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INTERESTING PROPERTIES OF LAGUERRE POLYNOMIALS

N. C. Mohanty
Systems Control, Ine., Palo Alto, California 84304

Recent interest in optical communication has added to the importance of study of Laguerre polynomials [1] and
distribution. We will establish two propasitions which arise in studies of Laguetre distribution [2].
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CONCLUSION
It is interesting to note that if pfx) > 0 and ; plx)dx = 1and B’ < = 2 i, then A’ are called moments of the ran-
dom variable x. Expectation of Laguerre polynomials of random variables is Laguerre polynomials of moments.
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