. (11)

Proof. Adding and subtracting (4) and (5), and (6) and (7), respectively, we are done by
applying the last two identities of (3).

Corollary 3. Let n be a positive integer, and let k be a non-negative integer. Suppose that

the discriminant D is not equal to 0. Then

n
∑

i=0

(

n

i

)

Q(n−i)kUikVik = UknV
n
k , (12)

n
∑

i=0

(

n

i

)

Q(n−i)kV 2
ik = 2n+1Qnk + VknV

n
k , (13)

n
∑

i=0

(

n

i

)

(−1)iQ(n−i)kU2
ik =

{

D
n−2

2 VknU
n
k , 2 | n,

−D
n−1

2 UknU
n
k , 2 ∤ n,

(14)

n
∑

i=0

(

n

i

)

(−1)iQ(n−i)kUikVik =

{

D
n
2 UknU

n
k , 2 | n,

−D
n−1

2 VknU
n
k , 2 ∤ n.

(15)

Proof. Setting s1 = s2 = · · · = sn = k in Theorem 2, the desired results follow.

Remark 4. By the last two identities of (3), one can easily check that if the discriminant
D 6= 0 then UnVn = U2n, V 2

n = V2n + 2Qn, U2
n = (V2n − 2Qn)/D, which together with

Corollary 3 deduce some interesting results. The case k being an even number in (12) gives
a sophisticated identity for Fibonacci and Lucas numbers which was asked by Hoggatt as
an advanced problem in [1]. The case k = 1 in (14) and (15) give the familiar combinatorial
identities for Fibonacci and Lucas numbers, see for example, [2, 6].
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Theorem 5. Let n be a positive integer, let s1, s2, . . . , sn be any non-negative integers such

that s1 + s2 + · · · + sn = s, and let Cm,n = UmUn−m, Dm,n = UmVn−m, Em,n = VmUn−m,

Fm,n = VmVn−m. Suppose that the discriminant D is not equal to 0. Then

−
∑

1≤i≤n

Csi,s +
∑

1≤i<j≤n

Csi+sj ,s −
∑

1≤i<j<k≤n

Csi+sj+sk,s + · · · + (−1)nCs,s

=

{

−2D
n−2

2 Us1
Us2

· · ·Usn
, 2 | n,

0, 2 ∤ n,
(16)

−
∑

1≤i≤n

Dsi,s +
∑

1≤i<j≤n

Dsi+sj ,s −
∑

1≤i<j<k≤n

Dsi+sj+sk,s + · · · + (−1)nDs,s

=

{

0, 2 | n,

−2D
n−1

2 Us1
Us2

· · ·Usn
, 2 ∤ n,

(17)

∑

1≤i≤n

Esi,s +
∑

1≤i<j≤n

Esi+sj ,s +
∑

1≤i<j<k≤n

Esi+sj+sk,s + · · · + Es,s

= (2n − 2)Us, (18)

∑

1≤i≤n

Fsi,s +
∑

1≤i<j≤n

Fsi+sj ,s +
∑

1≤i<j<k≤n

Fsi+sj+sk,s + · · · + Fs,s

= (2n − 2)Vs + 2Vs1
Vs2

· · ·Vsn
. (19)

Proof. Multiplying αs in the both sides of (4) and (6), βs in the both sides of (5) and (7), and
then adding and subtracting (4) and (5), and (6) and (7), respectively, the desired results
immediately follow by applying the last two identities of (3).

Corollary 6. Let n be a positive integer, and let k be a non-negative integer. Suppose that

the discriminant D is not equal to 0. Then

n
∑

i=0

(

n

i

)

QikU(n−2i)k = 0, (20)

n
∑

i=0

(

n

i

)

QikV(n−2i)k = 2V n
k , (21)

n
∑

i=0

(

n

i

)

(−1)iQikV(n−2i)k =

{

2D
n
2 Un

k , 2 | n,

0, 2 ∤ n,
(22)

n
∑

i=0

(

n

i

)

(−1)iQikU(n−2i)k =

{

0, 2 | n,

2D
n−1

2 Un
k , 2 ∤ n.

(23)
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Proof. By the last two identities of (3), one can easily check that if the discriminant D 6= 0
then VikU(n−i)k = Ukn + QikU(n−2i)k, VikV(n−i)k = Vnk + QikV(n−2i)k, UikU(n−i)k = (Vnk −
QikV(n−2i)k)/D, UikV(n−i)k = Unk − QikU(n−2i)k. Thus, by setting s1 = s2 = · · · = sn = k in
Theorem 5, Corollary 6 follows immediately.

Remark 7. The equations (21)–(23) extend the powers of Fibonacci and Lucas numbers
as sums, see for example, [2, 6].

3 The proof of Theorem 1

The proof of Theorem 1. Clearly, the case n = 1 in Theorem 1 is complete.
Now, we consider the case n ≥ 2. By (3), it is easy to see that if the discriminant D 6= 0

then Un = nαn−1 = nβn−1, Vn = 2αn = 2βn for all n ∈ N. Thus, in view of the fact
∑n

i=1

(

n
i

)

= 2n − 1 and for any integer n ≥ 2,

−
∑

1≤i≤n

si +
∑

1≤i<j≤n

(si + sj) −
∑

1≤i<j<k≤n

(si + sj + sk) + · · · + (−1)n(s1 + s2 + · · · + sn) = 0,

Theorem 1 is complete when the discriminant D = 0. Next, we use induction on n to
consider the discriminant D 6= 0. Applying the last two identities of (3), we derive

UmUn = −Um+n − αmUn − αnUm√
D

, (24)

UmUn =
Um+n − βmUn − βnUm√

D
, (25)

VmVn = Vm+n + αmVn + αnVm − 2αm+n, (26)

VmVn = Vm+n + βmVn + βnVm − 2βm+n, (27)

which imply the case n = 2 in Theorem 1 is complete. Assume that (4) holds for all
2 ≤ n = m. Then, by multiplying Usm+1

/αsm+1 in the both sides of (4), and applying (24),
we obtain

−D
m
2

Us1
Us2

· · ·Usm
Usm+1

αs1+s2+···+sm+sm+1

=
∑

1≤i≤m

(

Usi+sm+1

αsi+sm+1
− Usi

αsi
− Usm+1

αsm+1

)

−
∑

1≤i<j≤m

(

Usi+sj+sm+1

αsi+sj+sm+1
− Usi+sj

αsi+sj
− Usm+1

αsm+1

)

+
∑

1≤i<j<k≤m

(

Usi+sj+sk+sm+1

αsi+sj+sk+sm+1
− Usi+sj+sk

αsi+sj+sk
− Usm+1

αsm+1

)

− · · · − (−1)m

(

Us1+s2+···+sm+sm+1

αs1+s2+···+sm+sm+1
− Us1+s2+···+sm

αs1+s2+···+sm
− Usm+1

αsm+1

)

,
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which together with
∑m

i=1

(

m
i

)

(−1)i = −1 means (4) holds for all n = m + 1. In a similar
consideration, (5), (6) and (7) hold for all n = m + 1. This concludes the induction step.
We are done. 2
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