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1 Introduction and preliminary results

The concept of the usual Laguerre–Hahn polynomials were extensively studied by several authors
[1, 2, 4, 6, 8, 9, 10, 15, 18]. They constitute a very remarkable family of orthogonal polyno-
mials taking consideration of most of the monic orthogonal polynomials sequences (MOPS)
found in literature. In particular, semiclassical orthogonal polynomials are Laguerre–Hahn
MOPS [15, 20]. The Laguerre–Hahn set of form (linear functional) is invariant under the
standard perturbations of forms [2, 9, 18, 20]. It is well known that a usual Laguerre–Hahn
polynomial satisfies a fourth order differential equation with polynomials coefficients but the
converse remains not proved until now [20]. Discrete Laguerre–Hahn polynomials were studied
in [13]. These families are already extensions of discrete semiclassical polynomials [19]. In liter-
ature, analysis and characterization of the q-Laguerre–Hahn orthogonal q-polynomials have not
been yet presented in a unified way. However, several authors have studied the fourth order
q-difference equation related to some examples of q-Laguerre–Hahn orthogonal q-polynomials
such as the co-recursive and the rth associated of q-classical polynomials [11, 12]. More gener-
ally, the fourth order difference equation of Laguerre–Hahn orthogonal on special non-uniform
lattices polynomials was established in [4]. For other relevant works in the domain of orthogonal
q-polynomials and q-difference equation theory see [3, 21] and [5].

So the aim of this contribution is to establish a basic theory of q-Laguerre–Hahn orthogonal q-
polynomials. We give some characterization theorems for this case such as the structure relation
and the q-Riccati equation. We extend the concept of the class of the usual Laguerre–Hahn
forms to the q-Laguerre–Hahn case. Moreover, we show that some standard transformation and
perturbation carried out on the q-Laguerre–Hahn forms lead to new q-Laguerre–Hahn forms;
the class of the resulting forms is analyzed and some examples are treated.

?This paper is a contribution to the Proceedings of the Conference “Symmetries and Integrability of
Difference Equations (SIDE-9)” (June 14–18, 2010, Varna, Bulgaria). The full collection is available at
http://www.emis.de/journals/SIGMA/SIDE-9.html

mailto:Abdallah.Ghrissi@fsg.rnu.tn
mailto:kheriji@yahoo.fr
mailto:MohamedIhssen.Tounsi@issatgb.rnu.tn
http://dx.doi.org/10.3842/SIGMA.2011.092
http://www.emis.de/journals/SIGMA/SIDE-9.html


2 A. Ghressi, L. Khériji and M.I. Tounsi

We denote by P the vector space of the polynomials with coefficients in C and by P ′ its
dual space whose elements are forms. The action of u ∈ P ′ on f ∈ P is denoted as 〈u, f〉. In
particular, we denote by (u)n := 〈u, xn〉 , n ≥ 0 the moments of u. A linear operator T : P −→ P
has a transpose tT : P ′ −→ P ′ defined by

〈tTu, f〉 = 〈u, Tf〉, u ∈ P ′, f ∈ P.

For instance, for any form u, any polynomial g and any (a, c) ∈ (C \ {0})× C, we let Hqu, gu,
hau, Du, (x− c)−1u and δc, be the forms defined as usually [20] and [16] for the results related
to the operator Hq

〈Hqu, f〉 := −〈u,Hqf〉, 〈gu, f〉 := 〈u, gf〉, 〈hau, f〉 := 〈u, haf〉,
〈Du, f〉 := −〈u, f ′〉, 〈(x− c)−1u, f〉 := 〈u, θcf〉, 〈δc, f〉 := f(c),

where for all f ∈ P and q ∈ C̃ :=
{
z ∈ C, z 6= 0, zn 6= 1, n ≥ 1

}
[16]

(Hqf)(x) =
f(qx)− f(x)

(q − 1)x
, (haf)(x) = f(ax), (θcf)(x) =

f(x)− f(c)

x− c
.

In particular, this yields to

(Hqu)n = −[n]q(u)n−1, n ≥ 0,

where (u)−1 = 0 and [n]q := qn−1
q−1 , n ≥ 0 [15]. It is obvious that when q → 1, we meet again the

derivative D.

For f ∈ P and u ∈ P ′, the product uf is the polynomial [20]

(uf)(x) := 〈u, xf(x)− ζf(ζ)

x− ζ
〉 =

n∑
i=0

 n∑
j=i

(u)j−i fj

xi,

where f(x) =
n∑
i=0

fix
i. This allows us to define the Cauchy’s product of two forms:

〈uv, f〉 := 〈u, vf〉, f ∈ P.

The product defined as before is commutative [20]. Particularly, the inverse u−1 of u if there
exists is defined by uu−1 = δ0.

The Stieltjes formal series of u ∈ P ′ is defined by

S(u)(z) := −
∑
n≥0

(u)n
zn+1

.

A form u is said to be regular whenever there is a sequence of monic polynomials {Pn}n≥0,
degPn = n, n ≥ 0 such that 〈u, PnPm〉 = rnδn,m with rn 6= 0 for any n,m ≥ 0. In this case,
{Pn}n≥0 is called a monic orthogonal polynomials sequence MOPS and it is characterized by
the following three-term recurrence relation (Favard’s theorem)

P0(x) = 1, P1(x) = x− β0,

Pn+2(x) = (x− βn+1)Pn+1(x)− γn+1Pn(x), n ≥ 0, (1.1)

where βn = 〈u,xP 2
n〉

rn
∈ C, γn+1 = rn+1

rn
∈ C \ {0}, n ≥ 0.
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The shifted MOPS {P̂n := a−n(haPn)}n≥0 is then orthogonal with respect to û = ha−1u and
satisfies (1.1) with [20]

β̂n =
βn
a
, γ̂n+1 =

γn+1

a2
, n ≥ 0.

Moreover, the form u is said to be normalized if (u)0 = 1. In this paper, we suppose that any
form will be normalized.

The form u is said to be positive definite if and only if βn ∈ R and γn+1 > 0 for all n ≥ 0.
When u is regular, {Pn}n≥0 is a symmetrical MOPS if and only if βn = 0, n ≥ 0 or equivalently
(u)2n+1 = 0, n ≥ 0.

Given a regular form u and the corresponding MOPS {Pn}n≥0, we define the associated

sequence of the first kind
{
P

(1)
n

}
n≥0

of {Pn}n≥0 by [20, equations (2.8) and (2.9)]

Pn
(1)(x) =

〈
u,
Pn+1(x)− Pn+1(ξ)

x− ξ
〉

= (uθ0Pn+1)(x), n ≥ 0.

The following well known results (see [16, 17, 20]) will be needed in the sequel.

Lemma 1. Let u ∈ P ′. u is regular if and only if ∆n(u) 6= 0, n ≥ 0 where

∆n(u) := det
(
(u)µ+ν

)n
µ,ν=0

, n ≥ 0

are the Hankel determinants.

Lemma 2. For f, g ∈ P, u, v ∈ P ′, (a, b, c) ∈ C \ {0} × C2, and n ≥ 1, we have

(x− c)
(
(x− c)−1u

)
= u, (x− c)−1((x− c)u) = u− (u)0δc, (1.2)

(uθ0f)(x) = anx
n−1(u)0 + lower order terms, f(x) =

n∑
k=0

akx
k, (1.3)

uθ0(fg) = g(uθ0f) + (fu)θ0g, (1.4)

uθ0(fPk+1) = fP
(1)
k , k + 1 ≥ deg f, (1.5)

θb − θc = (b− c)θb ◦ θc, θb ◦ θc = θc ◦ θb, (1.6)

ha(gu) = (ha−1g)(hau), ha(uv) = (hau)(hav), ha
(
x−1u

)
= ax−1hau, (1.7)

hq−1 ◦Hq = Hq−1 , Hq ◦ hq−1 = q−1Hq−1 , in P, (1.8)

hq−1 ◦Hq = q−1Hq−1 , Hq ◦ hq−1 = Hq−1 , in P ′, (1.9)

Hq(fg)(x) = (hqf)(x)(Hqg)(x) + g(x)(Hqf)(x), (1.10)

Hq(gu) = (hq−1g)Hqu+ q−1(Hq−1g)u, (1.11)

Hq−1(uθ0f)(x) = q(Hqu)θ0(hq−1f)(x) + (uθ0Hq−1f)(x), (1.12)

S(fu)(z) = f(z)S(u)(z) + (uθ0f)(z), (1.13)

S(uv)(z) = −zS(u)(z)S(v)(z), (1.14)

S(x−nu)(z) = z−nS(u)(z), S(u−1)(z) = z−2(S(u)(z))−1, (1.15)

S(Hqu)(z) = q−1(Hq−1(S(u)))(z), (hq−1S(u))(z) = qS(hqu)(z). (1.16)

Definition 1. A form u is called q-Laguerre–Hahn when it is regular and satisfies the q-
difference equation

Hq(Φu) + Ψu+B
(
x−1u(hqu)

)
= 0, (1.17)

where Φ, Ψ, B are polynomials, with Φ monic. The corresponding orthogonal sequence {Pn}n≥0

is called q-Laguerre–Hahn MOPS.
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Remark 1. When B = 0 and the form u is regular then u is q-semiclassical [17]. When u is
regular and not q-semiclassical then u is called a strict q-Laguerre–Hahn form.

Lemma 3. Let u be a regular form. If u is a strict q-Laguerre–Hahn form satisfying (1.17) and
there exist two polynomials ∆ and Ω such that

∆u+ Ω
(
x−1u(hqu)

)
= 0 (1.18)

then ∆ = Ω = 0.

Proof. The operation ∆× (1.17)−B × (1.18) gives

ΩHq(Φu) + (ΩΨ−∆B)u = 0.

According to (1.9) and (1.11), the above equation becomes

Hq((hqΩ)Φu) + (ΩΨ− (HqΩ)Φ−∆B)u = 0.

Then ∆ = Ω = 0 because the form u is regular and not q-semiclassical. �

Lemma 4. Consider the sequence {P̂n}n≥0 obtained by shifting Pn, i.e. P̂n(x) = a−nPn(ax),
n ≥ 0, a 6= 0. When u satisfies (1.17), then û = ha−1u fulfills the q-difference equation

Hq(Φ̂û) + Ψ̂û+ B̂
(
x−1û(hqû)

)
= 0,

where Φ̂(x) = a− deg ΦΦ(ax), Ψ̂(x) = a1−deg ΦΨ(ax), B̂(x) = a− deg ΦB(ax).

Proof. With u = haû, we have Ψu = Ψ(haû) = ha
(
(haΨ)û

)
from (1.7). Further,

Hq(Φu) = Hq

(
Φ(haû)

)
= Hq

(
ha
(
(haΦ)û

))
= a−1ha

(
Hq

(
(haΦ)û

))
from (1.7) and (1.9).

Moreover, by virtue of (1.7) an other time we get

B
(
x−1u(hqu)

)
= B

(
x−1(haû)(haqû)

)
= B

(
x−1ha

(
ûhqû

))
= a−1ha

(
(haB)

(
x−1û(hqû)

))
.

Equation (1.17) becomes

ha
(
Hq

(
Φ(ax)û

)
+ aΨ(ax)û+B(ax)

(
x−1û(hqû)

))
= 0.

Hence the desired result. �

2 Class of a q-Laguerre–Hahn form

It is obvious that a q-Laguerre–Hahn form satisfies an infinite number of q-difference equations
type (1.17). Indeed, multiplying (1.17) by a polynomial χ and taking into account (1.7), (1.11)
we obtain

Hq

(
(hqχ)Φu

)
+
{
χΨ− Φ(Hqχ)

}
u+ (χB)

(
x−1u(hqu)

)
= 0. (2.1)

Put t = deg Φ, p = deg Ψ, r = degB with d = max(t, r) and s = max(p− 1, d− 2). Thus, there
exists u→ ~(u) ⊂ N∪{−1} from the set of q-Laguerre–Hahn forms into the subsets of N∪{−1}.

Definition 2. The minimum element of ~(u) will be called the class of u. When u is of class s,
the sequence {Pn}n≥0 orthogonal with respect to u is said to be of class s.
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Proposition 1. The number s is an integer positive or zero. In other words, if p = 0, then
d ≥ 2 or if 0 ≤ d ≤ 1, then necessarily p ≥ 1.

Proof. Let us show that in case s = −1, the form u is not regular, which is a contradiction.
Indeed, when s = −1, we have

Φ(x) = c1x+ c0, Ψ(x) = a0, B(x) = b1x+ b0

with c1 = 1 or c1 = 0 and c0 = 1, and where a0 6= 0.
The condition 〈Hq(Φu) + Ψu+B

(
x−1u(hqu)

)
, xn〉 = 0, 0 ≤ n ≤ 4 gives successively

a0 + b1 = 0,

(qb1 − c1)(u)1 + b0 − c0 = 0, (2.2)(
q2b1 − (1 + q)c1

)(
(u)2 − (u)2

1

)
= 0, (2.3)(

q3b1 −
(
1 + q + q2

)
c1

)
(u)3 +

{(
1 + q2

)
b0 + q(1 + q)b1(u)1 −

(
1 + q + q2

)
c0

}
(u)2

+ qb0(u)2
1 = 0, (2.4)(

q4b1 − (1 + q)
(
1 + q2

)
c1

)
(u)4 +

{(
1 + q3

)
b0 + q

(
1 + q2

)
b1(u)1 − (1 + q)

(
1 + q2

)
c0

}
(u)3

+ q2b1(u)2
2 + q(1 + q)b0(u)1(u)2 = 0. (2.5)

Suppose q2b1 − (1 + q)c1 6= 0. From (2.3)

∆1 =

∣∣∣∣ 1 (u)1

(u)1 (u)2

∣∣∣∣ = 0.

Contradiction.
Suppose q2b1 = (1 + q)c1 = 0 implies b1 = 0 = c1 implies (2.2) b0 = c0 = 1. Thus (2.4)

(u)2 − (u)2
1 = 0, hence ∆1 = 0. Contradiction.

Suppose q2b1 = (1 + q)c1 6= 0 with c1 = 1. From (2.2) and (2.4), (2.5), we have

(u)1 = q(c0 − b0),

(u)3 = q(c0 − 2b0)(u)2 + q3b0(c0 − b0)2, (2.6)

(u)4 = (u)2
2 + q2b20(u)2 − q4b20(c0 − b0)2.

On the other hand, let us consider the Hankel determinant

∆2 =

∣∣∣∣∣∣
1 (u)1 (u)2

(u)1 (u)2 (u)3

(u)2 (u)3 (u)4

∣∣∣∣∣∣ .
With (2.6), we get ∆2 = 0. Contradiction. �

Proposition 2. Let u be a strict q-Laguerre–Hahn form satisfying

Hq(Φ1u) + Ψ1u+B1

(
x−1uhqu

)
= 0, (2.7)

and

Hq(Φ2u) + Ψ2u+B2(x−1uhqu) = 0, (2.8)

where Φ1, Ψ1, B1, Φ2, Ψ2, B2 are polynomials, Φ1, Φ2 monic and deg Φi = ti, deg Ψi = pi,
degBi = ri, di = max(ti, ri), si = max(pi− 1, di− 2) for i ∈ {1, 2}. Let Φ = gcd(Φ1,Φ2). Then,
there exist two polynomials Ψ and B such that

Hq(Φu) + Ψu+B
(
x−1uhqu

)
= 0, (2.9)
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with

s = max(p− 1, d− 2) = s1 − t1 + t = s2 − t2 + t, (2.10)

where t = deg Φ, p = deg Ψ, r = degB and d = max(t, r).

Proof. With Φ = gcd(Φ1,Φ2), there exist two co-prime polynomials Φ̃1, Φ̃2 such that

Φ1 = ΦΦ̃1, Φ2 = ΦΦ̃2. (2.11)

Taking into account (1.11) equations (2.7), (2.8) become for i ∈ {1, 2}(
hq−1Φ̃i

)
Hq(Φu) +

{
Ψi + q−1Hq−1Φ̃i

}
u+Bi

(
x−1uhqu

)
= 0. (2.12)

The operation (hq−1Φ̃2)× (2.12i=1)− (hq−1Φ̃1)× (2.12i=2) gives{(
hq−1Φ̃2

)(
Ψ1 + q−1Φ

(
Hq−1Φ̃1

))
−
(
hq−1Φ̃1

)(
Ψ2 + q−1Φ

(
Hq−1Φ̃2

))}
u

+
{(
hq−1Φ̃2

)
B1 −

(
hq−1Φ̃1

)
B2

}(
x−1uhqu

)
= 0.

From the fact that u is a strict q-Laguerre–Hahn form and by virtue of Lemma 3 we get(
hq−1Φ̃1

)(
Ψ2 + q−1Φ

(
Hq−1Φ̃2

))
=
(
hq−1Φ̃2

)(
Ψ1 + q−1Φ

(
Hq−1Φ̃1

))
,(

hq−1Φ̃1

)
B2 =

(
hq−1Φ̃2

)
B1.

Thus, there exist two polynomials Ψ and B such that

Ψ1 + q−1Φ
(
Hq−1Φ̃1

)
=
(
hq−1Φ̃1

)
Ψ, Ψ2 + q−1Φ

(
Hq−1Φ̃2

)
=
(
hq−1Φ̃2

)
Ψ,

B1 = (hq−1Φ̃1)B, B2 = (hq−1Φ̃2)B. (2.13)

Then, formulas (2.7), (2.8) become(
hq−1Φ̃i

){
Hq(Φu) + Ψu+B

(
x−1uhqu

)}
= 0, i ∈ {1, 2}. (2.14)

But the polynomials hq−1Φ̃1 and hq−1Φ̃2 are also co-prime. Using the Bezout identity, there
exist two polynomials A1 and A2 such that

A1

(
hq−1Φ̃1

)
+A2

(
hq−1Φ̃2

)
= 1.

Consequently, the operation A1×(2.14i=1)+A2×(2.14i=2) leads to (2.9). With (2.11) and (2.13)
it is easy to prove (2.10). �

Proposition 3. For any q-Laguerre–Hahn form u, the triplet (Φ,Ψ, B) (Φ monic) which realizes
the minimum of ~(u) is unique.

Proof. If s1 = s2 in (2.9), (2.10) and s1 = s2 = s = min ~(u), then t1 = t = t2. Consequently,
Φ1 = Φ = Φ2, B1 = B = B2 and Ψ1 = Ψ = Ψ2. �

Then, it’s necessary to give a criterion which allows us to simplify the class. For this, let us
recall the following lemma:
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Lemma 5. Consider u a regular form, Φ, Ψ and B three polynomials, Φ monic. For any zero c
of Φ, denoting

Φ(x) = (x− c)Φc(x),

qΨ(x) + Φc(x) = (x− cq)Ψcq(x) + rcq, (2.15)

qB(x) = (x− cq)Bcq(x) + bcq.

The following statements are equivalent:

Hq(Φu) + Ψu+B
(
x−1uhqu

)
= 0,

Hq(Φcu) + Ψcqu+Bcq
(
x−1uhqu

)
+ rcq(x− cq)−1u+ bcq(x− cq)−1

(
x−1uhqu

)
−
{
〈u,Ψcq〉+ 〈x−1uhqu,Bcq〉

}
δcq = 0. (2.16)

Proof. The proof is obtained straightforwardly by using the relations in (1.2) and in (2.1). �

Proposition 4. A regular form u q-Laguerre–Hahn satisfying (1.17) is of class s if and only if∏
c∈ZΦ

{
|q(hqΨ)(c) + (HqΦ)(c)|+ |q(hqB)(c)|

+
∣∣〈u, q(θcqΨ) + (θcq ◦ θcΦ) + q(hqu(θ0 ◦ θcqB))〉

∣∣} > 0, (2.17)

where ZΦ is the set of roots of Φ.

Proof. Let c be a root of Φ: Φ(x) = (x− c)Φc(x). On account of (2.15) we have

rcq = qΨ(cq) + Φc(cq) = q(hqΨ)(c) + (HqΦ)(c), bcq = qB(cq) = q(hqB)(c),

Ψcq(x) = q(θcqΨ)(x) + (θcqΦc)(x) = q(θcqΨ)(x) + (θcq ◦ θcΦ)(x),

Bcq(x) = q(θcqB)(x).

Therefore,

〈u,Ψcq〉+ 〈x−1uhqu,Bcq〉 = 〈u, q(θcqΨ) + (θcq ◦ θcΦ)〉+ 〈uhqu, qθ0 ◦ θcqB〉
= 〈u, q(θcqΨ) + (θcq ◦ θcΦ)〉+ 〈u, q(hqu(θ0 ◦ θcqB))〉
= 〈u, q(θcqΨ) + (θcq ◦ θcΦ) + q(hqu(θ0 ◦ θcqB))〉.

The condition (2.17) is necessary. Let us suppose that c fulfils the conditions

rcq = 0, bcq = 0, 〈u, q(θcqΨ) + (θcq ◦ θcΦ) + q(hqu(θ0 ◦ θcqB))〉 = 0.

Then on account of Lemma 5 (2.16) becomes

Hq(Φcu) + Ψcqu+Bcq
(
x−1uhqu

)
= 0

with sc = max(max(deg Φc, degBcq)− 2, deg Ψc − 1) < s, what contradicts with s := min ~(u).
The condition (2.17) is sufficient. Let us suppose u to be of class s̃ < s. There exist three

polynomials Φ̃ (monic) deg Φ̃ = t̃, Ψ̃, deg Φ̃ = p̃, B̃, deg B̃ = r̃ such that

Hq(Φ̃u) + Ψ̃u+ B̃(x−1uhqu) = 0

with s̃ = max(d̃−2, p̃−1) where d̃ := max(t̃, r̃). By Proposition 2, it exists a polynomial χ such
that

Φ = χ Φ̃, Ψ = (hq−1χ)Ψ̃− q−1(Hq−1χ)Φ̃, B = (hq−1χ)B̃.
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Since s̃ < s hence degχ ≥ 1. Let c be a zero of χ : χ(x) = (x − c)χc(x). On account of (1.10)
we have

qΨ(x) + Φc(x) = (x− cq)
{

(hq−1χc)(x)Ψ̃(x)− q−1(Hq−1χc)(x)Φ̃(x)
}
.

Thus rcq = 0 and bcq = 0. Moreover, with (1.8) we have〈
u, q(θcqΨ) + (θcq ◦ θcΦ) + q

(
hqu(θ0 ◦ θcqB)

)〉
=
〈
u, (hq−1χc)Ψ̃− q−1(Hq−1χc)Φ̃ + (hqu)θ0((hq−1χc)B̃)

〉
=
〈
u, (hq−1χc)Ψ̃− (Hq ◦ hq−1χc)Φ̃ + (hqu)θ0((hq−1χc)B̃)

〉
= 〈Ψ̃u, hq−1χc〉+ 〈Hq(Φ̃u), hq−1χc〉+ 〈B̃

(
x−1uhqu

)
, hq−1χc〉

=
〈
Hq(Φ̃u) + Ψ̃u+ B̃

(
x−1uhqu

)
, hq−1χc

〉
= 0.

This is contradictory with (2.17). Consequently, s̃ = s, Φ̃ = Φ, Ψ̃ = Ψ and B̃ = B. �

Remark 2. When q −→ 1 we recover again the criterion which allows us to simplify a usual
Laguerre–Hahn form [6].

Remark 3. When B = 0 and s = 0, the form u is usually called q-classical [16]. When B = 0
and s = 1, the symmetrical q-semiclassical orthogonal q-polynomials of class one are exhaustively
described in [14].

Proposition 5. Let u be a symmetrical q-Laguerre–Hahn form of class s satisfying (1.17). The
following statements hold

(i) If s is odd, then the polynomials Φ and B are odd and Ψ is even.

(ii) If s is even, then the polynomials Φ and B are even and Ψ is odd.

Proof. Writing

Φ(x) = Φe
(
x2
)

+ xΦo
(
x2
)
, Ψ(x) = Ψe

(
x2
)

+ xΨo
(
x2
)
, B(x) = Be

(
x2
)

+ xBo
(
x2
)
,

then (1.17) becomes

Hq

(
Φe
(
x2
)
u
)

+ xΨo
(
x2
)
u+Be

(
x2
)(
x−1uhqu

)
+Hq

(
xΦo

(
x2
)
u
)

+ Ψe
(
x2
)
u+ xBo

(
x2
)(
x−1uhqu

)
= 0.

Denoting

we = Hq

(
Φe
(
x2
)
u
)

+ xΨo
(
x2
)
u+Be

(
x2
)(
x−1uhqu

)
,

wo = Hq

(
xΦo

(
x2
)
u
)

+ Ψe
(
x2
)
u+ xBo

(
x2
)(
x−1uhqu

)
. (2.18)

Then,

wo + we = 0. (2.19)

From (2.19) we get

(wo)n = −(we)n, n ≥ 0. (2.20)

From definitions in (2.18) and (2.20) we can write for n ≥ 0

(we)2n = 〈u, x2n+1Ψo
(
x2
)
− [2n]qx

2n−1Φe
(
x2
)
〉+ 〈uhqu, x2n−1Be

(
x2
)
〉,
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(wo)2n+1 = 〈u, x2n+1Ψe
(
x2
)
− [2n+ 1]qx

2n+1Φo
(
x2
)
〉+ 〈uhqu, x2n+1Bo

(
x2
)
〉. (2.21)

Now, with the fact that u is a symmetrical form then uhqu is also a symmetrical form. Indeed,

(uhqu)2n+1 =

2n+1∑
k=0

(hqu)k(u)2n+1−k =

2n+1∑
k=0

qk(u)k(u)2n+1−k

=

n∑
k=0

q2k(u)2k(u)2(n−k)+1 +

n∑
k=0

q2k+1(u)2k+1(u)2(n−k) = 0, n ≥ 0.

Thus (2.21) gives

(wo)2n+1 = 0 = (we)2n, n ≥ 0. (2.22)

On account of (2.19) and (2.22) we deduce wo = we = 0. Consequently u satisfies two q-
difference equations

Hq

(
Φe
(
x2
)
u
)

+ xΨo
(
x2
)
u+Be

(
x2
)(
x−1uhqu

)
= 0, (2.23)

and

Hq

(
xΦo

(
x2
)
u
)

+ Ψe
(
x2
)
u+ xBo

(
x2
)(
x−1uhqu

)
= 0. (2.24)

(i) If s = 2k+1, with s = max(d−2, p−1) we get d ≤ 2k+3, p ≤ 2k+2 then deg(xΨo(x2)) ≤
2k+1, deg(Φe(x2)) ≤ 2k+2 and deg(Be(x2)) ≤ 2k+2. So, in accordance with (2.23), we obtain
the contradiction s = 2k + 1 ≤ 2k. Necessary Φe = Be = Ψo = 0.

(ii) If s = 2k, with s = max(d−2, p−1) we get d ≤ 2k+2, p ≤ 2k+1 then deg(Ψe(x2)) ≤ 2k,
deg(xΦo(x2)) ≤ 2k + 1 and deg(xBo(x2)) ≤ 2k + 1. So, in accordance with (2.24), we obtain
the contradiction s = 2k ≤ 2k − 1. Necessary Φo = Bo = Ψe = 0. Hence the desired result. �

3 Different characterizations of q-Laguerre–Hahn forms

One of the most important characterizations of the q-Laguerre–Hahn forms is given in terms of
a non homogeneous second order q-difference equation so called q-Riccati equation fulfilled by
its formal Stieltjes series. See also [6, 8, 10, 15] for the usual case and [13] for the discrete one.

Proposition 6. Let u be a regular form. The following statement are equivalents:

(a) u belongs to the q-Laguerre–Hahn class, satisfying (1.17).

(b) The Stieljes formal series S(u) satisfies the q-Riccati equation

(hq−1Φ)(z)Hq−1(S(u))(z) = B(z)S(u)(z)(hq−1S(u))(z) + C(z)S(u)(z) +D(z), (3.1)

where Φ and B are polynomials defined in (1.17) and

C(z) = −(Hq−1Φ)(z)− qΨ(z),

D(z) = −
{
Hq−1(uθ0Φ)(z) + q(uθ0Ψ)(z) + q(uhqu)

(
θ2

0B
)
(z)
}
. (3.2)

Proof. (a) ⇒ (b). Suppose that (a) is satisfied, then there exist three polynomials Φ (monic),
Ψ and B such that Hq(Φu)+Ψu+B(x−1uhqu) = 0. From (1.11) the above q-difference equation
becomes

(hq−1Φ)(Hqu) +
{

Ψ + q−1(Hq−1Φ)
}
u+B

(
x−1uhqu

)
= 0.
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From definition of S(u) and the linearity of S we obtain

S
(
(hq−1Φ)(Hqu)

)
(z) + S(Ψu)(z) + q−1S

(
(Hq−1Φ)u

)
(z) + S

(
B(x−1uhqu)

)
(z) = 0. (3.3)

Moreover,

S(Ψu)(z)
by (1.13)

= Ψ(z)S(u)(z) + (uθ0Ψ)(z),

q−1S((Hq−1Φ)u)(z)
by (1.13)

= q−1(Hq−1Φ)(z)S(u)(z) + q−1(uθ0(Hq−1Φ))(z),

S
(
(hq−1Φ)(Hqu)

)
(z)

by (1.13)
= (hq−1Φ)(z)S(Hqu)(z) +

(
(Hqu)θ0(hq−1Φ)

)
(z)

by (1.16)
= q−1(hq−1Φ)(z)Hq−1(S(u))(z) +

(
(Hqu)θ0(hq−1Φ)

)
(z),

S
(
B(x−1uhqu)

)
(z)

by (1.13)
= B(z)S

(
x−1uhqu)

)
(z) +

(
(x−1uhqu)θ0B

)
(z)

by (1.15)
= z−1B(z)S

(
uhqu)

)
(z) +

(
(uhqu)θ2

0B
)
(z)

by (1.14)
= −B(z)S(u)(z)S(hqu)(z) +

(
(uhqu)θ2

0B
)
(z)

by (1.16)
= −q−1B(z)S(u)(z)(hq−1S(u))(z) +

(
(uhqu)θ2

0B
)
(z),

and

(uθ0(Hq−1Φ))(z) + q
(
(Hqu)θ0(hq−1Φ)

)
(z)

by (1.12)
= Hq−1(uθ0Φ)(z).

(3.3) becomes

(hq−1Φ)(z)Hq−1(S(u))(z) = B(z)S(u)(z)(hq−1S(u))(z)− (Hq−1Φ + qΨ)(z)S(u)(z)

−
{
Hq−1(uθ0Φ) + quθ0Ψ + q(uhqu)θ2

0B
}

(z).

The previous relation gives (3.1) with (3.2).
(b) ⇒ (a). Let u ∈ P ′ regular with its formal Stieltjes series S(u) satisfying (3.1). Likewise

as in the previous implication, formula (3.1) leads to

S
{
Hq(Φu)− q−1(C +Hq−1Φ)u+B

(
x−1uhqu

)}
= q−1D − q−1uθ0C +

(
(uhqu)θ2

0B
)

+ ((Hqu)θ0(hq−1Φ)),

which implies

S
{
Hq(Φu)− q−1(C +Hq−1Φ)u+B

(
x−1uhqu

)}
= 0,

D(z) = (uθ0C)(z)− q
(
(uhqu)

(
θ2

0B
))

(z)− q((Hqu)θ0(hq−1Φ))(z).

According to (3.2) and (1.12) we deduce that

Hq(Φu) + Ψu+B
(
x−1uhqu

)
= 0,

with

Ψ = −q−1(C +Hq−1Φ). (3.4)

�

We are going to give the criterion which allows us to simplify the class of q-Laguerre–Hahn
form in terms of the coefficients corresponding to the previous characterization.
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Proposition 7. A regular form u q-Laguerre–Hahn satisfying (3.1) is of class s if and only if∏
c∈ZΦ

{
|B(cq)|+ |C(cq)|+ |D(cq)|

}
> 0, (3.5)

where ZΦ is the set of roots of Φ with

s = max
(
degB − 2, degC − 1,degD

)
. (3.6)

Proof. By comparing (2.17) and (3.5), it is enough to prove the following equalities

|C(cq)| =
∣∣q(hqΨ)(c) + (HqΦ)(c)

∣∣,
|D(cq)| =

∣∣〈u, q(θcqΨ) + (θcq ◦ θcΦ) + q
(
hqu(θ0 ◦ θcqB)

)〉∣∣.
Indeed, on account of (3.2), the definition of the polynomial uf , the definition of the product
form uv and (1.8) we have

C(cq) = −(Hq−1Φ)(cq)− qΨ(cq) = −(HqΦ)(c)− q(hqΨ)(c),

and

D(cq) = −
{
Hq−1(uθ0Φ)(cq) + q(uθ0Ψ)(cq) + q(uhqu)(θ0

2B)(cq)
}

= −
{
Hq(uθ0Φ)(c) + 〈u, qθcqΨ〉+ 〈uhqu, qθ0 ◦ θcqB〉

}
= −

{
Hq(uθ0Φ)(c) +

〈
u, qθcqΨ + q

(
hqu(θ0 ◦ θcqB)

)〉}
.

Moreover,

Hq(uθ0Φ)(c)
by (1.6)

=
(uθ0Φ)(cq)− (uθ0Φ)(c)

(q − 1)c
=
〈
u,
θcqΦ− θcΦ
cq − c

〉
=
〈
u, θcq ◦ θcΦ

〉
.

Thus (2.17) is equivalent to (3.5). To prove (3.6), according to the definition of the class we
may write

s = max
(
degB − 2, deg Φ− 2, deg Ψ− 1

)
. (3.7)

• If deg Ψ 6= max
(
degB − 1,deg Φ − 1

)
, on account of (3.2) and (3.7) we get the following

implications

degB ≤ deg Φ⇒
{

degC = s+ 1,
degD ≤ s ⇒ max

(
degB − 2,degC − 1,degD

)
= s,

degB > deg Φ⇒
{

degC ≤ s+ 1,
degD = s

⇒ max
(
degB − 2,degC − 1,degD

)
= s.

• If deg Ψ = max
(
degB− 1, deg Φ− 1

)
and degB > deg Φ then s+ 1 = deg Ψ = degB− 1 >

deg Φ− 1. Consequently, max
(
degB − 2,degC − 1,degD

)
= s.

• If deg Ψ = max
(
degB−1,deg Φ−1

)
and degB = deg Φ then deg Ψ = degB−1 = deg Φ−1

which implies degB − 2 = s, degC − 1 ≤ s, degD ≤ s. Therefore max
(
degB − 2,degC −

1,degD
)

= s.
• If deg Ψ = max

(
degB − 1,deg Φ − 1

)
and degB < deg Φ then deg Ψ = deg Φ − 1 and

s = deg Ψ − 1. Writing Φ(x) = xp+1 + lower order terms,Ψ(x) = apx
p + · · · + a0, by virtue

of (3.2) and (1.3), it is worth noting that C(z) = −
(
[p + 1]q−1 + qap

)
zp−1 + lower order terms

and D(z) = −
(
[p]q−1 + qap

)
zp−1 + lower order terms with [p + 1]q−1 6= [p]q−1 assuming either

degC = s or degD = s. Thus, max
(
degB − 2,degC − 1, degD

)
= s.

Hence the desired result (3.6). �
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An other important characterization of the q-Laguerre–Hahn forms is the structure relation.
See also [6, 15] for the usual case and [13] for the discrete one.

Proposition 8. Let u be a regular form and {Pn}n≥0 be its MOPS. The following statements
are equivalent:

(i) u is a q-Laguerre–Hahn form satisfying (1.17).

(ii) There exist an integer s ≥ 0, two polynomials Φ (monic), B with t = deg Φ ≤ s + 2,
r = degB ≤ s+ 2 and a sequence of complex numbers {λn,ν}n,ν≥0 such that

Φ(x)(HqPn+1)(x)− hq(BP (1)
n )(x) =

n+d∑
ν=n−s

λn,νPν(x), n > s, λn,n−s 6= 0, (3.8)

where d = max(t, r) and
{
P

(1)
n

}
n≥0

be the associated sequence of the first kind for the

sequence {Pn}n≥0.

Proof. (i) ⇒ (ii). Beginning with the expression Φ(x)(HqPn+1)(x) − hq
(
BP

(1)
n

)
(x) which is

a polynomial of degree at most n + d. Then, there exists a sequence of complex numbers
{λn,ν}n≥0, 0≤ν≤n+d such that

Φ(x)(HqPn+1)(x)− (hqB)(x)
(
hqP

(1)
n

)
(x) =

n+d∑
ν=0

λn,νPν(x), n ≥ 0. (3.9)

Multiplying both sides of (3.9) by Pm, 0 ≤ m ≤ n+ d and applying u we get

〈u,ΦPm(HqPn+1)〉 − 〈hqu,B(hq−1Pm)(uθ0Pn+1)〉 = λn,m〈u, P 2
m〉,

n ≥ 0, 0 ≤ m ≤ n+ d. (3.10)

On the other hand, applying Hq(Φu) + Ψu+ B(x−1uhqu) = 0 to Pn+1(hq−1Pm), on account of
the definitions, (1.10) and (1.8) we obtain

0 = 〈Hq(Φu) + Ψu+B
(
x−1uhqu

)
, Pn+1(hq−1Pm)〉

=
〈
u,ΨPn+1(hq−1Pm)− ΦHq

(
Pn+1(hq−1Pm)

)〉
+
〈
hqu, uθ0(BPn+1(hq−1Pm))

〉
= 〈u,

{
Ψ(hq−1Pm)− q−1Φ(Hq−1Pm)

}
Pn+1 − ΦPm(HqPn+1)〉

+ 〈hqu, uθ0(BPn+1(hq−1Pm))〉.

Thus, for n ≥ 0, 0 ≤ m ≤ n+ d

〈u,ΦPm(HqPn+1)〉 =
〈
u,
{

Ψ(hq−1Pm)− q−1Φ(Hq−1Pm)
}
Pn+1

〉
+ 〈hqu, uθ0(BPn+1(hq−1Pm))〉. (3.11)

Using (3.10), (3.11) to eliminate 〈u,ΦPm(HqPn+1)〉 we get for n ≥ 0, 0 ≤ m ≤ n+ d〈
u,
{

Ψ(hq−1Pm)− q−1Φ(Hq−1Pm)
}
Pn+1

〉
+
〈
hqu, uθ0(BPn+1(hq−1Pm))− (hq−1Pm)B(uθ0Pn+1)

〉
= λn,m〈u, P 2

m〉. (3.12)

Moreover, by virtue of (1.5) we have B(uθ0Pn+1) = uθ0(BPn+1), n > s. Therefore, taking into
account (1.4) and definitions, (3.12) yields for n > s, 0 ≤ m ≤ n+ d〈

u,
{

Ψ(hq−1Pm)− q−1Φ(Hq−1Pm) +B((hqu)θ0(hq−1Pm))
}
Pn+1

〉
= λn,m〈u, P 2

m〉
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with

deg
{

Ψ(hq−1Pm)− q−1Φ(Hq−1Pm) +B((hqu)θ0(hq−1Pm))
}
≤ m+ s+ 1.

Consequently, the orthogonality of {Pn}n≥0 with respect to u gives

λn,m = 0, 0 ≤ m ≤ n− s− 1, n ≥ s+ 1, λn,n−s 6= 0.

Hence the desired result (3.8).
(ii) ⇒ (i). Let v be the form defined by

v := Hq(Φu) +B
(
x−1uhqu

)
+

(
s+1∑
i=0

aix
i

)
u

with ai ∈ C, 0 ≤ i ≤ s+1. From definitions and the hypothesis of (ii) we may write successively

〈v, Pn+1〉 =
〈
Hq(Φu) +B

(
x−1uhqu

)
, Pn+1

〉
+ 〈u, Pn+1

s+1∑
i=0

aix
i〉

= −
〈
u,Φ(HqPn+1)− (hqu)θ0(BPn+1)

〉
+ 〈u, Pn+1

s+1∑
i=0

aix
i〉

= −
〈
u,

n+d∑
ν=n−s

λn,νPν
〉

+ 〈u, Pn+1

s+1∑
i=0

aix
i〉

= −
n+d∑
ν=n−s

λn,ν〈u, Pν〉+

s+1∑
i=0

ai〈u, xiPn+1〉, n > s.

From assumption of orthogonality of {Pn}n≥0 with respect to u we get

〈v, Pn〉 = 0, n ≥ s+ 2.

In order to get 〈v, Pn〉 = 0, for any n ≥ 0, we shall choose ai with i = 0, 1, . . . , s+ 1, such that
〈v, Pi〉 = 0, for i = 0, 1, . . . , s+ 1. These coefficients ai are determined in a unique way. Thus,

we have deduced the existence of polynomial Ψ(x) =
s+1∑
i=0

aix
i such that 〈v, Pn〉 = 0, for any

n ≥ 0. This leads to Hq(Φu) + Ψu+B(x−1uhqu) = 0 and the point (i) is then proved. �

4 Applications

4.1 The co-recursive of a q-Laguerre–Hahn form

Let µ be a complex number, u a regular form and {Pn}n≥0 be its corresponding MOPS sa-

tisfying (1.1). We define the co-recursive
{
P

[µ]
n

}
n≥0

of {Pn}n≥0 as the family of monic polyno-

mials satisfying the following three-term recurrence relation [20, Definition 4.2]

P
[µ]
0 (x) = 1, P

[µ]
1 (x) = x− β0 − µ,

P
[µ]
n+2(x) = (x− βn+1)P

[µ]
n+1(x)− γn+1P

[µ]
n (x), n ≥ 0.

Denoting by u[µ] its corresponding regular form. It is well known that [20, equation (4.14)]

u[µ] = u
(
δ − µx−1u

)−1
.
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Proposition 9. If u is a q-Laguerre–Hahn form of class s, then u[µ] is a q-Laguerre–Hahn form
of the same class s.

Proof. The relation linking S(u) and S(u[µ]) is [20, equation (4.15)] S(u[µ]) = S(u)
1+µS(u) or

equivalently

S(u) =
S(u[µ])

1− µS(u[µ])
. (4.1)

From definitions and by virtue of (4.1) we have

hq−1S(u) =
hq−1S(u[µ])

1− µhq−1S(u[µ])

and

(Hq−1S(u))(z) =

(hq−1S(u[µ]))(z)

1−µ(hq−1S(u[µ]))(z)
− S(u[µ])(z)

1−µS(u[µ])(z)

(q−1 − 1)z

=
(Hq−1S(u[µ]))(z)(

1− µ(hq−1S(u[µ]))(z)
)(

1− µS(u[µ])(z)
) .

Replacing the above results in (3.1) the q-Riccati equation becomes

(hq−1Φ)
Hq−1S(u[µ])(

1− µhq−1S(u[µ])
)(

1− µS(u[µ])
)

= B
S(u[µ])

1− µS(u[µ])

hq−1S(u[µ])

1− µhq−1S(u[µ])
+ C

S(u[µ])

1− µS(u[µ])
+D.

Equivalently

(hq−1Φ)Hq−1S(u[µ]) = BS(u[µ])hq−1S(u[µ]) + CS(u[µ])
(
1− µhq−1S(u[µ])

)
+D

(
1− µhq−1S(u[µ])

)(
1− µS(u[µ])

)
.

Therefore the q-Riccati equation satisfied by S(u[µ])

(hq−1Φ[µ])Hq−1S(u[µ]) = B[µ]S(u[µ])hq−1S(u[µ]) + C [µ]S(u[µ]) +D[µ], (4.2)

where

KΦ[µ](x) = Φ(x) + µ(1− q)x(hqD)(x), KB[µ](x) = B(x)− µC(x) + µ2D(x),

KC [µ](x) = C(x)− 2µD(x), KD[µ](x) = D(x), (4.3)

the non zero constant K is chosen such that the polynomial Φ[µ] is monic. u[µ] is then a q-
Laguerre–Hahn form.

On account of (3.2), (3.4) and (4.3) we get

KΨ[µ] = Ψ + µ
(
q−1D + hqD

)
. (4.4)

As a consequence, the regular form u[µ] fulfils the following q-difference equation

Hq

(
Φ[µ]u[µ]

)
+ Ψ[µ]u[µ] +B[µ]

(
x−1u[µ]hqu

[µ]
)

= 0. (4.5)

We suppose that the q-Riccati equation (3.1) of u is irreducible of class s. With respect to the
class, we use the result (3.5) of Proposition 7 and get for every zero c of Φ[µ]:
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• If D(cq) 6= 0, then D[µ](cq) = K−1D(cq) 6= 0 and equation (4.2) is not reducible.

• We suppose that D(cq) = 0. From the fact that Φ[µ](c) = 0, the first relation in (4.3)
leads to Φ(c) = 0 and the third equality in (4.3) gives C [µ](cq) = K−1C(cq).

If C(cq) 6= 0, then the equation (4.2) is still not reducible. If C(cq) = 0 = D(cq), then
B[µ](cq) = K−1B(cq) 6= 0 since u is of class s. We conclude that∣∣B[µ](cq)

∣∣+
∣∣C [µ](cq)

∣∣+
∣∣D[µ](cq)

∣∣ > 0.

Consequently, the class s[µ] of u[µ] is given by s[µ] = max
(
degB[µ] − 2,degC [µ] − 1, degD[µ]

)
.

Accordingly to the last equality in (4.3) and (3.6) we get s[µ] = max
(
degB[µ] − 2,degC [µ] − 1,

degD
)
. A discussion on the degree leads to s[µ] = s. �

Example 1. Let u be a q-classical form satisfying the q-analog of the distributional equation
of Pearson type

Hq(φu) + ψu = 0, (4.6)

where φ is a monic polynomial of degree at most two and ψ a polynomial of degree one, the co-
recursive u[µ] of u is a q-Laguerre–Hahn form of class zero. u[µ] and the Stieltjes function S(u[µ])
satisfy, respectively, the q-difference equation (4.5) and the q-Riccati equation (4.2) where on
account of (4.3), (4.4)

KΦ[µ](x) =
φ′′(0)

2
x2 +

{
φ′(0) + µ(q − 1)

(
φ′′(0)

2
+ qψ′(0)

)}
x+ φ(0),

KΨ[µ](x) = ψ′(0)x+ ψ(0)− µ
(
q−1 + 1

)(φ′′(0)

2
+ qψ′(0)

)
,

KB[µ](x) = µ

{((
q−1 + 1

)φ′′(0)

2
+ qψ′(0)

)
x+ φ′(0) + qψ(0)−

(
φ′′(0)

2
+ qψ′(0)

)
µ

}
,

KC [µ](x) = −
(
qψ′(0) + (q−1 + 1)

φ′′(0)

2

)
x− φ′(0)− qψ(0) + 2µ

(
φ′′(0)

2
+ qψ′(0)

)
,

KD[µ](x) = −φ
′′(0)

2
− qψ′(0).

4.2 The associated of a q-Laguerre–Hahn form

Let u be a regular form and {Pn}n≥0 its corresponding MOPS satisfying (1.1). The associated

sequence of the first kind
{
P

(1)
n

}
n≥0

of {Pn}n≥0 satisfies the following three-term recurrence

relation [20]

P
(1)
0 (x) = 1, P

(1)
1 (x) = x− β1,

P
(1)
n+2(x) = (x− βn+2)P

(1)
n+1(x)− γn+2P

(1)
n (x), n ≥ 0.

Denoting by u(1) its corresponding regular form.

Proposition 10. If u is a q-Laguerre–Hahn form of class s, then u(1) is a q-Laguerre–Hahn
form of the same class s.

Proof. We assume that the formal Stieltjes function S(u) of u satisfies (3.1). The relationship
between S(u(1)) and S(u) is [20, equation (4.7)]

γ1S(u(1))(z) = − 1

S(u)(z)
− (z − β0).
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Consequently,

S(u)(z) = − 1

γ1S(u(1))(z) + (z − β0)
. (4.7)

From definitions and by virtue of (4.7) we have

hq−1(S(u))(z) = − 1

γ1hq−1(S(u(1)))(z) + q−1z − β0

and

Hq−1(S(u))(z) =
γ1Hq−1(S(u(1)))(z) + 1(

γ1hq−1(S(u(1)))(z) + q−1z − β0

)(
γ1S(u(1))(z) + z − β0

) .
Substituting in (3.1) the q-Riccati equation becomes

(hq−1Φ)(z)
γ1Hq−1(S(u(1)))(z) + 1(

γ1hq−1(S(u(1)))(z) + q−1z − β0

)(
γ1S(u(1))(z) + z − β0

)
=

B(z)(
γ1hq−1(S(u(1)))(z) + q−1z − β0

)(
γ1S(u(1))(z) + z − β0

)
− C(z)(

γ1S(u(1))(z) + z − β0

) +D(z).

Equivalently

γ1

{
(hq−1Φ)(z) +

(
q−1 − 1

)
z
(
C(z)− (z − β0)D(z)

)}
Hq−1(S(u(1)))(z)

= γ2
1D(z)S(u(1))(z)hq−1(S(u(1)))(z) + γ1

{
((q−1 + 1)z − 2β0)D(z)− C(z)

}
S(u(1))(z)

+B(z) +
(
q−1z − β0

)
(z − β0)D(z)−

(
q−1z − β0

)
C(z)− (hq−1Φ)(z).

Therefore the q-Riccati equation satisfied by S(u(1))(
hq−1Φ(1)

)
Hq−1S(u(1)) = B(1)S

(
u(1)

)
hq−1S

(
u(1)

)
+ C(1)S

(
u(1)

)
+D(1), (4.8)

where

KΦ(1)(x) = Φ(x) + (q − 1)x{(qx− β0)(hqD)(x)− (hqC)(x)},
KB(1)(x) = γ1D(x), KC(1)(x) = γ1

{((
q−1 + 1

)
x− 2β0

)
D(x)− C(x)

}
,

KD(1)(x) = B(x) + (q−1x− β0)(x− β0)D(x)− (q−1x− β0)C(x)− (hq−1Φ)(x). (4.9)

u(1) is then a q-Laguerre–Hahn form.

Moreover, the regular form u(1) fulfils the q-difference equation

Hq

(
Φ(1)u(1)

)
+ Ψ(1)u(1) +B(1)

(
x−1u(1)hqu

(1)
)

= 0, (4.10)

with

Ψ(1) = −q−1
(
C(1) +Hq−1Φ(1)

)
. (4.11)

Likewise, it is straightforward to prove that the class of u(1) is also s. �
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Example 2. If u is a q-classical form satisfying the q-analog of the distributional equation of
Pearson type (4.6) then the associated u(1) of u is a q-Laguerre–Hahn form of class zero. u(1) and
the formal Stieltjes function S(u(1)) satisfy, respectively, the q-difference equation (4.10) and
the q-Riccati equation (4.8) where on account of (4.9) and (4.11)

KΦ(1)(x) = q
φ′′(0)

2
x2 +

{
qφ′(0) + (q − 1)

(
qψ(0) + β0

(
φ′′(0)

2
+ qψ′(0)

))}
x+ φ(0),

KΨ(1)(x) = −q−1

{
(q + 1)

φ′′(0)

2
− ψ′(0))x+ (q + 1)φ′(0)

+ q2ψ(0) +
(
q2 − q + 2

)(φ′′(0)

2
+ qψ′(0)

)
β0

}
,

KB(1)(x) = −γ1

(
φ′′(0)

2
+ qψ′(0)

)
,

KC(1)(x) = γ1

{
−ψ′(0)x+ β0(φ′′(0) + 2qψ′(0)) + qψ(0) + φ′(0)

}
,

KD(1)(x) = ψ(β0)x− φ(β0)− qβ0ψ(β0).

4.3 The inverse of a q-Laguerre–Hahn form

Let u be a regular form and {Pn}n≥0 its corresponding MOPS satisfying (1.1). Let
{
P

(1)
n

}
n≥0

be its associated sequence of the first kind fulfilling (4.6) and orthogonal with respect to the
regular form u(1). The inverse form of u satisfies [20, equation (5.27)]

x2u−1 = −γ1u
(1). (4.12)

The following results can be found in [2]

u−1 = δ −
(
u−1

)
1
δ′ − γ1x

−2u(1). (4.13)

In general, the form u−1 given by (4.13) is regular if and only if ∆n 6= 0, n ≥ 0, with

∆n = 〈u(1),
(
P (1)
n

)2〉{γ1 +
n∑
ν=0

(
γ1P

(2)
ν−1(0)− (u−1)1P

(1)
ν (0)

)2
〈u(1), (P

(1)
ν )2〉

}
, n ≥ 0,

where
{
P

(2)
n

}
n≥0

is the associated sequence of
{
P

(1)
n

}
n≥0

. In this case, the orthogonal sequence{
P

(−)
n

}
n≥0

relative to u−1 is given by

P
(−)
0 (x) = 1, P

(−)
1 (x) = P

(1)
1 (x) + b0,

P
(−)
n+2(x) = P

(1)
n+2(x) + bn+1P

(1)
n+1(x) + anP

(1)
n (x), n ≥ 0,

where

b0 = β1 −
(
u−1

)
1
,

bn+1 = βn+2 −
(
(u−1)1P

(1)
n (0)− γ1P

(2)
n−1(0)

)(
(u−1)1P

(1)
n+1(0)− γ1P

(2)
n (0)

)
∆n

, n ≥ 0,

an =
∆n+1

∆n
, n ≥ 0.

Also, the sequence
{
P

(−)
n

}
n≥0

satisfies the three-term recurrence relation

P
(−)
0 (x) = 1, P

(−)
1 (x) = x− β(−)

0 ,
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P
(−)
n+2(x) =

(
x− β(−)

n+1

)
P

(−)
n+1(x)− γ(−)

n+1P
(−)
n (x), n ≥ 0,

with

β
(−)
0 =

(
u−1

)
1
, β

(−)
n+1 = βn+2 + bn − bn+1, n ≥ 0,

γ
(−)
1 = −∆0, γ

(−)
2 = γ1

∆1

∆2
0

, γ
(−)
n+3 =

∆n+2∆n

∆2
n+1

γn+2, n ≥ 0.

In particular, when γ1 > 0 and u(1) is positive definite, then u−1 is regular. When u(1) is
symmetrical, then u−1 is a symmetrical regular form and we have

a2n =
γ1Λn + 1

γ1Λn−1 + 1
γ2n+2, a2n+1 = γ2n+3, n ≥ 0, (4.14)

γ
(−)
1 = −γ1, γ

(−)
2n+2 = a2n, γ

(−)
2n+3 =

γ2n+2γ2n+3

a2n
, n ≥ 0, (4.15)

with

Λ−1 = 0, Λn =

n∑
ν=0

(
ν∏
k=0

γ2k+1

γ2k+2

)
, n ≥ 0, γ0 = 1. (4.16)

Proposition 11. If u is a q-Laguerre–Hahn form of class s, then, when u−1 is regular, u−1 is
a q-Laguerre–Hahn form of class at most s+ 2.

Proof. Let u be a q-Laguerre–Hahn form of class s satisfying (1.17). It is seen in Proposition 10
that u(1) is also a q-Laguerre–Hahn form of class s satisfying the q-difference equation (4.10)
with polynomials Φ(1), Ψ(1), B(1) respecting (4.9) and (4.11).

Let us suppose u−1 is regular that is to say ∆n 6= 0, n ≥ 0. Multiplying (4.10) by (−γ1) and
on account of (4.12) and (1.7), the q-difference equation (4.10) becomes

Hq

(
x2Φ(1)(x)u−1

)
+ x2Ψ(1)(x)u−1 − q−2γ−1

1 B(1)
(
x−1

(
x2u−1

)(
x2hqu

−1
))

= 0.

Consequently, the form u−1 satisfies the following q-difference equation

Hq

(
Φ(−)u−1

)
+ Ψ(−)u−1 +B(−)

(
x−1u−1hqu

−1
)

= 0, (4.17)

with

KΦ(−)(x) = x2
{

Φ(1)(x) + (1− q)γ−1
1 x(qx− β0)(hqB

(1))(x)
}
,

KΨ(−)(x) = x
{(
q−1 + 1

)((
hq−1Φ(1)

)
(x)− q−1Φ(1)(x)

)
− q−3x(Hq−1Φ(1))(x)

+ γ−1
1 x

((
2q−1 + q−2 − q−3

)
x−

(
1 + 2q−2 − q−3

)
β0

)
B(1)(x)

−
(
q−2 − 1

)
γ−1

1 x(qx− β0)
(
hqB

(1)
)
(x)

− q−4x2(1− q)γ−1
1 (qx− β0)

(
HqB

(1)
)
(x)− xC(1)(x)

}
, (4.18)

KB(−)(x) = −γ−1
1 q−2x4B(1)(x). �

Example 3. Let Y(b, q2) be the form of Brenke type which is symmetrical q-semiclassical of
class one such that [14, equation (3.22), q ← q2]

Hq

(
xY
(
b, q2

))
− (b(q − 1))−1

(
q−2x2 + b− 1

)
Y
(
b, q2

)
= 0 (4.19)

for q ∈ C̃, b 6= 0, b 6= q, b 6= q−2n, n ≥ 0 and its MOPS {Pn}n≥0 satisfying (1.1) with [7]

βn = 0,
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γ2n+1 = q2n+2
(
1− bq2n

)
, γ2n+2 = bq2n+2

(
1− q2n+2

)
, n ≥ 0. (4.20)

Denoting Y(1)(b, q2) its associated form and Y−1(b, q2) its inverse one. Taking into account (4.19)
we have

Φ(x) = x, Ψ(x) = −(b(q − 1))−1
(
q−2x2 + b− 1

)
, B(x) = 0. (4.21)

Also, by virtue of (3.2) and (4.21) we get

C(x) = (b(q − 1))−1q−1x2 + q(q − 1)−1
(
1− b−1

)
− 1, D(x) = (bq(q − 1))−1x. (4.22)

According to Proposition 10 the form Y(1)(b, q2) is q-Laguerre–Hahn of class one satisfying the
q-difference equation (4.10) and its formal Stieltjes function satisfies the q-Riccati equation (4.8)
where on account of (4.20)–(4.22) we obtain for (4.9), (4.11)

KΦ(1)(x) = b−1x,

KΨ(1)(x) = −q−2(b(q − 1))−1x2 + q(q − 1)−1
(
1− b−1

)
− (qb)−1 − 1,

KB(1)(x) =
(
b−1 − 1

)
q(q − 1)−1x,

KC(1)(x) = q−2(b(q − 1))−1x2 + 1− q(q − 1)−1
(
1− b−1

)
,

KD(1)(x) = q−2(b(q − 1))−1x. (4.23)

On the one hand, Y(1)(b, q2) is a symmetrical regular form, then Y−1(b, q2) is also a symmetrical
regular form and we have for (4.14)–(4.16) according to (4.20)

Λ−1 = 0, Λ0 =
b−1 − 1

1− q2
, Λn =

n+1∑
ν=1

b−ν
(b; q2)ν
(q2; q2)ν

, n ≥ 1,

γ
(−)
1 = q2(b− 1), γ

(−)
2n+2 = bq2n+2

(
1− q2n+2

) 1 + q2(1− b)Λn
1 + q2(1− b)Λn−1

, n ≥ 0,

γ
(−)
2n+3 = q2n+4(1− bq2n+2)

1 + q2(1− b)Λn−1

1 + q2(1− b)Λn
, n ≥ 0,

with [7]

(a; q)0 = 1, (a; q)n =

n∏
k=1

(
1− aqk−1

)
, n ≥ 1.

On the other hand, according to Proposition 11, (4.18) and (4.23), the inverse form Y−1(b, q2)
is symmetrical q-Laguerre–Hahn satisfying the q-difference equation (4.17) where

KΦ(−)(x) = b−1x3
(
1− qx2

)
,

KΨ(−)(x) = b−1(q − 1)−1x2
(
b− q − q−3(q − 1) +

(
−2q−4 + 2q−3 + q−2 − q−1 + q

)
x2
)
,

KB(−)(x) = −b−1q−3(q − 1)−1x5.

Thus, according to (2.17) it is possible to simplify by x one time uniquely. Consequently,
by virtue of (2.16) the inverse form Y−1(b, q2) is q-Laguerre–Hahn of class two fulfilling the
q-difference equation

Hq

(
x2
(
x2 − q−1

)
Y−1

(
b, q2

))
− q−1x

{
1 + q(q − 1)−1

(
b− q − q−3(q − 1)

)
+
(
q(q − 1)−1

(
−2q−4 + 2q−3 + q−2 − q−1 + q

)
− q
)
x2
}
Y−1

(
b, q2

)
+ q−3(q − 1)−1x4

(
x−1Y−1

(
b, q2

)
hqY−1

(
b, q2

))
= 0.
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