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Abstract For the Legendre-Stirling numbers of the second kind asymptotic formulae
are derived in terms of a local central limit theorem. Thereby, supplements of the re-
cently published asymptotic analysis of the Chebyshev-Stirling numbers are established.
Moreover, we provide results on the asymptotic normality and unimodality for modified
Legendre-Stirling numbers.
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1 Introduction and summary

The main objects of our investigations are the Legendre-Stirling numbers a special case
of the Jacobi-Stirling numbers both of the second kind. Following the recent literature,
e.g., [3], [9], [15], we denote the latter numbers by the curly bracket symbol

{n
j

}

γ
, n, j

being non-negative integers, and γ is a fixed non-negative parameter. A formal definition
of these numbers can be given through the triangular recurrence relation [3], [15]

{

n

j

}

γ

=

{

n− 1

j − 1

}

γ

+ j(j + 2γ − 1)

{

n− 1

j

}

γ

, n, j ∈ N = {1, 2, . . .}, (1.1)
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{

n

0

}

γ

= δn,0,

{

0

j

}

γ

= δj,0, n, j ∈ N0 = {0, 1, 2, . . .}.

We note that they were originally discovered in the left-definite spectral analysis of
integral powers of the second order Jacobi differential operator

ℓ[y](x) :=
−1

(1− x)α(1 + x)β

(

(1− x)α+1(1 + γ)β+1y′(x)
)′

where α, β > −1 are constants and x ∈ (−1, 1). Indeed, the numbers {nj }γ occur in the
explicit representation formula for the powers

ℓn[y](x) =
1

(1− x)α(1 + γ)β

n
∑

j=1

(−1)j
{

n

j

}

γ

(

(1− x)α+j(1 + x)β+jy(j)(x)
)(j)

, (1.2)

where n ∈ N and γ = (α + β + 2)/2. For precise information in this context the
reader is refered to the pertinent literature [11], [12], [20]. The Legendre differential
operator corresponds to the case α = β = 0, i.e., γ = 1, and hence the numbers

{n
j

}

1
are called Legendre-Stirling numbers of the second kind. Besides the already mentioned
original field of differential equations during the past decade the Jacobi-Stirling numbers
received considerable attention especially in combinatorics and graph theory, see, e.g.,
[1], [2], [3], [6], [7], [9], [15], [16], [17], [21], [22], [23]. Among the

{

n
j

}

γ
’s the Legendre-

Stirling numbers
{n
j

}

1
were the first ones which have been examined in detail [1], [2],

[9].
For the unique solution of the recurrence (1.1) the following explicit formula is known

[3], [12], [15], [16]

{

n

j

}

γ

=

j
∑

r=0

(−1)r+j (2r + 2γ − 1)Γ(r + 2γ − 1)(r(r + 2γ − 1))n

r!(j − r)!Γ(j + r + 2γ)
, (1.3)

where n, j ∈ N0 and γ > 0. As an immediate consequence we obtain the asymptotic
statement

{

n

j

}

γ

∼ Γ(j + 2γ − 1)

j!Γ(2j + 2γ − 1)

(

j(j + 2γ − 1)
)n
, as n→ ∞, (1.4)

provided that j ≥ 1 is fixed, where throughout the symbol ∼ means that the ratio of both
sides in (1.4) tends to 1 as customary. As known from the literature on many double
sequences being significant in combinatorics much more interesting than the “pointwise
asymptotics” in (1.4) are asymptotic properties of

{

n
j

}

γ
, as n → ∞, holding uniformly

with respect to j ∈ Z, where Z denotes the set of integers as usual. The only case of the
Jacobi-Stirling numbers which has been treated under this aspect is that one for which
γ = 1/2. In the recent article [15] for the so-called Chebyshev-Stirling numbers

{n
j

}

1/2

the authors have derived asymptotic approximations for these numbers in terms of a
local central limit theorem given by (see [15, Theorem 6.2])

√

5b′n(2j)!ω
2n+1

2(2n)!

{

n

j

}

1/2

=
1√
2π

e−x2/2

(

1 +
c′n(x

3 − 3x)

6
√
n

)

+ o

(

1√
n

)

, (1.5)
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as n→ ∞, where x = (j−a′n)/
√

b′n and explicitly given elementary quantities a′n, b
′
n, c

′
n, ω.

In particular the remainder term in (1.5) holds uniformly with respect to j ∈ Z. The
proof for (1.5), which relies on a series of special properties of the Chebyshev-Stirling
numbers does not work for the Jacobi-Stirling numbers in general (see also the remarks
following Theorem 2.9 below). However, by a more elaborate analysis than in [15] it
turns out that asymptotics being similar to (1.5) can be derived for the Legendre-Stirling
numbers as well. More precisely, the main result of this paper is given by

√
bn(2j)!ω

2n+1

(2n)!

{

n

j

}

1

=
1√
2π

e−x2/2 + o(1), (1.6)

as n → ∞, where x = (j − an)/
√
bn and again elementary quantities an, bn, ω given

explicitly in Lemma 4.1. As above the remainder term holds uniformly with respect to
j ∈ Z. An immediate consequence of (1.6) is that the numbers (2j)!

{

n
j

}

1
are asymptot-

ically normal (Theorem 4.3).
A short discussion of approximations of the kind (1.5), (1.6) is given in Sections 3 and

4 below. In establishing (1.6) the main tools are taken from the central limit theory
of probability (see Section 3) and from the analysis of the basic case

{n
j

}

1/2
treated in

[15] which has to be extended by some lemmata for the Legendre-Stirling numbers
{n
j

}

1
presented in the subsequent Section 2. A related approach to asymptotics occasionally
has been applied to various sequences of special numbers in the literature, see, e.g., [4],
[5], [8], [13], [14], [15], [18], [19], [27], [28].

2 Auxiliary results

In this section we collect and prove some analytic facts which are basic for our main
result in Section 4. To begin with, we note the special case of the triangular recurrence
relation (1.1) for the Legendre-Stirling case given by

{

n

j

}

1

=

{

n− 1

j − 1

}

1

+ j(j + 1)

{

n− 1

j

}

1

n, j ∈ N, (2.1)

{

n

0

}

γ

= δn,0,

{

0

j

}

γ

= δj,0, n, j ∈ N0,

and formula (1.3) reduces to (see [2,(1.3)])

{

n

j

}

1

=

j
∑

r=0

(−1)r+j (2r + 1)(r(r + 1))n

(j − r)!(j + r + 1)!
. (2.2)

Next, from [2, (1.3)] we take the representation

{

n

j

}

1

=
1

(2j)!

2j
∑

ν=0

(−1)ν
(

2j

ν

)

(

(j − ν)(j + 1− ν)
)n
, (2.3)
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n, j ∈ N0, and for the Chebyshev-Stirling numbers from [15, Lemma 3.2] we get

{

n

j

}

1/2

=
1

(2j)!

2j
∑

r=0

(−1)r
(

2j

r

)

(j − r)2n , (2.4)

n, j ∈ N0. Now, these representations imply the following connection formulae relating
the Legendre-Stirling numbers with the Chebyshev-Stirling numbers given by

Lemma 2.1. If k, j ∈ N0, then we have

{

2k + 1

j

}

1

=

k
∑

µ=0

(

2k + 1

2µ+ 1

){

k + µ+ 1

j

}

1/2

, (2.5)

{

2k

j

}

1

=

k
∑

µ=0

(

2k

2µ

){

k + µ

j

}

1/2

. (2.6)

Proof. Using (2.3) we obtain

{

n

j

}

1

=
n
∑

µ=0

(

n

µ

)

1

(2j)!

2j
∑

ν=0

(−1)ν
(

2j

ν

)

(j − ν)n+µ . (2.7)

We observe that the inner sum is zero provided that n + µ = 2ℓ + 1 is odd; indeed we
have

2j
∑

ν=0

(−1)ν
(

2j

ν

)

(j − ν)2ℓ+1 =

j−1
∑

ν=0

. . . +

2j
∑

ν=j+1

. . . = 0

by making the index shift ν 7→ 2j − ν in the second sum. Thus, combining (2.4) and
(2.7) we get

{

2k + 1

j

}

1

=

k
∑

µ=0

(

2k + 1

2µ + 1

)

1

(2j)!

2j
∑

ν=0

(−1)ν
(

2j

ν

)

(j − ν)2k+1+2µ+1

=
k
∑

µ=0

(

2k + 1

2µ + 1

){

k + µ+ 1

j

}

1/2

,

which establishes (2.5) and

{

2k

j

}

1

=
k
∑

µ=0

(

2k

2µ

)

1

(2j)!

2j
∑

ν=0

(−1)ν
(

2j

ν

)

(j − ν)2k+2µ

=
k
∑

µ=0

(

2k

2µ

){

k + µ

j

}

1/2

,

which proves (2.6).
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Next, following [15, (15)] we consider the horizontal generating function of the modified
Chebyshev-Stirling numbers (2j)!

{n
j

}

1/2
given by

Ln(s) :=

n
∑

j=0

(2j)!

{

n

j

}

1/2

sj, s ∈ C, (2.8)

and the corresponding function for the modified Legendre-Stirling numbers (2j)!
{n
j

}

1
defined through

Mn(s) :=

n
∑

j=0

(2j)!

{

n

j

}

1

sj, s ∈ C. (2.9)

As an immediate consequence of Lemma 2.1 we conclude in

Lemma 2.2. If k ∈ N0, s ∈ C, then we have

M2k+1(s) =

k
∑

µ=0

(

2k + 1

2µ + 1

)

Lk+µ+1(s), (2.10)

M2k(s) =

k
∑

µ=0

(

2k

2µ

)

Lk+µ(s). (2.11)

In [15, Lemma 3.3, iii)] for the polynomials Ln the following representation by means
of an Eisenstein series turned out to be a very useful analytic tool (see, e.g., [10], [26, p.
234])

Ln

(

1

2(coshw − 1)

)

= (2n)!
2(coshw − 1)

sinhw

∞
∑

m=−∞

1

(w + 2πim)2n+1
, (2.12)

where n ∈ N and w ∈ C \ {2πim |m ∈ Z}. In order to derive a similar formula for Mn

we introduce the Laplace integral

Ir,n(z) :=

∞̂

0

e−ξzξr
(

(ξ + 1)n + (ξ − 1)n
)

dξ , (2.13)

where n, r ∈ N0, Re z > 0, and prove

Lemma 2.3. If n ∈ N, then for w ∈ C with Rew > 0 we have

Mn

(

1

2(coshw − 1)

)

=
coshw − 1

sinhw

∞
∑

m=−∞
In,n(w + 2πim). (2.14)

Proof. We recall the well-known binomial identities

k
∑

µ=0

(

2k + 1

2µ+ 1

)

x2µ+1 =
1

2

(

(x+ 1)2k+1 + (x− 1)2k+1
)

, (2.15)

k
∑

µ=0

(

2k

2µ

)

x2µ =
1

2

(

(x+ 1)2k + (x− 1)2k
)

, (2.16)
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where k ∈ N0 and x ∈ C. First, we consider n = 2k + 1 to be odd. Then, using (2.10),
(2.12), (2.13), and (2.15), we obtain

M2k+1

(

1

2(coshw − 1)

)

=

k
∑

µ=0

(

2k + 1

2µ+ 1

)

(

2(k + µ+ 1)
)

!
2(coshw − 1)

sinhw

∞
∑

m=−∞

1

(w + 2πim)2(k+µ+1)+1

=
2(coshw − 1)

sinhw

∞
∑

m=−∞

1

(w + 2πim)2k+2

∞̂

0

e−tt2k+1
k
∑

µ=0

(

2k + 1

2µ+ 1

) (

t

w + 2πim

)2µ+1

dt

=
coshw − 1

sinhw

∞
∑

m=−∞

∞̂

0

e−ξ(w+2πim)ξ2k+1
(

(ξ + 1)2k+1 + (ξ − 1)2k+1
)

dξ

=
coshw − 1

sinhw

∞
∑

m=−∞
I2k+1,2k+1(w + 2πim).

This establishes (2.14) for odd n = 2k + 1. If n = 2k is even, then we combine (2.11),
(2.12), (2.13) and (2.16). We omit the calculations, since they are very similar to those
above.

From the definition in (2.13) instantly we get a formula for the derivatives in

Lemma 2.4. If n, r, ν ∈ N0, then for Re z > 0 we have

I(ν)r,n (z) = (−1)ν Ir+ν,n(z) . (2.17)

Next, for our modified Eisenstein series we derive a useful error estimate (c.f. Lemma
5.1 in [15]).

Lemma 2.5. If n, r ∈ N0, r ≥ 2, and w > 0, then we have

∞
∑

m=−∞
Ir,n(w + 2πim) = Ir,n(w)

(

1 +O
(

( w

4π

)(r+1)/2
))

, (2.18)

the O-term holding uniformly with respect to w > 0 and being independent of n and r.

Proof. Writing

∞
∑

m=−∞
Ir,n(w + 2πim) = Ir,n(w)



1 +
∑

m6=0

Ir,n(w + 2πim)

Ir,n(w)





=: Ir,n(w)
(

1 +Rr,n(w)
)

,

6



we have

∣

∣Rr,n(w)
∣

∣ =

∣

∣

∣

∣

∣

∣

∣

∣

∑

m6=0

(

w

w + 2πim

)r+1

∞́

0

e−ttr
((

t
w+2πim + 1

)n
+
(

t
w+2πim − 1

)n)

dt

∞́

0

e−ttr
((

t
w + 1

)n
+
(

t
w − 1

)n)

dt

∣

∣

∣

∣

∣

∣

∣

∣

.

In view of the inequality (use (2.15), (2.16))
∣

∣

∣

∣

∣

∣

∞̂

0

e−ttr
((

t

w + 2πim
+ 1

)n

+

(

t

w + 2πim
+ 1

)n)

dt

∣

∣

∣

∣

∣

∣

≤
∞̂

0

e−ttr
((

t

w
+ 1

)n

+

(

t

w
− 1

)n)

dt

we get

∣

∣Rr,n(w)
∣

∣ ≤ 2

∞
∑

m=1

wr+1

(w2 + 4π2m2)(r+1)/2
≤ 2ζ

(

r + 1

2

)

( w

4π

)(r+1)/2
,

which implies (2.18).

An important asymptotic approximation for our purpose below is provided by

Lemma 2.6. For fixed ν ∈ N0 and z > 0 we have

In+ν,n(z) =
n!(n+ ν)!√

πn

(

2

z

)2n+ν+1(

b(z) +
bν(z)

n
+O

(

1

n2

))

(2.19)

as n→ ∞, where

b(z) = cosh
z

2
, (2.20)

bν(z) = −1

8

(

z2

2
cosh

z

2
+ 2zν sinh

z

2
+ (2ν2 + 2ν + 1) cosh

z

2

)

. (2.21)

Proof. From (2.13) we obtain

In+ν,n(z) = (−1)n+ν

(

d

dz

)n+ν
∞̂

0

e−zξ
(

(ξ + 1)n + (ξ − 1)n
)

dξ

= (−1)n+ν

(

d

dz

)n+ν {

ez(−1)n
(

d

dz

)n e−z

z
+ e−z(−1)n

(

d

dz

)n ez

z

}

= (−1)ν
(

d

dz

)n+ν {

ez
(

d

dz

)n 1

2πi

ˆ

e−τ

τ

dτ

τ − z
+ e−z

(

d

dz

)n 1

2πi

ˆ

eτ

τ

dτ

τ − z

}

,

7



where the integration is performed on a small circle around τ = z with positive orienta-
tion. Further, we get (τ − z = t)

In+ν,n(z) =
(−1)νn!

2πi

(

d

dz

)n+ν ˆ

(ez−τ + eτ−z)
dτ

τ(τ − z)n+1

=
(−1)nn!(n+ ν)!

πi

ˆ

cosh t

tn+1(t+ z)n+ν+1
dt , (2.22)

now the integration being performed on a small circle around t = 0 with positive ori-
entation. Next, we will evaluate the integral by a saddle point approximation (see [24,
Chapter 4.7, λ = 1, µ = 2]). To this end, we consider the integral

ˆ

e−np(t)q(t) dt (2.23)

with a contour of integration as above and

p(t) := log t(t+ z), q(t) :=
cosh t

t(t+ z)ν+1
, (2.24)

the branch of the logarithm being real when t ∈ (0,∞). From a simple calculation we
get that t0 = −z/2 is the only candidate for a saddle point and p′′(t0) = −8/z2. Thus,
we choose the oriented circle, given by

t(ϕ) =
z

2
eiϕ, 0 ≤ ϕ ≤ 2π,

as a new path of integration. Observe that t(π) = t0. Since for every ϕ ∈ [0, 2π]

Re
(

p(t(ϕ)) − p(t0)
)

= log
∣

∣

∣

z

2
eiϕ
(z

2
eiϕ + z

)∣

∣

∣
− log

(z

2

)2

= log |eiϕ + 2| = 1

2
log
(

1 + 4(1 + cosϕ)
)

≥ 0 ,

with equality, if and only if ϕ = π, we may apply the saddle point approximation as
described, e.g., in [24, Chapters 4.6, 4.7] and finally we obtain the asymptotic expansion

ˆ

e−np(t)q(t)dt ≈ 2√
n
e−np(t0)

∞
∑

s=0

Γ

(

s+
1

2

)

a2s
ns
, (2.25)

as n→ ∞, with constants a2s, in particular

a0 =
q

(2p′′)1/2
, a2 =

{

2q′ − 2p′′′q′

p′′
+

(

5p′′′2

6p′′2
− p(4)

2p′′

)

q

}

1

(2p′′)3/2
(2.26)

with derivatives taken t = t0. Since

lim
ϕ→π+

arg
(

t(ϕ)− t(π)
)

=
3π

2
,

8



in forming the non integral powers of p′′(t0) we have the choose that branch of ψ =
arg p′′(t0) = arg(−8/z2) satisfying |ψ + 3π| ≤ π/2 which gives ψ = −3π. Thus we have
(

2p′′(t0)
)1/2

= 4i/z and cumbersome but straightforward computations lead to (2.19) –
(2.21) by combining (2.22) – (2.26), which completes the proof.

Remark 2.1. The proof of Lemma 2.6 (see (2.25)) shows that In+ν,n(z) possesses a
complete asymptotic expansion as n→ ∞. We only computed the first two coefficients.
The saddle point analysis as described in [24] shows how to calculate more coefficients
in (2.25), however we do not need them explicitly.

Another basic fact we require below is the negativity of the zeros ofMn. Unfortunately
we do not get this information as quick as for the polynomials Ln in [15, Lemma 3.4].
We start from the equations (2.1). For the modified Legendre-Stirling numbers

{

n

j

}∗

1

:= (2j)!

{

n

j

}

1

, (2.27)

n, j ∈ N0, we immediately get the recurrence

{

n

j

}∗

1

= 2j(2j − 1)

{

n− 1

j − 1

}∗

1

+ j(j + 1)

{

n− 1

j

}∗

1

n, j ∈ N, (2.28)

{

n

0

}

γ

= δn,0,

{

0

j

}

γ

= δj,0, n, j ∈ N0.

Now (see (2.9)) for

Mn(s) =

n
∑

j=0

{

n

j

}∗

1

sj

an easy calculation implies that

Mn(s) = s
{

2Mn−1(s) + (10s + 2)M ′
n−1(s) + s(4s+ 1)M ′′

n−1(s)
}

, n ≥ 1, (2.29)

with M0(s) = 1. Hence we obtain

M1(s) = 2s, M2(s) = 4s(6s + 1), M3(s) = 8s(90s2 + 24s + 1) . (2.30)

Theorem 2.1. For every n ≥ 1 all zeros of Mn are real, simple, and they are located in

the interval
(

− 1
4 , 0
]

.

Proof. We proceed by induction with respect to n (c.f. [2, Theorem 5.7]). To begin
with, by (2.30), we note that the theorem is true for n = 1, 2, 3. Next, we assume that
the assertion holds for Mn−1, if n ≥ 4. Thus, the zeros sn−1,ν of Mn−1 (Mn−1(0) = 0,
by (2.29)) satisfy

− 1

4
< sn−1,n−1 < . . . < sn−1,2 < sn−1,1 = 0 . (2.31)

9



Consequently, Mn−1 has n− 2 relative extreme points, tn−1,ν say, ν = 1, . . . , n− 2, such
that

− 1

4
< tn−1,n−2 < tn−1,n−3 < . . . < tn−1,1 < 0 (2.32)

and
signMn−1(tn−1,ν) = (−1)ν , signM ′′

n−1(tn−1,ν) = (−1)ν+1 , (2.33)

ν = 1, . . . , n−2 (observe that all coefficients ofMn−1 are positive). SinceM
′
n−1(tn−1,ν) =

0, ν = 1, . . . , n− 2, from (2.29) we get

Mn(tn−1,ν) = tn−1,ν

{

2Mn−1(tn−1,ν) + tn−1,ν(4tn−1,ν + 1)M ′′
n−1(tn−1,ν)

}

and hence (tn−1,ν < 0, 4tn−1,ν + 1 > 0)

signMn(tn−1,ν) = (−1)ν+1, ν = 1, . . . , n− 2 . (2.34)

Thus, there exist n− 3 zeros, sn,ν say, of Mn, ν = 3, . . . , n− 1, such that

−1

4
< tn−1,n−2 < sn,n−1 < tn−1,n−3 < sn,n−2 < . . . < tn−1,2 < sn,3 < tn−1,1 < 0.

Since Mn(0) = 0,M ′
n(0) =

{

n
1

}∗
1
= 2

{

n
1

}

1
> 0 and signMn(tn−1,1) = 1, there is an

additional zero sn,2 ∈ (tn−1,1, 0) of Mn. So far we have proved that Mn has n− 1 zeros
sn,ν, satisfying

−1

4
< tn−1,n−2 < sn,n−1 < . . . < tn−1,1 < sn,2 < sn,1 = 0.

Finally, from (2.34) we conclude

signMn(tn−1,n−2) = (−1)n−1 (2.35)

and further from (2.29) we infer

signMn

(

−1

4

)

= sign

(

−1

4

)

sign

{

2Mn−1

(

−1

4

)

− 1

2
M ′

n−1

(

−1

4

)}

= (−1)n ,

(2.36)
which is true in view of (2.31), (2.32) and because Mn−1, M

′
n−1 have non-negative

coefficients only. Concluding, (2.35) and (2.36) ensure that Mn has an additional zero
sn,n ∈

(

− 1
4 , tn−1,n−2

)

. Summarizing, Theorem 2.1 is proved.

Using a well-known criterion for the unimodality of a sequence of real numbers, for
example [8, Theorem B, p. 270], from Theorem 2.1 we immediately obtain a supplement
of the unimodality property of the Legendre-Stirling numbers [2, Theorem 5.9].

Theorem 2.2. If n ≥ 3, the numbers (2j)!
{n
j

}

1
, 0 ≤ j ≤ n, are unimodal with either a

peak or a plateau of two points.

10



For the Jacobi-Stirling numbers
{

n
j

}

γ
in general the polynomials

Mγ
n (s) =

n
∑

j=0

(2j)!

{

n

j

}

γ

sj

satisfy a recurrence being similar to (2.29). However, e.g. Mγ
3 has non real zeros, when

γ is sufficiently large. Thus, there is no analogue of Theorem 2.1 and the arguments
below are cannot be applied for general γ.

3 Tools from probability

In this section we briefly provide some notations from probability and present a general
local central limit theorem which turns out to be a basic tool for our main result below.
In order to keep this article self-contained we summarize essential topics from section 4
of [15], see also section 3 of [14]. This probalistic point of view occasionally has been
used in the literature for computing asymptotics, e.g. [4], [5], [8], [13], [14], [15], [18],
[27], [28].

Motivated by the generating polynomials Mn in (2.9) with real and non-positive zeros
only (Theorem 2.8) we consider the polynomials

An(s) :=

n
∑

j=0

αnjs
j = αnn

n
∏

ν=1

(s+ xnν) (3.1)

with xnν ≥ 0, ν = 1, . . . , n, and ask for asymptotics of the coefficients αnj , as n → ∞,
uniformly in j. Now the polynomials

An(s)

An(1)
=

n
∏

ν=1

(pnνs+ 1− pnν) , (3.2)

where pnν := 1/(1 + xnν), may be regarded as the generating functions of the row sums

Sn =

n
∑

ν=1

Xnν

of a triangular array of Bernoulli random variables

(Xnν)1≤ν≤n .

Due to the factorization in (3.2), the entries Xn1, . . . ,Xnn are independent with distri-
butions given by

P (Xnν = 1) = pnν , P (Xnν = 0) = 1− pnν

with numbers pnν ∈ [0, 1]. Now the aim is an asymptotic expansion for the probabilities

pn,j := P (Sn = j)

11



as n→ ∞, uniformly in j ∈ Z. In order to quote a relevant limit theorem we need some
further notation and conditions. Suppose that µn := E(Sn) and σ

2
n = V ar (Sn) are the

expectation and the variance of Sn respectively for which we assume that

lim inf
n→∞

σ2n
n
> 0 . (3.3)

The normalized cumulants of Sn are defined by

λν,n :=
n(ν−2)/2

σνn

1

iν

(

d

dt

)ν

logE(eitSn)
∣

∣

∣

t=0
, (3.4)

n, ν ∈ N, ν ≥ 2, where E(eitSn) is the characteristic function of Sn and log is that branch
of the logarithm on the cut plane C \ (−∞, 0] satisfying log 1 = 0. Finally, we introduce
the functions

qν,n(x) :=
1√
2π

e−x2/2
∑

µ1+2µ2+...+νµν=ν

Hν+2s(x)

ν
∏

m=1

1

µm!

(

λm+2,n

(m+ 2)!

)µm

, (3.5)

x ∈ R, n, ν ∈ N, where s = µ1 + . . . + µν , and the modified Hermite polynomials are
defined by

Hm(x) := (−1)mex
2/2

(

d

dx

)m

e−x2/2, (3.6)

x ∈ R,m ∈ N0. Now we can formulate our basic auxiliary result which we take from [14,
Lemma 3.1].

Lemma 3.1. Assuming the above notations and the condition (3.3), then for every

k ≥ 2, we have

σnp(n, j) =
1√
2π

e−x2/2 +

k−2
∑

ν=1

qν,n(x)

nν/2
+ o

(

1

n(k−2)/2

)

, (3.7)

as n→ ∞, uniformly j ∈ Z, where x = (j − µn)/σn.

The reader who is not familiar with expansions of type (3.7) is refered to the discussion
accompanying Lemma 3.1 in [14] in general and to the comments following Theorem 4.1
below.

4 Central limit results for the Legendre-Stirling numbers

In this final section we apply the preliminary results of the previous section with An(s) =
Mn(s) and

p(n, j) :=
(2j)!

{

n
j

}

1

Mn(1)
, (4.1)

where Mn(s) is given by (2.9). This is possible in view of Theorem 2.1. First, we
compute approximations for the expectation and the variance of the distribution in

12



(4.1). To this end we use the notations introduced in Section 3. Looking at (2.14) as in
[15] we introduce the number

ω := 2 log

√
5 + 1

2
= 0.9624 . . . (4.2)

being the unique positive solution of 2(coshw−1) = 1. Also in the sequel we will denote
by q ∈ (0, 1) a constant which may be different at each occurrence.

Lemma 4.1. Suppose that the sequences (an) and (bn) are given by

an =
2n + 1√

5ω
− 1

2
, bn =

(

1

2
− ω√

5

)(

2

ω

)2 n

5
, (4.3)

then we have

µn = an +O
(

1

n

)

, σ2n = bn +O(1) , (4.4)

as n→ ∞.

Proof. We use the well-known formulae

µn =
M ′

n(1)

Mn(1)
, σ2n =

M ′′
n(1)

Mn(1)
+
M ′

n(1)

Mn(1)
−
(

M ′
n(1)

Mn(1)

)2

(4.5)

from probability [25]. Further we apply Lemmata 2.3 - 2.6 with w = z = ω giving
asymptotic approximations for the derivatives in (4.5). More precisely, regarding Lemma
2.3, we put

f(w) :=
sinhw

coshw − 1
= cotanh

w

2
, g(w) :=

1

2(coshw − 1)
=

1

4 sinh2 w
2

(4.6)

for w > 0 and observe that

f ′(w) = −2g(w), g′(w) = −g(w)f(w). (4.7)

Now, (2.14) can be written as

f(w)Mn

(

g(w)
)

=

∞
∑

m=−∞
In,n(w + 2πim), w > 0. (4.8)

Differentiation, Lemma 2.4 and the use of (4.7) give

2g(w)Mn

(

g(w)
)

+ g(w)f(w)2M ′
n

(

g(w)
)

=

∞
∑

m=−∞
In+1,n(w + 2πim), (4.9)

2g(w)f(w)Mn

(

g(w)
)

+
{

6g(w)2f(w) + g(w)f(w)3
}

M ′
n

(

g(w)
)

+ g(w)2f(w)3M ′′
n

(

g(w)
)

=

∞
∑

m=−∞
In+2,n(w + 2πim) . (4.10)

13



Since f(w) =
√

1 + 4g(w) and g(ω) = 1, f(ω) =
√
5, (4.8) - (4.11), for w = ω, imply

√
5Mn(1) =

∞
∑

m=−∞
In,n(ω + 2πim), (4.11)

2Mn(1) + 5M ′
n(1) =

∞
∑

m=−∞
In+1,1(ω + 2πim), (4.12)

2
√
5Mn(1) + 11

√
5M ′

n(1) + 5
√
5M ′′

n(1) =

∞
∑

m=−∞
In+2,n(ω + 2πim), (4.13)

and further, by Lemma 2.5,

M ′
n(1)

Mn(1)
=

In+1,n(ω)√
5In,n(ω)

(

1 +O(qn)
)

− 2

5
, (4.14)

M ′′
n(1)

Mn(1)
=

In+2,2(ω)√
5In,n(ω)

(

1 +O(qn)
)

− 11

5

M ′
n(1)

Mn(1)
− 2

5
. (4.15)

Now, tedious but straightforward and elementary calculations establish (4.4)

For later reference we note the following consequence of (4.11), (2.18) and (2.19) (also

use cosh ω
2 =

√
5
2 and Stirling’s formula)

Mn(1) =
1√
5
In,n(ω)

(

1 +O(qn)
)

=
(n!)2√
5πn

(

2

ω

)2n+1

cosh
ω

2

(

1 +O
(

1

n

))

=
(2n)!

ω2n+1

(

1 +O
(

1

n

))

. (4.16)

Now, our main result is stated in

Theorem 4.1. Suppose that the sequences (an), (bn), and the number ω are given by

(4.3) and (4.2) respectively, then we have

√
bn(2j)!ω

2n+1

(2n)!

{

n

j

}

1

=
1√
2π

e−x2/2 + o(1) , (4.17)

as n→ ∞, uniformly in j ∈ Z, where x = (j − an)/
√
bn.

Proof. According to our preparations we apply Lemma 3.1 with k = 2 to the probabilities
in (4.1). This is permitted, since the central condition (3.3) is satisfied in view of Lemma
4.1. Hence, we get

σn(2j)!

Mn(1)

{

n

j

}

1

=
1√
2π

e−y2/2 + o(1) , (4.18)
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as n→ ∞, uniformly in j ∈ Z, where y = (j−µn)/σn and µn, σn are taken from Lemma
4.1. Now, elementary calculus shows that in (4.18) we may replace y by x, given in
(4.17), and finally the approximation (4.16) leads to the main formula (4.17).

At this stage some comments on Theorem 4.1 are in order. We repeat that the error
term in (4.17) holds uniformly with respect to j ∈ Z. However, the most valuable
information is provided for j’s such that x = (j − an)/

√
bn is bounded. A similar

statement holds for the general local central limit theorem in Lemma 3.1 as well. If j
depends on n such that |x| tends to infinity sufficiently fast, then the right hand side is
of order o(1) only. According to these remarks we may expect a good approximation of
{n
j

}

1
by the quantity

A(n, j) :=
(2n)!√

2πbn(2j)!ω2n+1
e−x2/2,

if j is close to an ∼ 2n/
√
5ω. For illustration we choose n = 1000 and j = 930 which

implies the relative comparison given by

{n
j

}

1

A(n, j)
= 1.043849 . . . .

We also mention that on the basis of the general Lemma 3.1 we could improve the error
term in (4.17) which requires more terms for the expansion (2.19). However, here we do
not perform the necessary calculations.

An immediate consequence of Theorem 4.1 is the asymptotic normality of the numbers
(2j)!

{n
j

}

1
. We omit detailed explanations, since they use routine arguments regarding

approximations of integrals by means of Riemann sums.

Theorem 4.2. Suppose that the sequences (an), (bn) and the number ω are given by

(4.3) and (4.2) respectively, then for all y ∈ R we have

lim
n→∞

ω2n+1

(2n)!

∑

j≤an+y
√
bn

(2j)!

{

n

j

}

1

=
1√
2π

y
ˆ

−∞

e−t2/2dt. (4.19)

The proofs for the asymptotics of the Legendre-Stirling numbers
{

n
j

}

1
in this paper

and of the Chebyshev-Stirling numbers
{

n
j

}

1/2
in [15] to a large extent depend on the

special representations (2.3), (2.4) and related analytic quantities. In the comments
following Theorem 2.2 above we briefly indicated why our approach cannot be applied
to the Jacobi-Stirling numbers in general. However, for the special case γ = 0 we have

{

n

j

}

0

=

{

n− 1

j − 1

}

1

, (4.20)

and, consequently, the results of this paper also hold for the numbers
{n
j

}

0
. The identity

(4.20) either can be verified directly by using (1.3) or by showing that both sequences
in (4.20) satisfy the same recurrence relation.
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