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1. INTRODUCTION 

Let us define a generalized Lucas sequence {Hn(m)} by 

H„(m) = Hn^m)+mHn_2(m), H0(m) = 2, Hx(m) = 1, (1) 

where m > 1 is a natural number. 

In a communication that appeared in a recent issue of this journal [1], P. Filipponi showed 

that 

Hp,(p) = l (mod//) (2) 

wherep is an odd prime, and he proposed also the following Conjecture: 

Hp,(p-l) = l (mod//) (3) 

where p > 5 is a prime number. 

Following a method introduced by Lucas ([2], p. 209; [3]), we shall prove here generaliza-

tions of (2) and (3), namely, 

Theorem 1: If p > 1 is a natural number, and if AW = 0 (mod p), then 

H M(m) = l (modps+ll s>0. 

Theorem 2: If p > 5 is a prime number and if m = -1 (mod/?), then 

H s(m) = l (modps+l\ $>Q. 

2e PRELIMINARIES 

Let us recall Waring's formula 

[p/2] 

xp +yp = (x + yy +p^ (-l)kCp,k(xy)k(x + yy~2k, 

where p is a natural integer, and 

In our proofs, we shall need the following three lemmas. 

Lemma 1: (i) If/? is a natural integer, then p,Cp^k is integral; 

(ii) Ifp is a prime, then C k is integral. 
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Proof: (i) The result follows from the relation 
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(ii) From the relation 

and since gcd(&, p-k) = 1, it is clear that & divides f^J"
1
) • 

Lemma 2: If /? = ±1 (mod 6) is a natural number, then YJ-k
p=i\-l)k Cp^k = 0. 

Proof: Let us put x = e
Z7r/3

 and>> = e /7r/3
 in Waring's formula to get 

2cos/>;r/3 = l + / ? X ( - l ) * C / a , 
A : = l 

and the conclusion follows from this, since 2 cospn 13 = 1, when/? = ±1 (mod 6). 

Lemma 3: If/? is an odd integer, then (£p-l)p =~l (modps+l), £>0. 

Proof: The statement clearly holds for s = 0. Supposing that (£p-l)p = -l + Aps+l, where 

A is an integer, one can write 

( ^ - i /
+ 1

= ( - i + ^
+

y 

= (-l)p+(^\-l)p-lAps+l +(P)(-l)p-2A2p2s+2 + .-. + Appp(s+l)
 ^ -1 (modps+2\ 

since p is odd and ff] = /?. 

Let us return to the recurrence relation (1). We have Hn(m) - an
m+ fin

m where am and f}m 

are the real numbers such that am + /3m - 1 and amf3m = -m. Following Lucas ([2], p. 212), we 

replace x (resp. y) by ap
m (resp. f3p

m ) in Waring's formula to get 

Hp„1(m) = HP,(m) + pX {-\)k{l+p)Cp,km
kp Hp~2k(m\ (4) 

where/? is a natural number. 

3. PROOF OF THEOREM 1 

The case/? = 1 needs no comment, since H1 = 1, so we suppose in the sequel that p > 2, and 

thus that [p/2] >1. 

Let us write Hn instead of Hn(m) in (4), to get 

[p/2] 

H• x =H> +(-\)l+r*pmrSH^+ £ {-\f{l+pS)
PCp^Hp;2k, (5) 

k=2 
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since CPtl = l. Notice that the last sum is empty foip = 2mdp = 3 and that pC k is an integer, 

by Lemma l(i). 

We proceed by induction upon s. The statement clearly holds for s = 0 since Hx = l. 

Now, let us suppose that 

ff,El (modps+l). 

By using an argument similar to the one used in Lemma 3, one can easily deduce from this that 

j y j s i (modP
My (6) 

Next we have, for every s > 0 and every p>2, ps >2S >s + \ and thus 

(a) pmpS
 =0 (modps+2). 

On the other hand we have, for every k > 2,kps
 > 22" = 2s+l

 > 5 + 2, and thus 

(b) / ^ ' E O (modps+2). 

Now, by using (6), (a), and (b) in (5), we have 

HpS+l=l (modps+2). 

This concludes the proof of Theorem 1. 

4. PROOF OF THEOREM 2 

We suppose now that p>5 is a prime number, and thus that /? = ±l(mod6). Let us put 

m = ^p - 1 in (4) and write Hn instead of Hn (£p -1) to obtain 

[p/2] 

H , =/7£+/>£C„, f c(<p-l)*'ff;-
2
*. (7) 

We proceed by induction on 5. The statement clearly holds for s = 0, since Hx = l. Suppos-

ing that H s = 1 (mod/?*
4
"

1
), we obtain 

Hp;2k
 = 1 (mod//

+1
), for 1 < k < [p/2], (8) 

and 

Hp
t=l (modps+2y (9) 

On the other hand, we have, by Lemma 3, 

(£p-l)kpS =(-l)k (modps+l). (10) 

By Lemma l(ii), CPtk is an integer, and by (8), (10), and Lemma 2, we obtain 

[p/2] [p/2] 

I,cp,k(tp-i)
kpS

H
p
;

2k
 = I c A , ( - i ) ^ o (modP

s+l
y (ii) 

k=l fc=i 

Now, by (7), (9), and (11), it is clear thatif ,+1 =1 (modp ). This concludes the proof of 

Theorem 2. 
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