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Abstract

A scaled version of the lower and the upper triangular factors of the inverse of the Vandermonde matrix is given. Two
applications of the ¢g-Pascal matrix resulting from the factorization of the Vandermonde matrix at the g-integer nodes are introduced.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A Vandermonde matrix is defined in terms of scalars xg, x1, ..., X, by
n
I xo ... x
1 X1 e x?
V = V(x09x17"'5'x11) =
1 x, ... x)

Vandermonde matrices play an important role in approximation problems such as interpolation, least squares and
moment problems. The special structure of V makes it possible to investigate not only explicit formulas for LU
factors of V and V! but also fast solutions of a Vandermonde system Vx = b. See [9] and the references therein.
Interestingly, complete symmetric functions and elementary symmetric functions appear in the LU factorization of
the Vandermonde matrix V and its inverse V1 respectively [8,9]. Taking LU factors into account, [8] deduced one-
banded (bidiagonal) factorization of V and hence achieved a well known result that V is totally positive matrix if
0 < xp < x1 < -+ < xp,. Note that a matrix is totally positive if the determinant of every square submatrix is positive.
The paper [9] investigates the LU factors of V and V96latxg=0,x; =1 +qg+--- +q"’], i=1,2,...,n,in which
g-Pascal and ¢g-Stirling matrices are introduced. Recently, based on [8], the work [12] has scaled the elements of LU
of V to give a simpler formulation. There also follows a simpler one-banded factorization of V.

In this work, using [9,12] we simplify the formula [9, Theorem 3.2] for the LU factors of V1 in Section 2, and in
turn a shorter proof of one-banded factorization of the upper triangular U is obtained. In Section 3, two applications of
the g-Pascal matrix, the subdivision formula for g-Bernstein Bézier curves and the solution of a system of first-order
q-difference equations, are presented.
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2. LU factors of V1

When V = LU where L is a lower triangular matrix with ones on the main diagonal and U is an upper triangular
matrix (Doolittle method), the explicit formulas for the elements of the matrices L and U are given in [8]. However if
we let U have ones on the main diagonal (Crout method), namely scaling the elements of upper triangular matrix
in the Doolittle method, then we obtain the formulas [12 Theorem 2] and [11, (1.61), (1.62)]. Considering the
Crout method on V!, that is multiplying the matrices D'land L' in [9, Theorem 3.2], we obtain the following
simplification:

Theorem 2.1. Ler V—' = U~'L~". Then Crout’s factorization of V= satisfies
U™Mij=EDYo(xo, . xjmn), 0<i<j<n, 2.1
1
(LDij=————— 0<j<i<n 2.2)
[1G —x0)
k=0
Kt

where oy denotes the kth elementary symmetric function.

Note that a generating function for the elementary symmetric functions is
(I =101 = x20) . (1= ) = Z( Dfor(rr, ..o, xn)x®

and its recurrence relation is
ok (X1, .oy Xn) = 0k (X1, ooy Xp—1) + XnOk—1 (X1, .oy Xp—1). (2.3)

See [9]. Although the above factorization Theorem 2.1 and the factorization in [12] reduce computational work
slightly, they do not reveal a nice structure on the factors L and U at the g-integer nodes, g-Pascal and g-Stirling
matrices respectively.

Now let us observe that the sum of the ith row of L~! in (2.2) vanishes fori =1, 2, ..., n since LL '=Tand L
has leading column consisting of ones. Alternatively, one may show that

ZI: . 2.4)

=0 H (xj — xk)
k#J
using the interpolating polynomial p, (x) for a function f(x) at distinct points xg, X1, . .., X, in Newton form:

Pn(x) = flxo]l + flxo, x1](x — x0) + - - + flxo, x1, ..., X2 ](x — x0) ... (x — Xp—1),

where the divided difference f[xg, x1, ..., x,] is expressed as the symmetric sum
n
f(x))
flxo, x1, oo x] =Y ———L—. 2.5)
=0 T] (xj — xk)
k=0
ket j

Since the interpolating polynomial p,, reproduces a polynomial of degree at most n, see [11], it follows from f(x) =1
that

flxo, x1,...,x]1=0, i=12,...,n.
Then Eq. (2.5) reduces to (2.4).
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Another important fact is that the entries of V! can be obtained explicitly from Theorem 2.1 as

(V_l)lJ — (_1)}1—1 o‘n*i(x07 LY ,nx'jil’ xj+]’ ceey xn*l) ) (2,6)
[TG; —x0)
k=0
oy

The last formula is well known; see [5,6]. The study [5] finds the formulas for L DU factors of the matrices V and
V—! without using properties of elementary or complete symmetric functions. The benefit of the use of symmetric
functions is in computing the entries of LU factors of V and V! recursively; see [9]. The paper [7] analyzes the
factorization of the inverse of a Cauchy—Vandermonde matrix as a product of bidiagonal matrices to develop fast
algorithms for interpolation.

We end this section by giving a shorter proof expressing U ! as a product of one-banded matrices in [9]. First, for
k=1,2,...,ndefine (n + 1) x (n + 1) matrices Ej by

1, i=j

(Ev)ij = {—xkl, i=j—1landj > k.

It is proved in [9] that U~! = E|E,...E,. Now using the recurrence relation (2.3) observe that U~! = E U,_;
where

— 1 0
Un—l - [0 Un]}

and 0 denotes an appropriate zero matrix, and #n x n matrix U, _1 is defined by
(Un—1)ij = (=D oj_i(x1,...,xp—1), 0<i<j<n—1

Applying the same process once more we have U,,_| = E,U,_, where

— |2 0
Un—2 - [0 Un2i|

and I, is the 2 x 2 identity matrix, and
Un—2)ij = (=D oj_i(x2, .. oxm1), 0<i<j<n—2.
Thus repeating the above procedure n — 3 times more, it yields the required bidiagonal product E{E, ... E, = U~!.

3. Applications of the g-Pascal matrix

The Bernstein—Bézier representations are most important tools for computer aided design purposes; see [4]. A
parametric Bézier curve P defined by

n
P(t)=> b (r.l)t"(l—t)”*" 0<r<1 3.1)
i=0 !
where b;,i = 0,1,...,n € R? or R3, are given control points, mimics the shape of the control polygon. In the

work [10], the representation (3.1) is generalized by using a one-parameter family of Bernstein—Bézier polynomials,
so called g-Bernstein Bézier curves. They were defined as follows:

n—i—1

Pt =) by ['Z]ﬂ‘ [T a-da'n. (3.2)
i=0

j=0
where an empty product denotes 1, the parameter g is a positive real number and [r] denotes a g-integer, defined by

[r]z{’gl—qv(l—q), Zii
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The g-binomial coefficient [:’] which is the generating function for restricted partitions, see [2], is defined by

[n] _ [n]n—1]...[n —r + 1]
[rllr — 11...[1]
forn > r > 1, and has the value 1 when r = 0 and the value zero otherwise. Note that this reduces to the usual

binomial coefficient when we set ¢ = 1 and (3.2) reduces to (3.1). We now generalize the well known subdivision
formula, see [4], of the Bernstein Bézier curves which may be used to subdivide the curve P in (3.2).

r

Theorem 3.1. Let Bl-" (1) = ['Z] I ]_['};6_1 (1— qjt) be the q-Bernstein Bézier polynomial and let ¢ € (0, 1) be a fixed
real. Then '

n
B}'(ct) =Y _ B} (©)B} (). (3.3)
Jj=0
Proof. Let M be an (n + 1) x (n + 1) matrix with the elements M;; = Bj. (ct), that is
i ] 'lfjfl
|:,:|cjt/ (1 —gfer), 0<j<i<n,
Mi; =L k=0
't i =],
0, otherwise.
Since the eigenvalues of the matrix M are distinct it can be written as M = PDP~! where D is a diagonal
matrix whose elements D;; = c't' are the eigenvalues of M. It is computed from the product that the elements

j.], and the elements of the matrix P~! are (P_l)ij =

(—1)i—igli=Nl=j=D/2 [;] Now we can write M = PD;D,P~', where D; and D, are diagonal matrices with

P;j of P are the entries of the g-Pascal matrix P;; = [

elements (D1);; = ¢ and (Dy)ii = ¢t,i=0,1,...,n. Then it follows from
M =PD P 'PD,P' =RS

that the matrices R and S have the entries R;; = Bj. () and S;; = Bi.(c) respectively. Thus, M has the elements
n n .
M,; = B'(ct) = ZR,,,-S,, = ZB;(t)B{(c), 0<i<n.
j=0 j=0

which completes the proof. [J

We note that using the symmetric functions, ¢g-Pascal matrices P and P~ are obtained in the LU factorization of
the Vandermonde matrix and in the inverse of the Vandermonde matrix at the g-integer nodes respectively, see [9].
In what follows, we relate the g-Pascal matrix P to an (n + 1) x (n + 1) nilpotent matrix H of index n + 1 defined
by
o L =+ 1L0<ij<n
Y710, otherwise.
We first define, see [3, p. 490], the g-analogue of the exponential series

o) k

X
E (x) = 2 wr (3.4)
This series is absolutely convergent only in |x| < (1 — ¢)~! when |g| < 1. However, another g-series
o™ k=12 X
E,(x) = ;)q (=nr T (3.5)

is convergent for all x and |g| < 1.



986 H. Orug / Applied Mathematics Letters 20 (2007) 982-987

Theorem 3.2. The g-Pascal matrix P is given by
gk
P=3 —. (3.6)
= [k]!
Proof. First we see that the above series (3.6) is indeed finite since H* = 0 for all k > n + 1. Then it can be calculated
from the definition of H that
Hlie; =[i +jl...[i + 1leiy;,

where ¢; = 0, 1, ..., n denote the unit vectors in R"*!. Now, a generic element on the right of (3.6) is
T Zn T H*
Eq(H),'jZei Eq(H)ejz ei —ej.
k=0 (k]!

Thus we obtain

- i+ k] [+ 1 k] [+
Ey(H)ij =3 el Lj ][k]'[] ]ek+,- -y LJ ][k]'[] ](Si#k’
k=0 : k=0 '

where § denotes the Kronecker delta function. Shifting the index of the summation gives
(i]...i —j+11 [li|

i —Jjl J

and this completes the proof. [J

It is well known, see [1], that the initial value problem in R"*!,

d

EY(I) = Hiy(), y(©0) =Yy
where H| denotes the matrix H with ¢ = 1, has the solution y(r) = ¢/17y(0). Next we demonstrate that the g-Pascal
matrix appears as the solution of the first-order g-difference equation in R"*!. As in [3], we define the g-difference
operator D, by

flgx) — f(x)

qu(x): 9% —x%

x # 0.
Provided that f’(x) exists,

lim Dy f() = '),

It can be readily verified that for integers r > 1, D, (x") = [r1x" 1. Then the solution y of the ¢-difference equation
Dyy(1) = Hy(), y(0) =Yy

isy(t) = E;(Ht)yy. It follows from (3.6) that the matrix E,(H?) has entries of the g-Pascal matrix

i

J

It is worth noting that the polynomial p defined by

o =3[1]%

k=0

Eq(Ht)ij=fij[ ] i>j=0.

the sum of the nth row of E;(Ht), is known as the Rogers—Szeg6 polynomial [2].
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