Journal of Integer Sequences, Vol. 15 (2012),

Expansion of Fibonacci and Lucas Polynomials: An Answer to Prodinger's Question

Hacène Belbachir
University of Sciences and Technology Houari Boumediene
Faculty of Mathematics
P. O. Box 32, El Alia
Bab-Ezzouar 16111, Algiers
Algeria
hacenebelbachir@gmail.com
Athmane Benmezai
Faculty of Economy and Management Science
University of Dely Brahim
Rue Ahmed Ouaked
Dely Brahim, Algiers,
Algeria
athmanebenmezai@gmail.com

Abstract

We give an answer to a recent question of Prodinger, which consists of finding q-analogues of identities related to Fibonacci and Lucas polynomials.

1 Introduction

The bivariate polynomials of Fibonacci and Lucas, denoted respectively by $\left(U_{n}\right)$ and $\left(V_{n}\right)$, are defined by

$$
\left\{\begin{array} { l }
{ U _ { 0 } = 0 , U _ { 1 } = 1 , } \\
{ U _ { n } = t U _ { n - 1 } + z U _ { n - 2 } \quad (n \geq 2) , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
V_{0}=2, V_{1}=t, \\
V_{n}=t V_{n-1}+z V_{n-2}
\end{array} \quad(n \geq 2)\right.\right.
$$

It is well-known (see, for example, [3]) that

$$
U_{n+1}=\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n-k}{k} t^{n-2 k} z^{k}, \quad V_{n}=\sum_{k=0}^{\lfloor n / 2\rfloor} \frac{n}{n-k}\binom{n-k}{k} t^{n-2 k} z^{k} \quad(n \geq 1)
$$

In [1], Belbachir and Bencherif proved the following five formulae:

$$
\begin{align*}
2 U_{2 n+1} & =\sum_{k=0}^{n} a_{n, k} t^{k} V_{2 n-k}, \text { with } a_{n, k}=2 \sum_{j=0}^{n}(-1)^{j+k}\binom{j}{k}-(-1)^{n+k}\binom{n}{k}, \tag{1}\\
V_{2 n} & =\sum_{k=1}^{n} b_{n, k} t^{k} V_{2 n-k}, \text { with } b_{n, k}=(-1)^{k+1}\binom{n}{k}, \tag{2}\\
V_{2 n-1} & =\sum_{k=1}^{n} c_{n, k} t^{k} U_{2 n-k}, \text { with } c_{n, k}=2(-1)^{k+1}\binom{n}{k}-[k=1], \tag{3}\\
2 V_{2 n-1} & =\sum_{k=1}^{n} d_{n, k} t^{k} V_{2 n-1-k}, \text { with } d_{n, k}=(-1)^{k+1} \frac{2 n-k}{n}\binom{n}{k}, \tag{4}\\
2 U_{2 n} & =\sum_{k=1}^{n} e_{n, k} t^{k} V_{2 n-k}, \quad \text { with } \tag{5}\\
e_{n, k} & =(-1)^{k+1} \frac{2 n-k}{n}\binom{n}{k}+\sum_{j=0}^{n-1}(-1)^{j+k-1}\binom{j}{k-1}-\frac{1}{2}(-1)^{n+k}\binom{n-1}{k-1}
\end{align*}
$$

and they also gave the following simple sixth one:

$$
\begin{equation*}
V_{2 n}=2 U_{2 n+1}-x U_{2 n} \tag{6}
\end{equation*}
$$

The results presented in [1] are companion generalizations for Chebyshev polynomials [2].

Without loss of generality, we suppose that $t=1$. We refer here to the modified polynomials given by Prodinger in the introduction of [5].

In order to give q-analogues of these instances, Prodinger considered Cigler's [4] suggestion to replace U_{n} and V_{n}, respectively, with

$$
\mathbf{F}_{n+1}(z)=\sum_{k=0}^{\lfloor n / 2\rfloor} q^{\binom{k+1}{2}}\left[\begin{array}{c}
n-k \\
k
\end{array}\right]_{q} z^{k}, \quad \mathbf{L}_{n}(z)=\sum_{k=0}^{\lfloor n / 2\rfloor} q^{\binom{k}{2}}\left[\begin{array}{c}
n-k \\
k
\end{array}\right]_{q} \frac{[n]_{q}}{[n-k]_{q}} z^{k},
$$

with the following q-notations

$$
[n]_{q}=1+q+\cdots+q^{n-1}, \quad[n]_{q}!=[1]_{q}[2]_{q} \cdots[n]_{q}, \quad\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!} .
$$

Prodinger [5] found the following two q-analogues for identities (4) and (6) respectively

$$
\begin{align*}
\mathbf{F}_{2 n}(z) & =\sum_{k=1}^{n} \beta_{n, k} \mathbf{F}_{2 n-k}(z), \text { with } \beta_{n, k}=(-1)^{k+1} q^{\binom{k}{2}}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \tag{7}\\
\mathbf{L}_{2 n-1} & =\sum_{k=1}^{n} \delta_{n, k} \mathbf{L}_{2 n-1-k}(z), \text { with } \delta_{n, k}=(-1)^{k+1} \frac{q^{\binom{k}{2}}}{1+q^{n-1}}\left(\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{q}+q^{n-1}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}\right), \tag{8}
\end{align*}
$$

and left the three others as a challenge.
We give an answer to the remaining three instances and we find a q-analogue for identity (6).

2 An answer to Prodinger's question

Here, we find a q-analogue for the identities (6), (3), (1) and (5), which can be considered as an answer to Prodinger's question [5].

Theorem 1. The following q-identities hold

$$
\begin{align*}
\mathbf{L}_{2 n}(z) & =\mathbf{F}_{2 n+1}\left(\frac{z}{q}\right)+\mathbf{F}_{2 n+1}(z)-\mathbf{F}_{2 n}(z), \tag{9}\\
\mathbf{L}_{2 n-1}(z) & =\sum_{k=1}^{n} \beta_{n, k}\left(\mathbf{F}_{2 n-k}(z)+\mathbf{F}_{2 n-k}\left(\frac{z}{q}\right)\right)-\mathbf{F}_{2 n-1}(z), \tag{10}\\
\mathbf{F}_{2 n+1}(z) & =\frac{1}{1-q^{2 n}}\left(\mathbf{L}_{2 n}(q z)-q^{2 n} \mathbf{L}_{2 n}(z)\right), \tag{11}\\
\mathbf{F}_{2 n}(z) & =\frac{1}{1-q^{2 n-1}}\left(\mathbf{L}_{2 n-1}(q z)-q^{2 n-1} \mathbf{L}_{2 n-1}(z)\right) . \tag{12}
\end{align*}
$$

Proof. We have

$$
\begin{aligned}
\mathbf{F}_{n+1}\left(\frac{z}{q}\right)+\mathbf{F}_{n+1}(z)-\mathbf{F}_{n}(z) & =\sum_{k=0}^{\lfloor n / 2\rfloor} q^{\binom{k}{2}}\left[\begin{array}{c}
n-k \\
k
\end{array}\right]_{q}\left(1+q^{k}-q^{k} \frac{[n-2 k]_{q}}{[n-k]_{q}}\right) z^{k} \\
& =\sum_{k=0}^{\lfloor n / 2\rfloor} q^{\binom{k}{2}}\left[\begin{array}{c}
n-k \\
k
\end{array}\right]_{q}\left(1+q^{k}-q^{k} \frac{1-q^{n-2 k}}{1-q^{n-k}}\right) z^{k} \\
& =\sum_{k=0}^{\lfloor n / 2\rfloor} q^{\binom{k}{2}}\left[\begin{array}{c}
n-k \\
k
\end{array}\right]_{q} \frac{1-q^{n}}{1-q^{n-k}} z^{k} \\
& =\sum_{k=0}^{\lfloor n / 2\rfloor} q^{\binom{k}{2}}\left[\begin{array}{c}
n-k \\
k
\end{array}\right]_{q} \frac{[n]_{q}}{[n-k]_{q}} z^{k}=\mathbf{L}_{n}(z) .
\end{aligned}
$$

For the second identity $\sum_{k=1}^{n} \beta_{n, k}\left(\mathbf{F}_{2 n-k}(z)+\mathbf{F}_{2 n-k}\left(\frac{z}{q}\right)\right)-\mathbf{F}_{2 n-1}(z)=\mathbf{F}_{2 n}(z)+\mathbf{F}_{2 n}\left(\frac{z}{q}\right)-$ $\mathbf{F}_{2 n-1}(z)=\mathbf{L}_{2 n-1}(z)$.

To establish (11) and (12), we have

$$
\begin{aligned}
\mathbf{L}_{n}(q z)-q^{n} \mathbf{L}_{n}(z) & \left.=\sum_{k=0}^{\lfloor n / 2\rfloor} q^{k} \begin{array}{c}
k \\
2
\end{array}\right)\left[\begin{array}{c}
n-k \\
k
\end{array}\right]_{q} \frac{[n]_{q}}{[n-k]_{q}}\left(q^{k}-q^{n}\right) z^{k} \\
& =\sum_{k=0}^{\lfloor n / 2\rfloor} q^{\binom{k+1}{2}}\left[\begin{array}{c}
n-k \\
k
\end{array}\right]_{q}\left(1-q^{n}\right) z^{k} \\
& =\left(1-q^{n}\right) \mathbf{F}_{n+1}(z)
\end{aligned}
$$

and then take n odd and n even respectively.
Remark 2. We have to notice that the expressions of relations (11) and (12) do not give, for $q=1$, the initial formulae as given in relations (1) and (5). We obtain, when $q \rightarrow 1$, the well known identity $U_{n+1}(z)=V_{n}(z)-z U_{n-1}(z)$, for n odd and n even respectively. However, they express, as in Belbachir's and Bencherif's work [1], an odd Fibonacci polynomial in terms of Lucas polynomials starting with a smallest even index, and an even Fibonacci polynomial in terms of Lucas polynomials starting with a smallest odd index.

3 Acknowledgment

The authors would like to thank the referee for his patience and very useful guidance which improved the quality of the paper.

References

[1] H. Belbachir and F. Bencherif, On some properties of bivariate Fibonacci and Lucas polynomials, J. Integer Sequences 11 (2008), Article 08.2.6.
[2] H. Belbachir and F. Bencherif, On some properties of Chebyshev polynomials, Discuss. Math. Gen. Algebra Appl 28 (2008), 121-133.
[3] H. Belbachir and F. Bencherif, Linear recurrent sequences and powers of a square matrix. Integers 6 (2006), Paper A12.
[4] J. Cigler, A new class of q-Fibonacci polynomials, Electronic J. Combinatorics 10 (2003), Article R19.
[5] H. Prodinger, On the expansion of Fibonacci and Lucas polynomials, J. Integer Sequences 12 (2009), Article 09.1.6.

2000 Mathematics Subject Classification: Primary 11B39; Secondary 05A30, 11B37.
Keywords: Fibonacci polynomials; Lucas polynomials; q-analogues.
(Concerned with sequences $\underline{A 000032}, \underline{A 000045}, \underline{A 007318}, \underline{A 029653}$, and A112468.)

Received July 15 2012; revised versions received August 14 2012; September 3 2012. Published in Journal of Integer Sequences, September 82012.

Return to Journal of Integer Sequences home page.

