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Abstract

We define a Riordan triangle for generalized Bell numbers and we establish general
identities connecting Lah, Stirling, Tanh and the generalized Bell numbers. Several fa-
miliar inverse relations converting between special sequences are shown to be particular
cases of the general identities.

1 Introduction

We consider, in the context of the (exponential) Riordan group (R; %), inverse relations

c(n,m) = Za(n,@')b(i,m) < b(n,m) = ZA(n,i)c(i,m), n,m >0 (1.1)

i

converting between arrays of numbers. The concept of Riordan group was introduced by
Shapiro et al. [ as a generalization of a study of Rogers [[J on renewal arrays and used
in several applications, including [[d, [7, [, [0, [, [0. The last reference, pointed out
to us by the referee, contains an application of the concept of a Riordan array to the
Akiyama-Tanigawa transformation analogous to the formalism developed in the present
paper. An element R € (R; *) is denoted by R = (q(u), R(u)) where ¢(u) is an ex-
ponential generating function such that ¢(0) = 1 and R(u) is an exponential generating
function such that R(0) = 0 and R'(0) = 1. The numbers R(n,m), defined recursively by
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—q(u)R™(u) = 3 5o R(n,m)u™/n!, m =0,1,2,---, are the entries of an invertible infinite
lower triangular matrix (R(n,m)nm>0), called a Riordan array. The Riordan group product
* is defined by

¢ =axb=(g(u),a(w))x (h(u),b(u)) = (g(u)h(a(w)), bla(u))). (1.2)

(
This notation and the matrix notation c(n,m) =Y, a(n,)b(i, m) are isomorphic. The unit
element is I = (1, u) and the inverse r of R is r = (g(u), R(u))™' = (1/9(R(u)), R(u))
where R(u) is the compositional inverse of R(u) : R(R(u)) = R(R(u)) = u.

In Section 2, we consider pairs of Riordan arrays {a, A}, {b, B} and {¢, C} corresponding
to numbers that are inverse of each other and from an identity ¢ = a * b, we derive new
identities C'= Bx A, A = b* C, etc.. If numbers R(n,m) can be extended to all integers n
and m, then we will use dual elements R(n,m) = R(—m, —n) and dual identities defined by

c(n,m) = Z a(—m,0)b(i, —n) = Z a(—m, —i)b(—i, —n)
- Zz(n, ia(i,m),

that is, ¢ = bxd. The change of 7 into —¢ is legal because, conventionally, all numbers are
null when n < 0 < m and the summation ranges are unrestricted. We will also consider
inverse relations that are duals (“~") of each other:

c=axbob=Axc ~ C=bxaeb=c*A.

In Section 3, we will discuss inverse relations converting between sequences that are
special cases m = 1, 2 of inverse relations ([]]) converting between arrays.

2 Converting between Stirling, Lah, Tanh and Bell

numbers

The Riordan group elements considered in this paper belong to the so-called associated
subgroup of (R; x), i.e., they are of the form R = (1, R(u)). In this case the expression
(L2) of the product of two Riordan arrays ¢ = a % b reduces to

Cm(U)Zann‘ ZZ a(n, i) @mn'

n>0 n>0 4

= bm(a(u)).

The referee suggested the use of the negation rule “-7 : for any R = (1, R(u)), —R =
(1, —R(—u)) and —(V x Q) = —W¥ x —Q; the rule replaces R(n,m) in the formulas by
(—1)" ™R and this allows a more elegant formulation of our results. We shall also use a
scaling rule “p” : for any R = (1, R(u)), pR = (1, puR(u/w)) and p(¥ * Q) = p¥ x uQ for
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all real or complex numbers y; the rule replaces R(n,m) in the formulas by R(n,m)/u™~"™.
Negation is a scaling with = —1 and lim,,_, 1o (1, R(u)) = (1, u) = I.

Stirling numbers. The Stirling numbers of the first and second kind are denoted s(n, m)
and S(n,m), respectively, [[]. The unsigned numbers are ['] = (—1)""™s(n,m) and {} =
S(n,m). Formal properties of the Stirling numbers [[]] include

— (1, s(w) = (1 +w), §=(1, S(u)=e"—1),
s*kS=8Sxs=1, S=—-s5 5=-6.

Lah numbers We define Lah numbers of the first and second kind A(n,m) and A(n,m)
as follows:

Amm) = S L), Ay m) =

2n—m

where instead of the familiar explicit expression

Lonm) = (2 (1) ez

m!\m—1

we will use

L(n,m)z(—l)”(n—m)!( " )(”_1>, all integers n, m,

n—m n—m

that has the advantage of extending L(n, m) to all integers n and m, and providing a defi-
nition for Lah dual numbers:

Lnm) = 2(-m,-m) = 0=t ) (M) = e

n—m n—m

Comm-mt (P20 () = oL

From the exponential generating function of L(n,m) (see [[LIl Problem 16 (b), p. 44])

1 _ m
Zanu—:— 4 ,
' m!\1+4+u

we derive the exponential generating functions

Am(11) = % (1+UT/2>m Am(u) = % (1 —uu/2>m‘

These exponential generating functions, the fact that AM(u) = —A(—u) and (P-I]) yield the
formal properties:

)\:<1, A(u):1+uu/2), A= (1 A(u
Afw)=Nu) AxA=Ax =1 A=A=-\ )\

—_
+
Q
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Tanh numbers. Let ¢t = (1, t(u) = arctan(u)) and T' = (1, T'(u) = tan(u)) be the Riordan
arrays of the arctan t(n,m) and tangent T'(n,m) numbers, respectively. The recurrence
relations (see [, pp. 259-260])

tin+1,m)=t(n,m—1)—n(n—1)t(n —1,m),
Tn+1,m)=Tn,m—1)+m(m+ 1)T(n,m+ 1),
t(0,m) =T(0,m) =[m=0], ¢(n,0)=T(n=0)=[n=0],

imply T'(n,m) = T(—m, —n) = t(n,m) and {(n,m) = t(—m, —n) = T(n, m).
Our first and second kind Tanh numbers 6(n, m) and O(n, m) are

(_1)(n—m)/2 (_1>(n—m)/2

2nfm

O(n,m) = t(n,m), ©O(n,m)= T(n,m),

2nfm
that is, @ = ut and © = pT with u = 2/2, 1> = —1. Summarizing;
B o 14u)2 B et -1
6—(1, H(U)—lnl_u/2), @—(1, @(u)—26u+1),
Ou)=0(u) x0=0x0=1I1, O=0=-0 §=0=-0,

where § = —f and © = —O because §(u) and O(u) are odd functions of w.

Theorem 2.1. Numbers in each pair {s,S}, {\,A} and {0,0} convert between numbers in

the other two pairs.

Proof. With S(u) =€ — 1, Mu) = u/(1 +u/2) and O(u) = 2(e* — 1)/(e* + 1),
Sl (ev—1)/2
© = S+ A and in matrix notation ©(n,m) = Z S(n,i)A\(i,m).

A(S(u)) = A" —1) O(u), therefore

The identities that can be derived from © = 5 % \ are
= Axs Riordan group inversion

S =0xA right multiplication by A
s=A%6 left multiplication by s/right multiplication by 6
A=60xS left multiplication by 6 /right multiplication by A

A =s%x0O left multiplication by s

and the inverse relations
O=59%AEA=540 ~ O=AxsA=0xS

0=Axs&s=Ax0 ~ O=SxA&eS5S=0%xA
S=0xASA=0x5 ~ s=Ax0& ) \=s5%x0.



The above identities prove the theorem. In deriving dual inverse relations, we tacitly used

duality and negation rules. |

Corollary 2.2. Tanh numbers are represented by linear combinations of Stirling numbers,

and conversely:

—~(n—-1\ 1
O(n,m) = n! Z;n (z B 1) 2n_ii!3(z,m),
1 —1 1)=mq! ,
nﬂE:( )—fgx—smﬂﬁ

n—i

s(n,m _nv;(z_l) S 00 m),
n,m Wﬂ§:<z_1)2fm@mJ)

Proof. Write explicitly Aand Aind = Axs, ©=Sx X\ s=Axf0 and S =0 xA. O

Bell numbers. Bell numbers A,,, n > 1, can be defined by B(u) = exp(e* — 1) — 1 =
> st Anu™/nl, [A]. We define generalized Bell numbers of the second kind B(n,m) by

TL

B (u) = ! (exp(e -1 -1 ZB n,m) —'

With S(u) = e* — 1 and s(u) = S(u) = In(1 + u), we have
B(u) = S(S(u)) and B(u) = B(u) = s(s(u)) = In(1 + In(1 + u)).
Thus, generalized Bell numbers of the first kind #(n, m) can be defined by

B (u) = (ln(l + In(1 + u) Zﬁ n,m)

m!
n>1
Theorem 2.3. Bell numbers {3, B} can be represented as squares (group multiplication) of

Stirling numbers: 3 =s*s and B= 5% 5.

Proof. The Riordan array products f = s* s and B =S %S hold in view of the functional
relations G(u) = s(s(u)) and B(u) = S(S(u)). O
Summarizing:

B =1, f(u)=In(l+In(1+ u))),
B=(1, B(u) =exp(e"—1)—1)
BxB=BxB=1 B=-8, B=-B

where the dual relations follow from Stirling number dual relations.
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Theorem 2.4. Bell numbers in {3, B} and Stirling numbers in {s, S} convert between each

other.

Proof. The identities that can be derived from B = S x .S are

8 =sxs Riordan group inversion

S =sx B left multiplication by s

s =S%( left multiplication by s and right multiplication by f3,
and the inverse relations

B=5SxS&S=sxB ~ [=sxs&s=0x5

b=sxs<s=5x ~ B=SxS<S=Bxs.

The above identities prove the theorem. In deriving dual inverse relations, we tacitly used

duality and negation rules. |

Corollary 2.5. Bell numbers {3, B} and Stirling numbers {s, S} satisfy the commutation
relations Sx 3 =0*xS =s and sxB=Bxs=S5.

Proof. Left multiplication by S and right multiplication by S of § = sx s give S+ = s and
0% S = s, respectively. By inversion, we get Bxs=s+xB = 5. O

The Riordan triangle (B(n,m), m>0) is different from the Pascal type triangle proposed
by Shallit [[J. This is obtained by flipping and reorienting a rectangular array given by
Cohn et al. [f] for an efficient calculation of the Bell numbers. The reader may find it quite
interesting to see the nice properties of Shallit’s triangle.

3 Special cases

The following examples are mainly special cases m = 1,2 of the above relations and they
will be compared with identities commonly found in the literature.
1) When m=1,0 = Sx A& A =s%x0O gives

C T B, i1
-_n _ -1 (n+1)/211 =0l =2(1 — 2n+1 n+
2= (SR = 0] = )
o S (=D
=) 2
n! “n C " n - Biig
s — = 1) = = 9(1 — gty L
n — L}( ) 21 — L] ( )i—l—l

(=}



The first identity appears in ([[], p. 585]) and ([f], Exercise 6.76]). It can also be found in
Sprugnoli ([Id, p. 288]) as a result of the theory of Riordan arrays and in Chen [[J by

application of the Akiyama-Tanigawa algorithm [[]].
2) Since 8(n,m) = ©(n,m) = 0 when n —m is odd, Corollary P.9 yields

n

E:(?:f)ﬁqam)zﬁi(;:i>“¥%%mn)za n —m odd.

i=m =m

For m =1, the first identity leads to a trivial result, whereas the second gives the identity
Yoy {2"} 1)4!/28 = 0, n > 0 found by Lengyel ([[, p. 7]) in his study of the series

> o Kt

For m = 2 With s(n,2) = (=1)"(n — 1)!H,_; where H,, are harmonic numbers, we find

on+1 - on

2n \ 2* 2n+1 .
E —s(1, 2 :E —2)'H,; = .
- <z’—1)z‘!8(z’) H(Hl)( JHi=0,n>0

3) Form=1,S=0+xA < A=0x%S gives

n

=Y Oy & gy =609 (14 [ =0)).

=0

4) For m = 1, two identities in Lah’s original paper ([}, Egs. (34) and (43)]): L(n,m) =
Yoros(n,i)(=1)'S(i,m) & (=1)"S(n,m) = Y." ,S(n,i)L(i,m), yield the simple inverse

relation .
3 m —n‘@Z{ } Jiil = (=1)"
i=0

5) The inverse of

S () e

(2

that appears in ([[J, Section 6.5, Eq. (6.99)]) is

> [T ) e - L]

i

For m = 1, we find the well-known inverse relations ([[, pp. 220-221])

S{ = me  [fern-

i

6) From B = S xS and S = © x A we obtain B = S« © x A, which in matrix notation
is B(n,m) = >_,>;5(n,)0(i, j)A(j,m). To hold down the size of this paper, we give only
one example of trlple factorization.



4 Main results and Conclusion

Group theory provides a rapid and systematic way to derive from a given identity connecting
Riordan arrays, further identities and inverse relations. Applying this approach to ©(n,m) =
> S(n,i)A(i,m), we found that special cases m = 1, 2 of the general identities are results
obtained in the literature by (often more complex) procedures which seem at first to be
unrelated to each other, whereas here they have a common origin and are obtained by a
unifying procedure.

The identities § = s x s and B = S x S connect Bell, Stirling, Lah, and Tanh numbers
through, for instance, the identity B = S« © x A. Triple factorizations d = a * b* ¢ may lead
in special cases m = 1, 2 to interesting identities connecting three Riordan arrays; we hope
to investigate in this direction in a future publication.
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