
Applied Mathematics Letters 20 (2007) 982–987
www.elsevier.com/locate/aml

LU factorization of the Vandermonde matrix and its applications
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Abstract

A scaled version of the lower and the upper triangular factors of the inverse of the Vandermonde matrix is given. Two
applications of the q-Pascal matrix resulting from the factorization of the Vandermonde matrix at the q-integer nodes are introduced.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A Vandermonde matrix is defined in terms of scalars x0, x1, . . . , xn by

V = V (x0, x1, . . . , xn) =


1 x0 . . . xn

0
1 x1 . . . xn

1
...

...
...

1 xn . . . xn
n

 .

Vandermonde matrices play an important role in approximation problems such as interpolation, least squares and
moment problems. The special structure of V makes it possible to investigate not only explicit formulas for LU
factors of V and V −1 but also fast solutions of a Vandermonde system V x = b. See [9] and the references therein.
Interestingly, complete symmetric functions and elementary symmetric functions appear in the LU factorization of
the Vandermonde matrix V and its inverse V −1 respectively [8,9]. Taking LU factors into account, [8] deduced one-
banded (bidiagonal) factorization of V and hence achieved a well known result that V is totally positive matrix if
0 < x0 < x1 < · · · < xn . Note that a matrix is totally positive if the determinant of every square submatrix is positive.
The paper [9] investigates the LU factors of V and V −1 at x0 = 0, xi = 1 + q + · · ·+ q i−1, i = 1, 2, . . . , n, in which
q-Pascal and q-Stirling matrices are introduced. Recently, based on [8], the work [12] has scaled the elements of LU
of V to give a simpler formulation. There also follows a simpler one-banded factorization of V .

In this work, using [9,12] we simplify the formula [9, Theorem 3.2] for the LU factors of V −1 in Section 2, and in
turn a shorter proof of one-banded factorization of the upper triangular U is obtained. In Section 3, two applications of
the q-Pascal matrix, the subdivision formula for q-Bernstein Bézier curves and the solution of a system of first-order
q-difference equations, are presented.

E-mail address: halil.oruc@deu.edu.tr.

0893-9659/$ - see front matter c© 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2006.10.003
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2. LU factors of V−1

When V = LU where L is a lower triangular matrix with ones on the main diagonal and U is an upper triangular
matrix (Doolittle method), the explicit formulas for the elements of the matrices L and U are given in [8]. However if
we let U have ones on the main diagonal (Crout method), namely scaling the elements of upper triangular matrix
in the Doolittle method, then we obtain the formulas [12, Theorem 2] and [11, (1.61), (1.62)]. Considering the
Crout method on V −1, that is multiplying the matrices D̂−1 and L̂−1 in [9, Theorem 3.2], we obtain the following
simplification:

Theorem 2.1. Let V −1
= U−1L−1. Then Crout’s factorization of V −1 satisfies

(U−1)i, j = (−1)i+ jσ j−i (x0, . . . , x j−1), 0 6 i 6 j 6 n, (2.1)

(L−1)i, j =
1

i∏
k=0
k 6= j

(x j − xk)

, 0 6 j 6 i 6 n, (2.2)

where σk denotes the kth elementary symmetric function.

Note that a generating function for the elementary symmetric functions is

(1 − x1x)(1 − x2x) . . . (1 − xn x) =

n∑
k=0

(−1)kσk(x1, . . . , xn)xk

and its recurrence relation is

σk(x1, . . . , xn) = σk(x1, . . . , xn−1) + xnσk−1(x1, . . . , xn−1). (2.3)

See [9]. Although the above factorization Theorem 2.1 and the factorization in [12] reduce computational work
slightly, they do not reveal a nice structure on the factors L and U at the q-integer nodes, q-Pascal and q-Stirling
matrices respectively.

Now let us observe that the sum of the i th row of L−1 in (2.2) vanishes for i = 1, 2, . . . , n since L L−1
= I and L

has leading column consisting of ones. Alternatively, one may show that

i∑
j=0

1
i∏

k=0
k 6= j

(x j − xk)

= 0, (2.4)

using the interpolating polynomial pn(x) for a function f (x) at distinct points x0, x1, . . . , xn in Newton form:

pn(x) = f [x0] + f [x0, x1](x − x0) + · · · + f [x0, x1, . . . , xn](x − x0) . . . (x − xn−1),

where the divided difference f [x0, x1, . . . , xn] is expressed as the symmetric sum

f [x0, x1, . . . , xn] =

n∑
j=0

f (x j )
n∏

k=0
k 6= j

(x j − xk)

. (2.5)

Since the interpolating polynomial pn reproduces a polynomial of degree at most n, see [11], it follows from f (x) = 1
that

f [x0, x1, . . . , xi ] = 0, i = 1, 2, . . . , n.

Then Eq. (2.5) reduces to (2.4).
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Another important fact is that the entries of V −1 can be obtained explicitly from Theorem 2.1 as

(V −1)i j = (−1)n−i σn−i (x0, . . . , x j−1, x j+1, . . . , xn−1)
n∏

k=0
k 6= j

(x j − xk)

. (2.6)

The last formula is well known; see [5,6]. The study [5] finds the formulas for L DU factors of the matrices V and
V −1 without using properties of elementary or complete symmetric functions. The benefit of the use of symmetric
functions is in computing the entries of LU factors of V and V −1 recursively; see [9]. The paper [7] analyzes the
factorization of the inverse of a Cauchy–Vandermonde matrix as a product of bidiagonal matrices to develop fast
algorithms for interpolation.

We end this section by giving a shorter proof expressing U−1 as a product of one-banded matrices in [9]. First, for
k = 1, 2, . . . , n define (n + 1) × (n + 1) matrices Ek by

(Ek)i j =

{
1, i = j
−xk−1, i = j − 1 and j > k.

It is proved in [9] that U−1
= E1 E2 . . . En . Now using the recurrence relation (2.3) observe that U−1

= E1U n−1
where

U n−1 =

[
1 0
0 Un−1

]
and 0 denotes an appropriate zero matrix, and n × n matrix Un−1 is defined by

(Un−1)i j = (−1)i+ jσ j−i (x1, . . . , xn−1), 0 6 i 6 j 6 n − 1.

Applying the same process once more we have U n−1 = E2U n−2 where

U n−2 =

[
I2 0
0 Un−2

]
and I2 is the 2 × 2 identity matrix, and

(Un−2)i j = (−1)i+ jσ j−i (x2, . . . , xn−1), 0 6 i 6 j 6 n − 2.

Thus repeating the above procedure n − 3 times more, it yields the required bidiagonal product E1 E2 . . . En = U−1.

3. Applications of the q-Pascal matrix

The Bernstein–Bézier representations are most important tools for computer aided design purposes; see [4]. A
parametric Bézier curve P defined by

P(t) =

n∑
i=0

bi

(n
i

)
t i (1 − t)n−i 0 6 t 6 1 (3.1)

where bi , i = 0, 1, . . . , n ∈ R2 or R3, are given control points, mimics the shape of the control polygon. In the
work [10], the representation (3.1) is generalized by using a one-parameter family of Bernstein–Bézier polynomials,
so called q-Bernstein Bézier curves. They were defined as follows:

P(t) =

n∑
i=0

bi

[n
i

]
t i

n−i−1∏
j=0

(1 − q j t), (3.2)

where an empty product denotes 1, the parameter q is a positive real number and [r ] denotes a q-integer, defined by

[r ] =

{
(1 − qr )/(1 − q), q 6= 1,

r, q = 1.
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The q-binomial coefficient
[ n

r

]
which is the generating function for restricted partitions, see [2], is defined by[n

r

]
=

[n][n − 1] . . . [n − r + 1]

[r ][r − 1] . . . [1]

for n > r > 1, and has the value 1 when r = 0 and the value zero otherwise. Note that this reduces to the usual
binomial coefficient when we set q = 1 and (3.2) reduces to (3.1). We now generalize the well known subdivision
formula, see [4], of the Bernstein Bézier curves which may be used to subdivide the curve P in (3.2).

Theorem 3.1. Let Bn
i (t) =

[ n
i

]
t i ∏n−i−1

j=0 (1−q j t) be the q-Bernstein Bézier polynomial and let c ∈ (0, 1) be a fixed
real. Then

Bn
i (ct) =

n∑
j=0

B j
i (c)Bn

j (t). (3.3)

Proof. Let M be an (n + 1) × (n + 1) matrix with the elements Mi j = Bi
j (ct), that is

Mi j =


[

i
j

]
c j t j

i− j−1∏
k=0

(1 − qkct), 0 6 j < i 6 n,

ci t i , i = j,
0, otherwise.

Since the eigenvalues of the matrix M are distinct it can be written as M = P D P−1 where D is a diagonal
matrix whose elements Di i = ci t i are the eigenvalues of M . It is computed from the product that the elements
Pi j of P are the entries of the q-Pascal matrix Pi j =

[
i
j

]
, and the elements of the matrix P−1 are (P−1)i j =

(−1)i− j q(i− j)(i− j−1)/2
[

i
j

]
. Now we can write M = P D1 D2 P−1, where D1 and D2 are diagonal matrices with

elements (D1)i i = t i and (D2)i i = ci , i = 0, 1, . . . , n. Then it follows from

M = P D1 P−1 P D2 P−1
= RS

that the matrices R and S have the entries Ri j = Bi
j (t) and Si j = Bi

j (c) respectively. Thus, M has the elements

Mni = Bn
i (ct) =

n∑
j=0

Rnj S j i =

n∑
j=0

Bn
j (t)B j

i (c), 0 6 i 6 n.

which completes the proof. �

We note that using the symmetric functions, q-Pascal matrices P and P−1 are obtained in the LU factorization of
the Vandermonde matrix and in the inverse of the Vandermonde matrix at the q-integer nodes respectively, see [9].

In what follows, we relate the q-Pascal matrix P to an (n + 1) × (n + 1) nilpotent matrix H of index n + 1 defined
by

Hi j =

{
[i], if i = j + 1, 0 6 i, j 6 n
0, otherwise.

We first define, see [3, p. 490], the q-analogue of the exponential series

Eq(x) =

∞∑
k=0

xk

[k]!
. (3.4)

This series is absolutely convergent only in |x | < (1 − q)−1 when |q| < 1. However, another q-series

Eq(x) =

∞∑
k=0

qk(k−1)/2 xk

[k]!
(3.5)

is convergent for all x and |q| < 1.



986 H. Oruç / Applied Mathematics Letters 20 (2007) 982–987

Theorem 3.2. The q-Pascal matrix P is given by

P =

∞∑
k=0

H k

[k]!
. (3.6)

Proof. First we see that the above series (3.6) is indeed finite since H k
= 0 for all k > n +1. Then it can be calculated

from the definition of H that

H j ei = [i + j] . . . [i + 1]ei+ j ,

where ei = 0, 1, . . . , n denote the unit vectors in Rn+1. Now, a generic element on the right of (3.6) is

Eq(H)i j = eT
i Eq(H)e j =

n∑
k=0

eT
i

H k

[k]!
e j .

Thus we obtain

Eq(H)i j =

n∑
k=0

eT
i

[ j + k] . . . [ j + 1]

[k]!
ek+ j =

n∑
k=0

[ j + k] . . . [ j + 1]

[k]!
δi, j+k,

where δ denotes the Kronecker delta function. Shifting the index of the summation gives

[i] . . . [i − j + 1]

[i − j]!
=

[
i
j

]
= Pi j

and this completes the proof. �

It is well known, see [1], that the initial value problem in Rn+1,

d
dt

y(t) = H1y(t), y(0) = y0

where H1 denotes the matrix H with q = 1, has the solution y(t) = eH1t y(0). Next we demonstrate that the q-Pascal
matrix appears as the solution of the first-order q-difference equation in Rn+1. As in [3], we define the q-difference
operator Dq by

Dq f (x) =
f (qx) − f (x)

qx − x
, x 6= 0.

Provided that f ′(x) exists,

lim
q→1

Dq f (x) = f ′(x).

It can be readily verified that for integers r > 1, Dq(xr ) = [r ]xr−1. Then the solution y of the q-difference equation

Dqy(t) = Hy(t), y(0) = y0

is y(t) = Eq(Ht)y0. It follows from (3.6) that the matrix Eq(Ht) has entries of the q-Pascal matrix

Eq(Ht)i j = t i− j
[

i
j

]
, i > j > 0.

It is worth noting that the polynomial p defined by

p(t) =

n∑
k=0

[n
k

]
tk,

the sum of the nth row of Eq(Ht), is known as the Rogers–Szegö polynomial [2].
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