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Families of mixed generating functions, generalizing those of the Carlitz–
Srivastava type, are derived here by applying methods based on the multivariable
extension of the Lagrange expansion. It is also shown that the combination with
techniques of operational nature offers a wide flexibility to explore a wealth of
mixed bilateral generating functions for special functions with many variables.
© 2001 Academic Press

1. INTRODUCTION AND PRELIMINARIES

The familiar Lagrange expansion (LE) [1]

f �z�
1 − t ·φ′�z� =

∞∑
n=0

tn

n!

{
∂nλ

[
f �λ��φ�λ��n

]}
λ=z0

(
∂λ �= d

dλ

)
z = z0 + tφ�z�

(1)
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can be used to prove that [1]

S�x� y� =
∞∑
n=0

tn

n!
�x+ ny�n = exw

1 − yw
� w = tewy� (2)

This result and the operational identity [2, 3]

Hn�x� z� = ez∂
2
xxn� (3)

where Hn�x� z� are the two-variable Hermite polynomials defined by

Hn�x� z� = n!

n/2�∑
s=0

zsxn−2s

s!�n− 2s�! = inz+n/2Hn

(−ix

2
√
z

)
� (4)

allow us to conclude that [4]
∞∑
n=0

tn

n!
Hn�x+ ny� z� = exw+zw2

1 − yw
� w = tewy� (5)

Hn�x� being the classical Hermite polynomials.
The identity (5) was derived earlier by Carlitz [5] within a different frame-

work; it offers a genuine example of combination of LE and of operational
methods to study generating functions of mixed type. This technique, put
forward in [6], has allowed the derivation of a wealth of old and new results
from a unified point of view.

To better illustrate the effectiveness of this method, which we are going to
generalize in this paper, we will present further, not yet discussed, examples.

The two-variable Laguerre polynomials are defined by the generating
function [6]

∞∑
n=0

tn

n!
�n�x� y� = eytC0�xt�� (6)

where

�n�x� y� = n!
n∑

s=0

�−1�sxsyn−s

�s!�2�n− s�! = ynLn

(
x

y

)
(7a)

and

C0�x� =
∞∑
s=0

�−1�sxs

�s!�2 = J0�2
√
x�� (7b)

Jυ�x� being the relatively more familiar Bessel function.
It is evident that the generating function (6) reduces to the ordinary case

for y = 1 and it can be rewritten in the operational form
∞∑
n=0

tn

n!
�n�x� y� = C0�x∂y�eyt � (8)
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We can therefore argue, as a straightforward consequence of (2), that
∞∑
n=0

tn

n!
�n�x� y + nz� = eyw

1 − zw
C0�xw�� w = tezw� (9)

In view of the relationship in (7a) with the classical Laguerre polynomials
Ln�x�, a well-known result by Carlitz gives us the mixed generating func-
tion [5]

∞∑
n=0

tn�n�x+ nz� y� = 1
1 − yζ

exp
(
− xζ

1−yζ

)
1 + zζ�1 − yζ�−2

ζ = t exp
(
− zζ

1 − yζ

) (10)

which can be extended to the Hermite–Laguerre polynomials HLn�x� y
k�,
defined by the relations (see [3])

ek∂
2
x�n�x� y� = H�n�x� y
k� (11a)

and

H�n�x� y
k� = n!
n∑

s=0

�−1�syn−sHs�x� y�
�s!�2�n− s�! � (11b)

By applying the identities (3), (10), and (11a) we can, indeed, conclude that

∞∑
n=0

tnH�n�x+ nz� y
k� = 1
1 − yζ

exp
(
− xζ

1−yζ
+ k

(
ζ

1−yζ

)2
)

1 + zζ�1 − yζ�−2

ζ = t exp
(
− zζ

1 − yζ

)
�

(12)

We will reconsider identities of the type (12) in the concluding section of
this paper, which is devoted to the extension of the above methods and to
the derivation of mixed generating functions with many indices and many
varibales. It will be shown that, within such a framework, a central role is
played by the multivariable extension of the Lagrange expansion.

Before closing this section, we recall two operational rules which will be
used in our investigation:

(a) Weyl decoupling identity [3]

eÂ+B̂ = eÂeB̂e−k/2 (13)

if the operators satisfy the commutation relation 
Â� B̂� = k ∈ C,
(b) Crofton-like identity [3]

eτ∂
m
x ∂

n
y f �x� y� = f

(
x+mτ∂m−1

x ∂ny � y + nτ∂mx ∂
n−1
y

)
� (14)

Further comments on the use of the above identities can be found in
Appendix B.
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2. TWO-VARIABLE LAGRANGE EXPANSION AND
MIXED GENERATING FUNCTIONS

The two-variable (TV) extension of the LE (1) is provided by [7]

h
u�s� t�� v�s� t�� s� t�
!
u�s� t�� v�s� t�� s� t� =

∞∑
m�n=0

smtn

m!n!

{
∂mx ∂

n
y

[
h�x� y� s� t�

×
[
�f �x� y��m�g�x� y��n

]]}
x=y=0

u�s� t� = s · f �u�s� t�� v�s� t��
v�s� t� = t · g�u�s� t�� v�s� t��

!�x� y� s� t� = �1 − s∂xf ��1 − t∂yg� − ts�∂yf ��∂xg��

(15)

We will illustrate the usefulness of (15) by discussing a fairly complicated
example; we consider indeed the three-variable polynomial

L
�m�
n �x� y� z� =

m∑
q=0

n∑
r=0

(
m

q

)(
n

r

)
�z − 1�q�y − 1�rL�m−q�

n−r �x�� (16)

where L
�m�
n �x� are single-variable modified Laguerre polynomials [8]. The

bilateral generating function associated with these last polynomials is pro-
vided by (see Appendix A)

G�x� y� z
u� t� =
∞∑

m�n=0

um

m!
tn

n!
L

�m�
n �x� y� z�

= ezu+ytC0
�x− u�t��
(17)

The use of TVLE allows us to conclude that
∞∑

m�n=0

um

m!
tn

n!
L

�m�
n �x� y + αm+ βn� z + γm+ δn�

=
∞∑

m�n=0

um

m!
tn

n!
∂mλ ∂

n
σ�eyσ+zλC0
�x− λ�σ�

× 
�eασ+γλ�m�eβσ+δλ�n��λ=σ=0

= ezψ1+yψ2

1 − γψ1 − βψ2 + !ψ1ψ2
C0
�x− ψ1�ψ2��

(18)

with

! = γβ− αδ� ψ1 = ueγψ1+αψ2� ψ2 = teδψ1+βψ2 � (19)
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In [4] it was shown that if

Sm�n�x� y� = �ax+ by�m�bx+ cy�n (20)

then
∞∑

m�n=0

um

m!
tn

n!
Sm�n�x+mw� y + nz�

= eψ1�ax+by�+ψ2�bx+cy�

1 − awψ1 − czψ2 + !wzψ1ψ2
� (21)

where

! = ac − b2� ψ1 = ue�aψ1+bψ2�w� ψ2 = te�bψ1+cψ2�z� (22)

Since two-variable two-index Hermite polynomials are linked to Sm�n�x� y�
by the operational identity (see [9])

e�−1/2�∂Tζ M̂−1∂ζ Sm� n�x� y� = Hm�n�x� y�� (23)

where T denotes the transpose and

∂ζ =
(
∂x
∂y

)
� M̂ =

(
a b
b c

)
� (24)

we can apply Crofton and Weyl identities to conclude that (see also
Appendix B)

∞∑
m�n=0

um

m!
tn

n!
Hm�n�x+mw� y + nz�

= eψ
T M̂ζ− 1

2 ψ
T M̂ψ

1 − awψ1 − czψ2 + !wzψ1ψ2
�

! = ac − b2� ψ =
(
ψ1

ψ2

)
� ζ =

(
x

y

)
� (25)

It is evident that the procedure leading to the identity (25) is the direct
generalization of that providing Eq. (5).

The polynomials Hm�n�x� y
 τ� can be defined through the identity

Hm�n�x� y
 τ� = e�−τ/2�∂Tζ M̂−1∂ζ Sm� n�x� y� (26)

and the generating function
∞∑

m�n=0

um

m!
tn

n!
Hm�n�x� y
 τ� = eρ

T M̂ζ−�τ/2�ρT M̂ρ ρ =
(
u

t

)
� (27)
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We can therefore apply the TVLE to derive the mixed bilateral generating
function

∞∑
m�n=0

um

m!
tn

n!
Hm�n�x+mw�y+nz
τ+αm+βn�= eψ

T M̂ζ−�τ/2�ψT M̂ψ

D�w�z�α�β
τ� � (28)

where

D�w� z� α�β
 τ�
= 1 − 
aw − α�aψ1 + bψ2��ψ1 − 
cz − β�cψ2 + bψ1��ψ2

+ ��aw − α�aψ1 + bψ2���cz − β�cψ2 + bψ1��
− �bw − α�cψ2 + bψ1���bz − β�aψ1 + bψ2���ψ1ψ2

(29)

with ψ1� 2 defined by

ψ1 = uew�aψ1+bψ2�−�α/2�ψT M̂ψ� ψ2 = tez�bψ1+cψ2�−�β/2�ψT M̂ψ� (30)

The examples discussed so far offer a first idea of the usefulness of the
TVLE to study problems associated with generalized mixed generating
functions. A more general treatment will be presented in the following
sections.

3. EXTENSION OF THE METHOD AND
FURTHER EXAMPLES

The polynomials hm�n�x� y
 τ� are characterized by the following proper-
ties [2]

(a) generating function

∞∑
m�n=0

um

m!
vn

n!
hm�n�x� y
 τ� = eux+vy+τuv (31)

(b) series definition

hm�n�x� y
 τ� = m!n!
min�m�n�∑

s=0

τsxm−syn−s

s!�m− s�!�n− s�! (32)

(c) operational identity

eτ∂
2
x� y xmyn = hm�n�x� y
 τ�� (33)
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It is therefore clear that
∞∑

m�n=0

um

m!
vn

n!
hm�n�x+ αm+ βn� y + γm+ δn
 τ�

= eψ1x+ψ2y+τψ1ψ2

1 − αψ1 − δψ2 + !ψ1ψ2
� (34)

where

! = αδ− βγ� ψ1 = ueαψ1+γψ2� ψ2 = veβψ1+δψ2 � (35)

This rather trivial result, obtainable as a particular case of the identity (23),
has been explicitly quoted for two reasons:

(a) to prove the result
∞∑

m�n=0

umvn

m!n!
�x+ αm+ βn��m+n�/2hm�n

(√
x+ αm+ βn�

√
x+ αm+ βn
 τ)

= e�ψ1+ψ2+τψ1ψ2�x

1 − αψ1 − βψ2 − τ
(�α+ β�ψ1ψ2

) (36)

which generalizes an identity obtained by Srivastava [10] valid for the ordi-
nary Hermite polynomials involved in Eq. (4), where

ψ1 = ueα�ψ1+ψ2+τψ1ψ2�� ψ2 = veα�ψ1+ψ2+τψ1ψ2�
 (37)

(b) to introduce the Laguerre polynomials L
�α�β�
m�n �x� y
 τ� defined by

the generating function
∞∑

m�n=0

umvnL
�α�β�
m�n �x� y
 τ� = 1

�1 − u�α+1

1
�1 − v�β+1

× exp
(− xu

1 − u
− yv

1 − v
+ τ

uv

�1 − u��1 − v�
)

(38)

and by the operational rule

eτ∂
2
x� yL

�α�
m �x�L�β�

n �y� = L
�α�β�
m�n �x� y
 τ�� (39)

This last identity can be employed to state the extension of the Carlitz
formula [5],

∞∑
m�n

umvnL
�α+λm�β+µn�
m�n �x+mw� y + nz
 τ�

= 1
�1 − ζ1�1+α

1
�1 − ζ2�1+β

exp
(− xζ1

1−ζ1
− yζ2

1−ζ2
+ τ ζ1ζ2

�1−ζ1��1−ζ2�
)

F1�ζ1�F2�ζ2�
� (40)
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where

Fa�ζa� = 1 − ζa�1 − ζa�−1[χa − ξa�1 − ζa�−1]� a = 1� 2�

χ1 = λ� χ2 = µ� ξ1 = w� ξ2 = z� η1 = u� η2 = v (41)

ζa = ηa�1 − ζa�−χae−ξaζa/�1−ζa��

It is worth noting that an extension of (41) involving the TVLE can be
written as

∞∑
m�n=0

umvnL
�α+λm+γn�β+µn+δm�
m�n �x+mw + ns� y + nz +mr
 τ�

= 1

�1 − ζ1�1+α

1
�1 − ζ2�1+β

exp
(
− xζ1

1−ζ1
− yζ2

1−ζ2
+ τ ζ1ζ2

�1−ζ1��1−ζ2�
)

8�ζ1� ζ2�
� (42)

where

8�ζ1� ζ2� =
[
1 − u∂ζ1

A1�ζ1ζ2�
][

1 − vδζ2
A2�ζ1� ζ2�

]
−uv

{
δζ2

A1�ζ1� ζ2�
}{
∂ζ1

A2�ζ1� ζ2�
}

(43)

and

A1�ζ1� ζ2� =
1

�1 − ζ1�λ
1

�1 − ζ2�δ
exp�− wζ1

1 − ζ1
− rζ2

1 − ζ2
��

A2�ζ1� ζ2� =
1

�1 − ζ1�γ
1

�1 − ζ2�µ
exp

(
− sζ1

1 − ζ1
− zζ2

1 − ζ2

)
�

ζ1 = uA1�ζ1� ζ2�� ζ2 = vA2�ζ1� ζ2��

(44)

The examples discussed in this section have perhaps provided a more gen-
eral feeling on the usefulness and flexibility of the method we have pro-
posed. Further examples will be discussed in Section 4 which is also devoted
to concluding remarks and observations.

4. THE MULTIVARIABLE LAGRANGE EXPANSION AND
CONCLUDING REMARKS

The results of the previous section can be framed within the context of
the following general theorem:

Theorem. Let A�z1� z2�� B�z1� z2�� C�z1� z2�� z−1
1 D�z1� z2�, and z−1

2 ×
E�z1� z2� be arbitrary functions which are analytic in a neighborhood of the
origin (z1 = z2 = 0) and assume that

A�0� 0� = B�0� 0� = C�0� 0�
= ∂z1

D�z1� z2�
∣∣
z1=z2=0 = ∂z2

E�z1� z2�
∣∣
z1=z2=0� (45)
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Define the sequence of functions �f �α�β�
m�n �x� y�� by means of

A�z1� z2�
[
B�z1� z2�

]α[
C�z1� z2�

]β exp
xD�z1� z2� + yE�z1� z2��

=
∞∑

m�n=0

zm1
m!

zn2
n!

f
�α�β�
m�n �x� y�� (46)

where, α�β� x� y are arbitrary complex numbers independent of z1� 2. Then, for
λ� γ�µ�w� s, k� r independent of z1 and z2,

∞∑
m�n=0

um

m!
vn

n!
f
�α+λm+γn�β+µn+δm�
m�n �x+mw + ns� y + nk+mr�

= A�ζ1� ζ2�B�ζ1� ζ2�αC�ζ1� ζ2�β
:�ζ1� ζ2�

exD�ζ1�ζ2�+yE�ζ1�ζ2�� (47)

where
ζ1 = u
B�ζ1� ζ2��λ
C�ζ1� ζ2��δewD�ζ1�ζ2�+rE�ζ1�ζ2�

ζ2 = v
B�ζ1� ζ2��γ
C�ζ1� ζ2��µesD�ζ1�ζ2�+kE�ζ1�ζ2�
(48)

and

:�ζ1� ζ2� =
[
1 − u∂ζ1

A1�ζ1� ζ2�
][

1 − v∂ζ2
A2�ζ1� ζ2�

]
− uv

{
∂ζ2

A1�ζ1� ζ2�
}{
∂ζ2

A1�ζ1� ζ2�
}
� (49)

The above theorem generalizing an analogous theorem due to Carlitz
[5] and to Srivastava [10] (see also Srivastava and Manocha [11]) can be
applied to derive further mixed generating functions. We consider therefore
the polynomials �m�n�x� y
 z�w � τ� defined as

eτ∂
2
x� z�m�x� y��n�z�w� = �m�n�x� y
 z�w � τ�� (50)

and since
∞∑

m�n=0

um

m!
vn

n!
�m�n�x� y
 z�w � τ� = eyu+wvC0� 0�xu� zv
 τuv��

C0� 0�x� z
 τ� =
∞∑

r�s=0

�−1�r+shr�s�x� y
 τ�
�r!�2�s!�2 (51)

we end up with
∞∑

m�n=0

um

m!
vn

n!
�m�n�x� y + αm+ βn
 z�w + γm+ δn � τ�

= eyψ1+wψ2C0� 0�xψ1� zψ2
 τψ1ψ2�
1 − αψ1 − δψ2 + !ψ1ψ2

� ! = αδ− βγ�

ψ1 = ueαψ1+γψ2� ψ2 = veβψ1+δψ2 �

(52)
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A final point we want to touch upon is the possibility of obtaining fur-
ther generalizations, based on the multivariable extension of the Lagrange
expansion, which reads [12]

h��uj��si����
!��uj��si���� �sP��

= ∑
�mj�

N∏
j=1

s
mj

j

mj!

[
∂
mj

xj

[
h��xi�� �sp��

]
×

N∏
k=1


fk��xi���mk

]
xj=0

�

uj��si�� = sjfj
({
uj

({
sp
})})

�

(53)

where �αj� = �α1� α2� � � � � αN� and ! denotes the determinant of the matrix
with elements

Li� j = δi� j − si∂xj
fi��xk��� (54)

As a straightforward application of the MVLE, we consider the following
example. Given

Sm1�m2�m3
�x1� x2� x3� =

3∏
α=1

( 3∑
β=1

aα�βXβ

)mα

(55)

then

∞∑
�mα�=0

3∏
α=1

umα

mα!
S�mα���xα +mαwα�� =

exp�∑3
α=1�ψα�̂@x�α��

!�ψ1� ψ2� ψ3�
� (56)

where

ψα = uα exp
(
wα

(
@̂Tψ

)
α

)
� (57)

the matrix @̂T is the matrix with entries aα�β� x is the vector of components
�xα� and analogously for the vector ψ, and finally !�ψ1� ψ2� ψ3� is the
determinant of the matrix with elements

Ti� j = δi� j − aj� iwiψi� (58)

In a forthcoming investigation we will discuss more deeply the applications
of MVLE.
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APPENDIX A

The generalized Laguerre polynomials for m integer can be defined
through the operational identity [13]

L
�m�
n �x� = �1 −Dx�m�1 −�−1

x �n�1�� (A1)

where �−1
x is the inverse of the derivative operator Dx. By multiplying both

sides of (A1) by um/m! and tn/n! and by summing over the integers m and
n, we get

∞∑
m�n=0

um

m!
tn

n!
L

�m�
n �x� = eu�1−Dx�et�1−�−1

x ��1�� (A2)

By recalling that

�−n
x �1� = xn

n!
(A3)

and by using the Crofton identity we easily end up with

∞∑
m�n=0

um

m!
tn

n!
L

�m�
n �x� = eu+tC0��x− u�t�� (A4)

APPENDIX B

In the first section we have introduced the operational definition of the
Hermite polynomials (Eq. (3)), the Crofton rule (14), and the Weyl decou-
pling identity (13). We must, however, clarify how they are used.

From the operational point of view the quantity

Ô = ey∂
2
xf �x� (B1)

is an operator equivalent to

Ô = f �x+ 2y∂x�ey∂
2
x � (B2)

If we assume that Ô acts on unity it reduces to

Ô�1� = Hf �x� (B3)

with Hf �x� denoting a function having the same Maclaurin expansion as of
f �x� but with xn replaced by Hn�x� y�; it is also clear that in this last case
Ô�1� is a function of x. It is also evident that sometimes, when exponential
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forms are involved, the use of the Crofton rule and of the Weyl identity
can be useful. We note indeed that

eτ∂
2
x� y exu+yv = e�x+τ∂y�u+�y+τ∂x�v

= exu+yv+�τ/2�uv
∂y �y�+�τ/2�uv
∂x�x�euτ∂y evτ∂x
(B4)

which, if assumed to act on unity, yields Eq. (33). The same procedure,
albeit more cumbersome from the algebraic point of view, applies to the
case of two-index, two-variable Hermite polynomials. The Crofton identity
(14) indeed yields

e�1/2�∂Tζ �M̂−1�∂ζ �ax+ by�m�bx+ cy�n = Îm� n� (B5)

where

Îm� n = �ax+ by − ∂x�m�bx+ cy − ∂y�n� (B6)

By multiplying both sides of (B5) by um/m! and vn/n! and by summing up
over the indices m and n, we obtain

e−�1/2�∂Tζ �M̂−1�∂ζ
∞∑

m�n=0

um

m!
vn

n!
�ax+ by�m�bx+ cy�n

= eu�ax+by−∂x�ev�bx+cy−∂y�
(B7)

which, by means of the Crofton and Weyl identities, yields

e−�1/2�∂Tζ �M̂−1�∂ζ
∞∑

m�n=0

um

m!
vn

n!
�ax+ by�m�bx+ cy�n

= eρ
T M̂ζ−�1/2�ρT M̂ρ

(B8)
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