RENDICONTI

SEMINARIO MATEMATICO

 della
Università di Padova

Santi Kumar Chatterdea

Operational formulae for certain classical polynomials - III

Rendiconti del Seminario Matematico della Università di Padova, tome 33 (1963), p. 271-277.
<http://www.numdam.org/item? id=RSMUP_1963__33__271_0>
© Rendiconti del Seminario Matematico della Università di Padova, 1963, tous droits réservés.
L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova »(http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal. php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{2}$

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

OPERATIONAL FORMULAE FOR CERTAIN CLASSICAL POLYNOMIALS - III

Nota *) di Sinti Kcmir Chittersea (a Cracutta)

1. INTRODCOTION

In an earlier papser [1] we found the operational formula

$$
\begin{gather*}
\prod_{j=1}^{n}\left\{x^{2} D+(2 j+(r) x+b\}\right. \tag{1.1}\\
=\sum_{r=0}^{n}\binom{n}{r} b^{n-r} x^{2 r} y_{n-r}(x, a+\because r+2, b) D^{r}
\end{gather*}
$$

where $y_{n}(c, a, b)$ is the generalised Bessel polynomials as defined by Krall and Frink [2$]$. In [1] we also noticed the following consequences of (1.1):
(1.2) $\quad b^{n} y_{n}(x, a \div-2, b)=\prod_{j=1}^{n}\left\{r^{2} D-(\because j+a) x+b_{j}^{2} \cdot 1\right.$

$$
\begin{equation*}
2^{n} y_{n}(x)=\prod_{j=1}^{n}\left(x^{2} D+2 j x+2\right) \cdot 1 \tag{1.3}
\end{equation*}
$$

where $y_{n}(x)$ is the special ease of the polynomials $y_{n}(x, a, b)$,
*) P'ervenuta in redazione il 15 gennaio 1963.
Indirizzo dell' f. Department of mathematics, Bangabasi Colloge. Calcutta (Endia).
obtained by taking $a=b=2$.

$$
\begin{align*}
& b^{2}\left\{y_{n+1}(x, a, b)-y_{n}(x, a, b)\right\} \tag{1.4}\\
= & (2 n+a) x\left\{b y_{n}(x, a, b)+n x y_{n-1}(x, a+2, b)\right\}
\end{align*}
$$

which implies two well-known formulae:
(i) $b\left\{y_{n}(x, a+1, b)-y_{n}(x, a, b)\right\}=n x y_{n-1}(x, a+2, b)$
(ii) $b y_{n}^{\prime}(x, a, b)=n(n+a-1) y_{n-1}(x, a+2, b)$;

$$
\begin{align*}
& y_{n+m}(x, a, b) \\
&= \sum_{r=0}^{m i n(m, n)}\binom{m}{r}\binom{n}{r} r!(m+2 n+a-1)_{r}(x / b)^{4 r} y_{n-r}(x, \tag{1.5}\\
&a+2 r, b) y_{m-r}(x, a+2 n+2 r, b) .
\end{align*}
$$

Later in a recent paper [3] we have obtained the operational formula

$$
\begin{equation*}
x^{2 n}\left[D+\frac{2(n x+1)}{x^{2}}\right]^{n}=\sum_{r=0}^{n}\binom{n}{r} 2^{n-r} x^{2 r} y_{n-r}(x, 2+2 r, 2) D^{r} \tag{1.6}
\end{equation*}
$$

which generalises the operational formula derived by Lajagopal [4]:

$$
\begin{equation*}
x^{2 n}\left[D+\frac{2(n x+1)}{x^{2}}\right]^{n} \cdot 1=2^{n} y_{n}(x) \tag{1.7}
\end{equation*}
$$

In [3] we have also derived the following formulae:

$$
\begin{equation*}
x^{n}\left[D-\frac{2 x+n+1}{x}\right]^{n}=\sum_{r=0}^{n}\binom{n}{r}(-2)^{n-r} r^{r} \theta_{n-r}(x, 2+r, 2) D^{r} . \tag{1.8}
\end{equation*}
$$

where $\theta_{n}(x, a, b)$ are those polynomials defined by Burchnall [5]:

$$
\begin{align*}
& \theta_{n}(x, a, b)=(-b)^{-n} e^{b x} x^{a+2 n-1} D^{n}\left(x^{-a-n+1} \rho^{-b x}\right) \\
& \frac{x^{n}}{n!}\left[I+\frac{\alpha+n \cdot-x}{x}\right]^{n}=\sum_{r=0}^{n} \frac{x^{r}}{r!} L_{n \rightarrow r}^{(\alpha+r)}(x) D^{r} . \tag{1.9}
\end{align*}
$$

where $L_{n}^{(\alpha)}(x)$ is the generalised Laguerre polynomials. In this connection we like to mention that we have been inspired by Carlitz's work [6]. The interesting result of Carlitz is

$$
\begin{equation*}
\prod_{j=1}^{n}(x D-x+\alpha+j)=n!\sum_{r=0}^{n} \frac{x^{r}}{r!} L_{n-r}^{(\alpha+r)}(x) D^{r} \tag{1.10}
\end{equation*}
$$

wherefrom he obtains $n!L_{n}^{(\alpha)}(x)=\prod_{j=1}^{n}(x D-x+\alpha+j) \cdot 1$.
Thus far we have tried to give a systematic development of the operational formulae derived in [1] and [3], for certain classical polynomials. The object of this paper is to discuss in the same line the polynomials $\theta_{n}(x, a, b)$ as defined by Burchnall.
2. Burchnall defined the polynomials $\Phi_{n}(x, a, b)$ by

$$
\Phi_{n}(x, a, b)=x^{n} y_{n}\left(x^{-1}, a, b\right)
$$

He showed that $\Phi_{n}(x, a, b)$ was a solution of

$$
\begin{equation*}
\delta(\delta+1-a-2 n) z=b x(\delta-n) z ; \quad(\delta \equiv x D) \tag{2.1}
\end{equation*}
$$

and that $e^{-b x} \Phi_{n}(x, a, b)$ was a solution of

$$
\begin{equation*}
\partial(\delta+1-a-2 n) \omega=-b x(\delta-n-a+2) \omega . \tag{2.2}
\end{equation*}
$$

Further he showed that the equation (2.2) had the solution

$$
\begin{equation*}
\omega=(\delta-n-a+1)(\delta-n-a) \ldots(\delta-2 n-a+2) e^{-b x} \tag{2.3}
\end{equation*}
$$

wherefrom he deduced that

$$
\begin{equation*}
\Phi_{n}(x, a, b)=(-b)^{-n} e^{b x} x^{a+2 n-1} D^{n}\left(x^{-a-n+1} e^{-b x}\right) \tag{2.4}
\end{equation*}
$$

In particular, when $a=b=2$, he pointed out that

$$
\begin{equation*}
\theta_{n}(x) \equiv \Phi_{n}(x, 2,2)=\left(-\frac{1}{2}\right)^{n} e^{2 x} x^{2 n+1} \dot{D}^{n}\left(x^{-n-1} e^{-2 x}\right) \tag{2.5}
\end{equation*}
$$

We first mention that we shall write $\theta_{n}(x, a, b)$ for $\Phi_{n}(x, a, b)$ throughout this paper. Now we have for any arbitrarily differentiable function y of x :

$$
\begin{align*}
& x^{n} D^{n}\left(x^{-a-n-1} y\right) \\
= & \delta(\delta-1) \ldots(\delta-n+1)\left(x^{-a-n+1} y\right) \\
= & x^{-a-n+1}(\delta-a-n+1)(\delta-a-n) \ldots(\delta-a-2 n+2) y \\
\therefore & x^{a+2 n-1} D^{n}\left(x^{-a-n+1} y\right) \\
= & (\delta-a-n+1)(\delta-a-\mu) \ldots(\delta-a-2 n+2) y \tag{2.6}
\end{align*}
$$

Now since the linear operators on the right of (2.6) are conmutative, we can write (2.6) as

$$
\begin{equation*}
x^{a+2 n-1} D^{n}\left(x^{-a-n+1} y\right)=\prod_{j=1}^{n}(\delta-a-2 n+j+1) y \tag{2.7}
\end{equation*}
$$

Thus we easily have

$$
\begin{align*}
& x^{a+2 n-1} D^{n}\left(x^{-a-n+1} e^{-b x} y\right) \\
= & \prod_{j=1}^{n}(\delta-a-2 n+j+1) e^{-b x} y \tag{2.8}
\end{align*}
$$

But in [3] we have proved that

$$
\begin{align*}
& e^{b x x^{n-2 n-1} D^{m}\left(x^{-a-n+1} e^{-b x} y\right)} \\
= & \sum_{r=0}^{n}\binom{n}{r}(-b)^{n-r} x^{r} \theta_{n-r}(x, a+r, b) D r y \tag{2.9}
\end{align*}
$$

It therefore follows from (2.8) and (2.9)

$$
\begin{align*}
& e^{b x} \prod_{j=1}^{n}(\delta-a-2 n+j+1) e^{-b x} y \tag{2.10}\\
= & \sum_{r=-}^{n}\binom{n}{r}(-b)^{n-r} x^{r} \theta_{n-r}(x, a+r, b) D^{r} y
\end{align*}
$$

As a special case of (2.10) we notice that

$$
\begin{equation*}
e^{, b x} \prod_{j=1}^{n}(\delta-a-2 u+j+1) e^{-b x}=(-b)^{n} \theta_{n}(x, a, b) \tag{2.11}
\end{equation*}
$$

which may be compared with the remark made by Burchnall in (2.2) and (2.3).

Now we shall find a more interesting operational formula for $\theta_{n}(r, a, b)$.

From (2.8) we again derive

$$
\begin{align*}
& t^{b x} x^{4+2 n-1} D^{\prime \prime}\left(x^{-a-n+1} e^{-b x} y\right) \tag{2.12}\\
= & \prod_{y=1}^{n}\left(x^{\prime} D-b x-a-2 n \div j+1\right) y .
\end{align*}
$$

Now a comparison of (2.9) and (2.12) yields our desired result:

$$
\begin{align*}
& \left.\prod_{j=1}^{n}(x I)-b x-a-\geq n+j+1\right) y \tag{2.13}\\
= & \sum_{r=0}^{n}\binom{n}{r}(-b)^{n-r} x^{r} \theta_{n-r}(x, a+r, b) D^{r} y
\end{align*}
$$

When $a=b=2$, we get from (2.13)

$$
\begin{gather*}
\prod_{s=1}^{n}(x D-2 x-\underline{n}+j-1) y \tag{2.14}\\
=-\sum_{r=0}^{n}\binom{n}{r}(-2)^{n-r} x^{r} \theta_{n-r}\left(\mu^{\prime}, 2+r, 2\right) D^{r} y .
\end{gather*}
$$

As particular cases of (2.13) and (2.14) we note that

$$
\begin{align*}
& (-b)^{n} \theta_{n}(x, a, b)=\prod_{j=1}^{n}(x D-b x-a-2 n+j+1) \cdot 1 \tag{2.1.5}\\
& (-2)^{n} \theta_{n}(x)=\prod_{j=1}^{n}(x D-2 \cdot r-2 n+j-1) \cdot 1
\end{align*}
$$

In this connection it is interesting to note that a comparison
of (1.10) with the result [7]:

$$
(-2)^{n} \theta_{n}\left(\frac{x}{2}\right)=n!L_{n}^{(-2 n-1)}(n) ;
$$

implies that

$$
\begin{equation*}
\left.(-2)^{n} \theta_{n}\left(\frac{x}{2}\right)=\prod_{j=1}^{n}(x I)-x-2 n+j-1\right) \cdot 1 . \tag{2.17}
\end{equation*}
$$

Lastly we like to mention a consequence of the formula (2.16). To this end, we observe from (2.16)

$$
\begin{align*}
& -2(x D-2 x-n) \theta_{n}(x)=(x D-2 x-2 n)(x D- \tag{2.18}\\
& -2 x-2 n+1) \theta_{n-1}(r)
\end{align*}
$$

which implies

$$
\begin{align*}
& 2\left\{x \theta_{n}^{\prime}-(2 x+n) \theta_{n}\right\}+n^{2} \theta_{n-1}^{\prime \prime}-2\left(2 x^{2}+2 n i r-r\right) \theta_{n-1}^{\prime} \\
+ & 2\left\{2 x^{2}+2(2 n-1) x+2 n^{2}-n\right\} \theta_{n-1}=0 . \tag{2.19}
\end{align*}
$$

To verify the truth of (2.19) we observe [5, formulae (15), (16)]

$$
\begin{equation*}
\theta_{n}^{\prime}-\theta_{n}=-x \theta_{n-1} \tag{2.20}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{n+1}-x^{2} \theta_{n-1}=(2 n+1) \theta_{n} \tag{2.21}
\end{equation*}
$$

At first we shall prove the formula

$$
\begin{equation*}
x \theta_{n-1}^{\prime}+\theta_{n}=(x+2 n-1) \theta_{n-1} \tag{2.22}
\end{equation*}
$$

which is not mentioned in Burchnall's paper. For this, we easily notice from (2.20) and (2.21)

$$
\begin{array}{ll}
& \theta_{n+1}+x\left(\theta_{n}^{\prime}-\theta_{n}\right)=(2 n+1) \theta_{n} \\
\text { or, } \quad & n f_{n}^{\prime}+\theta_{n+1}=(x+2 n+1) \theta_{n}
\end{array}
$$

Now we have

$$
\begin{align*}
& \because\left\{x \theta_{n}^{\prime}-(2 x+n) \theta_{n}\right\} \\
= & 2 x\left(\theta_{n}-x \theta_{n-1}\right)-2(2 x+n) \theta_{n} \tag{2.23}\\
= & -2 x^{2} \theta_{n-1}-2(n+x) \theta_{n}
\end{align*}
$$

Thus eliminating θ_{n} between (2.19) and (2.22) with the help of ($2 . \unrhd 3$), we obtain

$$
\begin{equation*}
x \theta_{n-1}^{\prime \prime}-2(x+n-1) \theta_{n-1}^{\prime}+2(n-1) \theta_{n-1}=0 \tag{2.24}
\end{equation*}
$$

which is the differential equation for $\theta_{n-1}(x)$ and which may be compared with Burchnall's form:

$$
\begin{equation*}
\delta(\delta-2 n-1) \theta_{n}=2 x(\delta-n) \theta_{n} \tag{2.25}
\end{equation*}
$$

I extremely thank Dr. M. Dutta for the kind interest he has taken in the preparation of this paper.

REFERENCES

[1] Chatterjea S. K.: Operational formulae for certain classical polynomials - I, communicated to the Quart. Jour. Math. (Oxford).
[2] Krall H. L. and Frink O.: A new class of orthogonal polynomials: The Bessel polynomials, Trans. Amer. Math. Soc., Vol. 65, pp. 100-115, (1949).
[3] Chatterjea S. K.: Operational formulae for certain classical polynomials - II, communicated to the Rend. Sem. Mat. Univ. Padova.
[4] Rajagopal A. K.: On some of the classical orthogonal polynomials, Amer. Math. Monthly, Vol. 67, pp. 166-169, (1980).
[5] Burchnall J. L.: The Bessel polynomials, Canad. Jour. Math., Vol. 3, pp. 62-68, (1951).
[6] Carlitz L.: A note on the Laguerre polynomials, Michigan Math. Jour., Vol. 7, pp. 219-223, (1960).
[7] -: A note on the Bessel polynomials, Duke Math. Jour., Vol. 24, pp. 151-162, (1957).

