The Fibonacci Quarterly 2002 (vol.40,3)

FACTORIZATIONS AND EIGENVALUES OF FIBONACCI AND SYMMETRIC FIBONACCI MATRICES

Gwang-Yeon Lee

Department of Mathematics, Hanseo University, Seosan, 356-706 Korea

Jin-Soo Kim

Department of Mathematics, Sungkyunkwan University, Suwon, 440-746 Korea

Sang-Gu Lee

Department of Mathematics, Sungkyunkwan University, Suwon, 440-746 Korea (Submitted March 2000-Final Revision September 2000)

1. INTRODUCTION

Matrix methods are a major tool in solving many problems stemming from linear recurrence relations. A matrix version of a linear recurrence relation on the Fibonacci sequence is well known as

$$\begin{bmatrix} F_n \\ F_{n+1} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} F_{n-1} \\ F_n \end{bmatrix}.$$

We let

$$Q = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & F_1 \\ F_1 & F_2 \end{bmatrix},$$

then we can easily establish the following interesting property of Q by mathematical induction.

$$Q^n = \begin{bmatrix} F_{n-1} & F_n \\ F_n & F_{n+1} \end{bmatrix}.$$

From the equation $Q^{n+1}Q^n = Q^{2n+1}$, we get

$$\begin{bmatrix} F_{n+2} & F_{n+1} \\ F_{n+1} & F_n \end{bmatrix} \begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix} = \begin{bmatrix} F_{2n+2} & F_{2n+1} \\ F_{2n+1} & F_{2n} \end{bmatrix},$$

which, upon tracing through the multiplication, yields an identity for each Fibonacci number on the right-hand side. For example, we have the elegant formula,

$$F_{n+1}^2 + F_n^2 = F_{2n+1}. (1)$$

The sum of the squares of the first n Fibonacci numbers is almost as famous as the formula for the sum of the first n terms:

$$F_1^2 + F_2^2 + \dots + F_n^2 = F_n F_{n+1}. \tag{2}$$

In particular, in [1], the authors gave several basic Fibonacci identities. For example,

$$F_1F_2 + F_2F_3 + F_3F_4 + \dots + F_{n-1}F_n = \frac{F_{2n-1} + F_nF_{n-1} - 1}{2}.$$
 (3)

Now, we define a new matrix. The $n \times n$ Fibonacci matrix $\mathcal{F}_n = [f_{ij}]$ is defined as

$$\mathcal{F}_n = [f_{ij}] = \begin{cases} F_{i-j+1}, & i-j+1 \ge 0, \\ 0, & i-j+1 < 0. \end{cases}$$

2002]

For example,

$$\mathcal{F}_5 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0 \\ 3 & 2 & 1 & 1 & 0 \\ 5 & 3 & 2 & 1 & 1 \end{bmatrix},$$

and the first column of \mathcal{F}_5 is the vector $(1, 1, 2, 3, 5)^T$. Thus, several interesting facts can be found from the matrix \mathcal{F}_n .

The set of all *n*-square matrices is denoted by M_n . Any matrix $B \in M_n$ of the form $B = A^*A$, $A \in M_n$, may be written as $B = LL^*$, where $L \in M_n$ is a lower triangular matrix with nonnegative diagonal entries. This factorization is unique if A is nonsingular. This is called the *Cholesky factorization* of B. In particular, a matrix B is positive definite if and only if there exists a nonsingular lower triangular matrix $L \in M_n$ with positive diagonal entries such that $B = LL^*$. If B is a real matrix, L may be taken to be real.

A matrix $A \in M_n$ of the form

$$A = \begin{bmatrix} A_{11} & 0 & & & \\ 0 & A_{22} & & 0 \\ & & \ddots & \\ & 0 & & A_{kk} \end{bmatrix}$$

in which $A_{ii} \in M_{n_i}$, i = 1, 2, ..., k, and $\sum_{i=1}^k n_i = n$, is called *block diagonal*. Notationally, such a matrix is often indicated as $A = A_{11} \oplus A_{22} \oplus \cdots \oplus A_{kk}$ or, more briefly, $\bigoplus \sum_{i=1}^k A_{ii}$, this is called the *direct sum* of the matrices $A_{11}, ..., A_{kk}$.

2. FACTORIZATIONS

In [2], the authors gave the Cholesky factorization of the Pascal matrix. In this section we consider the construction and factorization of our Fibonacci matrix of order n by using the (0, 1)-matrix, where a matrix is said to be a (0, 1)-matrix if each of its entries is either 0 or 1.

Let I_n be the identity matrix of order n. Further, we define the $n \times n$ matrices S_n , $\overline{\mathcal{F}}_n$, and G_k by

$$S_0 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \quad S_{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix},$$

and $S_k=S_0\oplus I_k$, $k=1,2,\ldots, \overline{\mathscr{F}}_n=[1]\oplus \mathscr{F}_{n-1},\ G_1=I_n,\ G_2=I_{n-3}\oplus S_{-1},$ and, for $k\geq 3$, $G_k=I_{n-k}\oplus S_{k-3}.$ Then we have the following lemma.

Lemma 2.1: $\overline{\mathcal{F}}_k S_{k-3} = \mathcal{F}_k$, $k \ge 3$.

Proof: For k = 3, we have $\overline{\mathcal{F}}_3 S_0 = \mathcal{F}_3$. Let k > 3. From the definition of the matrix product and the familiar Fibonacci sequence, the conclusion follows. \Box

From the definition of G_k , we know that $G_n = S_{n-3}$, $G_1 = I_n$, and $I_{n-3} \oplus S_{-1}$. The following theorem is an immediate consequence of Lemma 2.1.

204

Theorem 2.2: The Fibonacci matrix \mathcal{F}_n can be factored by the G_k 's as follows: $\mathcal{F}_n = G_1 G_2 \cdots G_n$. For example,

$$\begin{split} \mathcal{F}_5 &= G_1 G_2 G_3 G_4 G_5 = I_5 (I_2 \oplus S_{-1}) (I_2 \oplus S_0) ([1] \oplus S_1) S_2 \\ &= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0 \\ 3 & 2 & 1 & 1 & 0 \\ 5 & 3 & 2 & 1 & 1 \end{bmatrix}. \end{split}$$

Now we consider another factorization of \mathcal{F}_n . The $n \times n$ matrix $C_n = [c_{ij}]$ is defined as

$$c_{ij} = \begin{cases} F_i, & j = 1, \\ 1, & i = j, \\ 0, & \text{otherwise,} \end{cases} \text{ i. e., } C_n = \begin{bmatrix} F_1 & 0 & \cdots & 0 \\ F_2 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ F_n & 0 & \cdots & 1 \end{bmatrix}.$$

The next theorem follows by a simple calculation.

Theorem 2.3: For
$$n \ge 2$$
, $\mathcal{F}_n = C_n(I_1 \oplus C_{n-1})(I_2 \oplus C_{n-2}) \cdots (I_{n-2} \oplus C_2)$.

Also, we can easily find the inverse of the Fibonacci matrix \mathcal{F}_n . We know that

$$S_0^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}, \quad S_{-1}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}, \quad \text{and} \quad S_k^{-1} = S_0^{-1} \oplus I_k.$$

Define $H_k = G_k^{-1}$. Then

$$H_1 = G_1^{-1} = I_n, \quad H_2 = G_2^{-1} = I_{n-3} \oplus S_{-1}^{-1} = I_{n-2} \oplus \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}, \quad \text{and} \quad H_n = S_{n-3}^{-1}.$$

Also, we know that

$$C_n^{-1} = \begin{bmatrix} F_1 & 0 & \cdots & 0 \\ -F_2 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -F_n & 0 & \cdots & 1 \end{bmatrix} \text{ and } (I_k \oplus C_{n-k})^{-1} = I_k \oplus C_{n-k}^{-1}.$$

So the following corollary holds.

$$\textit{Corollary 2.4:} \ \, \mathcal{F}_n^{-1} = G_n^{-1}G_{n-1}^{-1}\cdots G_2^{-1}G_1^{-1} = H_nH_{n-1}\cdots H_2H_1 = (I_{n-2} \oplus C_2)^{-1}\cdots (I_1 \oplus C_{n-1})^{-1}C_n^{-1}.$$

From Corollary 2.4, we have

$$\mathcal{F}_{n}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \\ -1 & 1 & 0 & 0 & \cdots & 0 \\ -1 & -1 & 1 & 0 & \cdots & 0 \\ 0 & -1 & -1 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & -1 & -1 & 1 \end{bmatrix}. \tag{4}$$

Now we define a symmetric Fibonacci matrix $\mathfrak{Q}_n = [q_{ij}]$ as, for i, j = 1, 2, ..., n,

$$q_{ij} = q_{ji} = \begin{cases} \sum_{k=1}^{i} F_k^2, & i = j, \\ q_{i, j-2} + q_{i, j-1}, & i+1 \leq j, \end{cases}$$

where $q_{1,0} = 0$. Then we have $q_{1j} = q_{j1} = F_j$ and $q_{2j} = q_{j2} = F_{j+1}$. For example,

$$\mathfrak{D}_{10} = \begin{bmatrix} 1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 \\ 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 & 89 \\ 2 & 3 & 6 & 9 & 15 & 24 & 39 & 63 & 102 & 165 \\ 3 & 5 & 9 & 15 & 24 & 39 & 63 & 102 & 165 & 267 \\ 5 & 8 & 15 & 24 & 40 & 64 & 104 & 168 & 272 & 440 \\ 8 & 13 & 24 & 39 & 64 & 104 & 168 & 272 & 440 & 712 \\ 13 & 21 & 39 & 63 & 104 & 168 & 273 & 441 & 714 & 1155 \\ 21 & 34 & 63 & 102 & 168 & 272 & 441 & 714 & 1155 & 1869 \\ 34 & 55 & 102 & 165 & 272 & 440 & 714 & 1155 & 1879 & 3025 \\ 55 & 89 & 165 & 267 & 440 & 712 & 1155 & 1869 & 3025 & 4895 \end{bmatrix}$$

From the definition of \mathfrak{D}_n , we derive the following lemma.

Lemma 2.5: For $j \ge 3$, $q_{3j} = F_4(F_{j-3} + F_{j-2}F_3)$.

Proof: We know that $q_{3,3} = F_1^2 + F_2^2 + F_3^2 = F_3 F_4$; hence, $q_{3,3} = F_4 F_3 = F_4 (F_0 + F_1 F_3)$ for $F_0 = 0$. By induction, $q_{3j} = F_4 (F_{j-3} + F_{j-2} F_3)$. \square

We know that $q_{3,1} = q_{1,3} = F_3$ and $q_{3,2} = q_{2,3} = F_4$. Also we see that $q_{4,1} = q_{1,4}$, $q_{4,2} = q_{2,4}$, and $q_{4,3} = q_{3,4}$. By induction, we have the following lemma.

Lemma 2.6: For
$$j \ge 4$$
, $q_{4j} = F_4(F_{j-4} + F_{j-4}F_3 + F_{j-3}F_5)$.

From Lemmas 2.5 and 2.6, we know $q_{5,1}$, $q_{5,2}$, $q_{5,3}$, and $q_{5,4}$. From these facts and the definition of \mathfrak{D}_n , we have the following lemma.

Lemma 2.7: For
$$j \ge 5$$
, $q_{5j} = F_{j-5}F_4(1+F_3+F_5)+F_{j-4}F_5F_6$.

Proof: Since
$$q_{5,5} = F_5 F_6$$
 we have, by induction, $q_{5,i} = F_{i-5} F_4 (1 + F_3 + F_5) + F_{i-4} F_5 F_6$. \Box

From the definition of \mathfrak{D}_n together with Lemmas 2.5, 2.6, and 2.7, we have the following lemma by induction on i.

Lemma 2.8: For $j \ge i \ge 6$,

$$q_{ii} = F_{i-i}F_4(1+F_3+F_5) + F_{i-i}F_5F_6 + F_{i-i}F_6F_7 + \dots + F_{i-i}F_{i-1}F_i + F_{i-i+1}F_iF_{i+1}$$

Now we have the following theorem.

Theorem 2.9: For $n \ge 1$ a positive integer, $H_n H_{n-1} \cdots H_2 H_1 \mathfrak{Q}_n = \mathscr{F}_n^T$ and the Cholesky factorization of \mathfrak{Q}_n is given by $\mathfrak{Q}_n = \mathscr{F}_n \mathscr{F}_n^T$.

Proof: By Corollary 2.4, $H_nH_{n-1}\cdots H_2H_1=\mathcal{F}_n^{-1}$. So, if we have $\mathcal{F}_n^{-1}\mathfrak{Q}_n=\mathcal{F}_n^T$, then the theorem holds

Let $X = [x_{ii}] = \mathcal{F}_n^{-1} \mathfrak{D}_n$. Then, by (4), we have the following:

JUNE-JULY

$$x_{ij} = \begin{cases} F_j, & \text{if } i = 1, \\ F_{j-1}, & \text{if } i = 2, \\ -q_{i-2, j} - q_{i-1, j} + q_{ij} & \text{otherwise.} \end{cases}$$

Now we consider the case $i \ge 3$. Since \mathfrak{Q}_n is a symmetric matrix, $-q_{i-2,j} - q_{i-1,j} + q_{ij} = -q_{j,i-2} - q_{j,i-1} + q_{ji}$. Hence, by the definition of \mathfrak{Q}_n , $x_{ij} = 0$ for $j+1 \le i$. So, we will prove that $-q_{i-2,j} - q_{i-1,j} + q_{ij} = F_{j-i+1}$ for $j \ge i$.

In the case in which $i \le 5$, we have $x_{ii} = F_{i-i+1}$ by Lemmas 2.5, 2.4, and 2.7.

Now suppose that $j \ge i \ge 6$. Then, by Lemma 2.8, we have

$$\begin{split} x_{ij} &= -q_{i-2, j} - q_{i-1, j} + q_{ij} \\ &= (F_{j-i} - F_{j-i+1} - F_{j-i+2})F_4(1 + F_3 + F_5) + (F_{j-i} - F_{j-i+1} - F_{j-i+2})F_5F_6 \\ &+ \dots + (F_{j-i} - F_{j-i+1} - F_{j-i+2})F_{i-3}F_{i-2} + (F_{j-i} - F_{j-i+1} - F_{j-i+3})F_{i-2}F_{i-1} \\ &+ (F_{j-i} - F_{j-i+2})F_{i-1}F_i + F_{j-i+1}F_iF_{j-1}. \end{split}$$

Since $F_{j-i} - F_{j-i+1} - F_{j-i+2} = -2F_{j-i+1}$, $F_{j-i} - F_{j-i+1} - F_{j-i+3} = -3F_{j-i+1}$, and $F_{j-i} - F_{j-i+2} = -F_{j-i+1}$, we have

$$x_{ij} = F_{i-i+1}[-2F_4 - 2(F_3F_4 + F_4F_5 + \dots + F_{i-2}F_{i-1}) - F_{i-2}F_{i-1} - F_{i-1}F_i + F_iF_{i+1}].$$

Since $F_A = 3$, using (3) we have

$$x_{ij} = \left[-6 - 2\left(\frac{F_{2(i-1)-1} + F_{i-1}F_{(i-1)-1} - 1}{2} - F_1F_2 - F_2F_3\right) - F_{i-2}F_{i-1} - F_{i-1}F_i + F_iF_{i+1}\right]F_{j-i+1}.$$

Since $F_{i+1} = F_i + F_{i-1}$ and by (1) we have

$$\begin{split} x_{ij} &= (1 - 2F_{i-1}F_{i-2} - F_{2i-3} - F_{i-1}F_i + F_iF_{i+1})F_{j-i+1} \\ &= (1 - 2F_{i-1}F_{i-2} - F_{2i-3} + F_i^2)F_{j-i+1} \\ &= (1 - F_{i-1}^2 - F_{i-2}^2 - 2F_{i-1}F_{i-2} + F_i^2)F_{j-i+1} \\ &= (1 - (F_{i-1} + F_{i-1})^2 + F_i^2)F_{j-i+1} \\ &= (1 - F_i^2 + F_i^2)F_{j-i+1} = F_{j-i+1}. \end{split}$$

Therefore, $\mathcal{F}_n^{-1}\mathfrak{Q}_n = \mathcal{F}_n^T$, i.e., the Cholesky factorization of \mathfrak{Q}_n is given by $\mathfrak{Q}_n = \mathcal{F}_n \mathcal{F}_n^T$. \square

In particular, since $\mathfrak{D}_n^{-1} = (\mathcal{F}_n^T)^{-1} \mathcal{F}_n^{-1} = (\mathcal{F}_n^{-1})^T \mathcal{F}_n^{-1}$, we have

$$\mathfrak{D}_{n}^{-1} = \begin{bmatrix}
3 & 0 & -1 & 0 & \cdots & & & 0 \\
0 & 3 & 0 & -1 & \cdots & & & 0 \\
-1 & 0 & 3 & 0 & \cdots & & & 0 \\
0 & -1 & 0 & 3 & \ddots & & & & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \ddots & & \vdots \\
0 & 0 & 0 & 0 & \cdots & 3 & 0 & -1 \\
0 & 0 & 0 & 0 & \cdots & 0 & 2 & -1 \\
0 & 0 & 0 & 0 & \cdots & -1 & -1 & 1
\end{bmatrix}.$$
(5)

From Theorem 2.9, we have the following corollary.

2002]

Corollary 2.10: If k is an odd number, then

$$F_n F_{n-k} + \dots + F_{k+1} F_1 = \begin{cases} F_n F_{n-(k-1)} - F_k & \text{if } n \text{ is odd,} \\ F_n F_{n-(k-1)} & \text{if } n \text{ is even.} \end{cases}$$

If k is an even number, then

$$F_n F_{n-k} + \dots + F_{k+1} F_1 = \begin{cases} F_n F_{n-(k-1)} & \text{if } n \text{ is odd,} \\ F_n F_{n-(k-1)} - F_k & \text{if } n \text{ is even.} \end{cases}$$

For the case when we multiply the i^{th} row of \mathcal{F}_n and the i^{th} column of \mathcal{F}_n , we have the famous formula (2). Also, formula (2) is the case when k=0 in Corollary 2.10.

3. EIGENVALUES OF 2,

In this section, we consider the eigenvalues of 2_n .

Let $\mathfrak{D} = \{\mathbf{x} = (x_1, x_2, ..., x_n) \in \mathbb{R}^n : x_1 \ge x_2 \ge ... \ge x_n\}$. For $\mathbf{x}, \mathbf{y} \in \mathfrak{D}$, $\mathbf{x} \prec \mathbf{y}$ if $\sum_{i=1}^k x_i \le \sum_{i=1}^k y_i$, k = 1, 2, ..., n and if k = n, then the equality holds. When $\mathbf{x} \prec \mathbf{y}$, \mathbf{x} is said to be *majorized* by \mathbf{y} , or \mathbf{y} is said to *majorize* \mathbf{x} . The condition for majorization can be rewritten as follows: for $\mathbf{x}, \mathbf{y} \in \mathfrak{D}$, $\mathbf{x} \prec \mathbf{y}$ if $\sum_{i=0}^k x_{n-i} \ge \sum_{i=0}^k y_{n-i}$, k = 0, 1, ..., n-2, and if k = n-1, then equality holds.

The following is an interesting simple fact:

$$(\overline{x},...,\overline{x}) \prec (x_1,...,x_n)$$
, where $\overline{x} = \frac{\sum_{n=1}^n x_i}{n}$.

More interesting facts about majorizations can be found in [4].

An $n \times n$ matrix $P = [p_{ij}]$ is doubly stochastic if $p_{ij} \ge 0$ for i, j = 1, 2, ..., n, $\sum_{i=1}^{n} p_{ij} = 1$, j = 1, 2, ..., n, and $\sum_{j=1}^{n} p_{ij} = 1$, i = 1, 2, ..., n. In 1929, Hardy, Littlewood, and Polya proved that a necessary and sufficient condition that $\mathbf{x} \prec \mathbf{y}$ is that there exist a doubly stochastic matrix P such that $\mathbf{x} = \mathbf{y}P$.

We know both the eigenvalues and the main diagonal elements of a real symmetrix matrix are real numbers. The precise relationship between the main diagonal elements and the eigenvalues is given by the notion of majorization as follows: the vector of eigenvalues of a symmetrix matrix is majorized by the diagonal elements of the matrix.

Note that det $\mathscr{F}_n=1$ and det $\mathscr{Q}_n=1$. Let $\lambda_1,\lambda_2,...,\lambda_n$ be the eigenvalues of \mathscr{Q}_n . Since $\mathscr{Q}_n=\mathscr{F}_n\mathscr{F}_n^T$ and $\sum_{i=1}^k F_i^2=F_{k+1}F_k$, the eigenvalues of \mathscr{Q}_n are all positive and

$$(F_{n+1}F_n, F_nF_{n-1}, ..., F_2F_1) \prec (\lambda_1, \lambda_2, ..., \lambda_n).$$

In [1], we find the interesting combinatorial property, $\sum_{i=0}^{n} {n-i \choose i} = F_{n+1}$. So we have the following corollaries.

Corollary 3.1: Let $\lambda_1, \lambda_2, ..., \lambda_n$ be the eigenvalues of \mathfrak{D}_n . Then

$$\lambda_1 + \lambda_2 + \dots + \lambda_n = \begin{cases} \left(\sum_{i=0}^n \binom{n-i}{i}\right)^2 - 1 & \text{if } n \text{ is odd,} \\ \left(\sum_{i=0}^n \binom{n-i}{i}\right)^2 & \text{if } n \text{ is even.} \end{cases}$$

208 [JUNE-JULY

Proof: Since $(F_{n+1}F_n, F_nF_{n-1}, ..., F_2F_1) \prec (\lambda_1, \lambda_2, ..., \lambda_n)$, and from Corollary 2.10,

$$\lambda_1 + \lambda_2 + \dots + \lambda_n = \begin{cases} (F_{n+1})^2 - F_1 & \text{if } n \text{ is odd,} \\ (F_{n+1})^2 & \text{if } n \text{ is even,} \end{cases} = \begin{cases} \left(\sum_{i=0}^n \binom{n-i}{i}\right)^2 - 1 & \text{if } n \text{ is odd,} \\ \left(\sum_{i=0}^n \binom{n-i}{i}\right)^2 & \text{if } n \text{ is even.} \end{cases}$$

Corollary 3.2: If n is an odd number, then

$$n\lambda_n \le \left(\sum_{i=0}^n \binom{n-i}{i}\right)^2 - 1 \le n\lambda_1.$$

If n is an even number, then

$$n\lambda_n \le \left(\sum_{i=0}^n \binom{n-i}{i}\right)^2 \le n\lambda_1.$$

Proof: Let $s_n = \lambda_1 + \lambda_2 + \dots + \lambda_n$. Since

$$\left(\frac{S_n}{n}, \frac{S_n}{n}, \ldots, \frac{S_n}{n}\right) \prec (\lambda_1, \lambda_2, \ldots, \lambda_n),$$

we have $\lambda_n \leq \frac{s_n}{n} \leq \lambda_1$. Therefore, the proof is complete. \square

From equation (5), we have

$$(3, 3, ..., 3, 2, 1) \prec \left(\frac{1}{\lambda_n}, \frac{1}{\lambda_{n-1}}, ..., \frac{1}{\lambda_1}\right).$$
 (6)

Thus, there exists a doubly stochastic matrix $T = [t_{ij}]$ such that

$$(3,3,...,3,2,1) = \left(\frac{1}{\lambda_n}, \frac{1}{\lambda_{n-1}}, ..., \frac{1}{\lambda_1}\right) \begin{bmatrix} t_{11} & t_{12} & \cdots & t_{1n} \\ t_{21} & t_{22} & \cdots & t_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ t_{n1} & t_{n2} & \cdots & t_{nn} \end{bmatrix}.$$

That is, we have $\frac{1}{\lambda_n}t_{1n} + \frac{1}{\lambda_{n-1}}t_{2n} + \cdots + \frac{1}{\lambda_1}t_{nn} = 1$ and $t_{1n} + t_{2n} + \cdots + t_{nn} = 1$.

Lemma 3.3: For each i = 1, 2, ..., n, $t_{n-(i-1), n} \le \frac{\lambda_i}{n-1}$.

Proof: Suppose that $t_{n-(i-1), n} > \frac{\lambda_i}{n-1}$. Then

$$t_{1n} + t_{2n} + \dots + t_{nn} > \frac{\lambda_1}{n-1} + \frac{\lambda_2}{n-1} + \dots + \frac{\lambda_n}{n-1} = \frac{1}{n-1} (\lambda_1 + \lambda_2 + \dots + \lambda_n).$$

Since $t_{1n} + t_{2n} + \dots + t_{nn} = 1$ and $\sum_{i=1}^{n} \lambda_i \ge n$, this yields a contradiction, so $t_{n-(i-1), n} \le \frac{\lambda_i}{n-1}$. \square

From Lemma 3.3, we have $1-(n-1)\frac{1}{\lambda_i}t_{n-(i-1),n} \ge 0$. Let $\alpha = s_n - (n-1)$. Therefore, we have the following theorem.

Theorem 3.4: For $(\alpha, 1, 1, ..., 1) \in \mathfrak{D}$, $(\alpha, 1, 1, ..., 1) \prec (\lambda_1, \lambda_2, ..., \lambda_n)$.

Proof: A necessary and sufficient condition that $(\alpha, 1, 1, ..., 1) \prec (\lambda_1, \lambda_2, ..., \lambda_n)$ is that there exist a doubly stochastic matrix P such that $(\alpha, 1, 1, ..., 1) = (\lambda_1, \lambda_2, ..., \lambda_n)P$.

2002]

We define an $n \times n$ matrix $P = [p_{ij}]$ as follows:

$$P = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{12} \\ p_{21} & p_{22} & \cdots & p_{22} \\ \vdots & \vdots & \vdots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{n2} \end{bmatrix},$$

where $p_{i2} = \frac{1}{\lambda_i} t_{n-(i-1),n}$ and $p_{i1} = 1 - (n-1) p_{i2}$, i = 1, 2, ..., n. Since T is doubly stochastic and $\lambda_i > 0$, $p_{i2} \ge 0$, i = 1, 2, ..., n. By Lemma 3.3, $p_{i1} \ge 0$, i = 1, 2, ..., n. Then

$$p_{12} + p_{22} + \dots + p_{n2} = \frac{t_{nn}}{\lambda_1} + \frac{t_{n-1,n}}{\lambda_2} + \dots + \frac{t_{1n}}{\lambda_n} = 1,$$

$$p_{i1} + (n-1)p_{i2} = 1 - (n-1)p_{i2} + (n-1)p_{i2} = 1$$
,

and

$$p_{11} + p_{21} + \dots + p_{n1} = 1 - (n-1)p_{12} + 1 - (n-1)p_{22} + \dots + 1 - (n-1)p_{n2}$$

= $n - n(p_{12} + p_{22} + \dots + p_{n2}) + p_{12} + p_{22} + \dots + p_{n2} = 1$.

Thus, p is a doubly stochastic matrix. Furthermore,

$$\lambda_{1}p_{12} + \lambda_{2}p_{22} + \dots + \lambda_{n}p_{n2} = \lambda_{1}\frac{t_{nn}}{\lambda_{1}} + \lambda_{2}\frac{t_{n-1,n}}{\lambda_{2}} + \dots + \lambda_{n}\frac{t_{1n}}{\lambda_{n}}$$

$$= t_{nn} + t_{n-1,n} + \dots + t_{1n} = 1$$

and

$$\begin{split} \lambda_1 p_{11} + \lambda_2 p_{21} + \cdots + \lambda_n p_{n1} &= \lambda_1 (1 - (n-1)p_{12}) + \cdots + \lambda_n (1 - (n-1)p_{n2}) \\ &= \lambda_1 + \lambda_2 + \cdots + \lambda_n - (n-1)(\lambda_1 p_{12} + \lambda_2 p_{22} + \cdots + \lambda_n p_{n2}) \\ &= \lambda_1 + \lambda_2 + \cdots + \lambda_n - (n-1) = \alpha. \end{split}$$

Thus, $(\alpha, 1, 1, ..., 1) = (\lambda_1, \lambda_2, ..., \lambda_n)P$, so $(\alpha, 1, 1, ..., 1) \prec (\lambda_1, \lambda_2, ..., \lambda_n)$. \Box

From equation (6), we have the following lemma

Lemma 3.5: For $k = 2, 3, ..., n, \lambda_k \ge \frac{1}{3(k-1)}$

Proof: From (6), for $k \ge 2$,

$$\frac{1}{\lambda_1} + \frac{1}{\lambda_2} + \dots + \frac{1}{\lambda_k} \le 1 + 2 + 3 + \dots + 3 = 3(k-1).$$

Thus,

$$\frac{1}{\lambda_k} \leq 3(k-1) - \left(\frac{1}{\lambda_1} + \frac{1}{\lambda_2} + \dots + \frac{1}{\lambda_{k-1}}\right) \leq 3(k-1).$$

Therefore, for k = 2, 3, ..., n, $\lambda_k \ge \frac{1}{3(k-1)}$. \square

Corollary 3.6: For k = 1, 2, ..., n-2, $\lambda_{n-k} \le (k+1) - \frac{n-k}{3(n-1)}$. In particular, $\alpha \le \lambda_1$ and $\frac{1}{3(k-1)} \le \lambda_n \le \frac{1}{3}$.

Proof: If k=1, then $\lambda_n + \lambda_{n-1} \le 2$. By Lemma 3.5, we have $\lambda_{n-1} \le 2 - \frac{1}{3(n-1)}$. Hence, by induction on n, the proof is complete for k=1,2,...,n-2. In particular, by Theorem 3.4 and (6), $\frac{1}{3(n-1)} \le \lambda_n \le \frac{1}{3}$. \square

210

Since det
$$\mathfrak{Q}_n=\lambda_1\lambda_2\ldots\lambda_n=1,\ \lambda_2\lambda_3\ldots\lambda_n=\frac{1}{\lambda_1},$$
 we have $\lambda_1^{n-1}\geq\lambda_1\ldots\lambda_{n-1}=\frac{1}{\lambda_n}.$ Thus,

$$\lambda_n \ge \left(\frac{1}{\lambda_1}\right)^{n-1}$$
.

Therefore,

$$\left(\frac{1}{\lambda_1}\right)^{n-1} \le \lambda_n \le \frac{1}{3}.$$

ACKNOWLEDGMENTS

The first author's work was partially supported by KOSEF, 2000. The third author's work was partially supported by the Brain Korea 21 Project.

REFERENCES

- 1. M. Bicknell & V. E. Hoggatt, Jr. Fibonacci's Problem Book. Santa Clara, CA: The Fibonacci Association, 1974.
- R. Brawer & M. Pirovino. "The Linear Algebra of the Pascal Matrix." Linear Algebra and Its Applications 174 (1992)13-23.
- 3. G. S. Call & D. J. Vellmann. "Pascal's Matrices." Amer. Math. Monthly 100 (1993):372-76.
- 4. A. W. Marshall & I. Olkin. *Inequalities: Theory of Majorization and Its Applications*. New York: Academic Press, 1979.

AMS Classification Numbers: 05A19, 11B39, 15A18, 15A42