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. INFRODUCTION

Matrix methods are a major tool in solving many problems stemming from linear recurrence
relations. A mairix version of & linear recurrence relation on the Fibonacei sequence is well
known as

FE 1[0 1[Fa
B
_fo 1]_Jo Fl]
o<1 -5 7}
then we can easily establish the following interesting property of O by mathematical induction.
i | L Fn}
o=z i)
From the equation 0™'Q0" = 0**!, we get
[EM Et+l:l[1:;1+l Fn}:{f’zm an+1]
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which, upon tracing through the multiplication, yields an identity for each Fibonacci number on
the right-hand side. For example, we have the elegant formula,

F2y+FE=Fyp, W

We let

The sum of the squares of the first # Fibonacci numbers is almost as famous as the formula for the
sum of the first # terms:

R ARt Bl =R R, @
In particular, in {1], the authors gave several basic Fibonacci identities. For example,

FE+ FE+ R bt Fy = Tt bl =1 )

Now, we define a new matrix. The nxn Fibonacci matrix ¥,=[;] is defined as

F_ ., i-j+120
= 1= l_j+l, ?
F=Uy] {O, i-j+1<0.
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For example,

9;5 =
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QOO0

and the first column of % is the vector (1, 1,2, 3,5)7. Thus, several interesting facts can be found
from the matrix %,.

The set of all n-square matrices is denoted by M, . Any matrix B € M, of the form 5= A4%4,
A € M, may be written as B = LL*, where L € M, is a lower triangular matrix with nonnegative
diagonal entries. This factorization is unique if 4 is nonsingular. This is called the Cholesky joc-
torization of B. In particular, a matrix B is positive definite if and only if there exists a nonsingular
lower triangular matrix L € M, with positive diagonal entries such that B=LZ*. If B is a real
matrix, L may be taken to be real.

A matrix 4 € M, of the form

4, 0O
4|0 A O
0 Ay

in which 4, eM,,, i=12,....k, and ¥ n =n, is called block diagonal. Notationally, such a
matrix is often indicated as 4= 4,,® 4,, ®---® 4,, or, more briefly, ® %, 4,; this is called the
direct sum of the matrices 4,;,..., 4,

2. FACTORIZATIONS

In [2], the authors gave the Cholesky factorization of the Pascal matrix. In this section we
consider the construction and factorization of our Fibonacci matrix of order » by using the (0, 1)-
matrix, where a matrix is said to be a (0, 1)-matrix if each of its entries is either 0 or 1.

Let I, be the identity matrix of order 7. Further, we define the nx 7 matrices S,, %,, and

G, by
100 1 0 0
S,=[1 1 0| s,=l0 1 0},
1 01 0 1 1

and S, =S,®1I,, k=12,.., % =[1®%_,, G=I, G,=1,,8 8, and, for k>3, G, =
I_.® 8,5 Then we have the following lemma.
Lemma2.1: %8, =%, ,k>3.

Proof: For k=3, wehave %,5,=%,. Let k>3. From the definition of the matrix product
and the familiar Fibonacci sequence, the conclusion follows. O

From the definition of G, we know that G, =S5, ;, G,=1,, and I,_;® §_;. The following
theorem is an immediate consequence of Lemina 2.1.
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Theorem 2.2: The Fibonacci matrix &, can be factored by the G,'s as follows: %, = GG, -

For example,

955 = G1GzaaG4G5 =11, ® S_ )1, ® S)([11&® S8,

1006060100001 00G600)l1 000CO0j1 0000
01000101 00001 000C)HC10O0COHET1OGCGOOQO
=00100/ 001060001 0C0}i0C1100}j1010¢C
6oo01o0o4y00010001 106101 0)0001C0
006001jj00011}j00101;j00001}j00O0O0C1
10000
11000
=2 1100,
32110
53211

Now we consider another factorization of %,. The nxn matrix C, =[c;] is defined as

Eoj=l -
¢ = 1 P=j, te, G=1"2 . . |
0, otherwise, E 0 - 1

n

The next theorem follows by a simple calculation.
Theorem 2.3: Forn22, %, =C([,®C_)YI,®C,_,){U,, ® ().

Also, we can easily find the inverse of the Fibonacci matrix %,. We know that

1 00
St={-1 1 0|,
-1 01

Define H, = G;!. Then

H=Gl=I, H=G'=1_,®&5'=1_,@® [_11 ‘1’] and H, =57,

I 6 O
ST={0 1 0f, and S;'=5'@ I,
0 -1 1

Also, we know that

F, e 0
ci={f D % e goec )= 0C,
“E 0 e 1

So the following corollary holds.
Corollary 2.4: ¥,'=G,'G;}

From Corollary 2.4, we have

1 0 0 0 0
-1 1 0 0 0
|1 -1 1 0 0

K K BB )
0 v 0 -1 -1 1

2002]

-G,.

n-1°"" Gz_lGl_l = Han'l H2Hl = (In—2 & Cz)_l (11 D Cn—l)-lc;l'

4
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Now we define a symmetric Fibonacci matrix 2, =[q;] as, fori, j=1,2,.. ,n,

qi =49 = lk:lE‘?’ i=J
v G, o2 G, s PTG,

where g, o =0. Then we have ¢,; =¢,; = F} and q;, = q,, = F},,. For example,

1 2 3 5 8 13 21 34 55]
2 3 S 8 13 21 34 S5 89

3 6 9 15 24 39 63 102 165
5 9 15 24 39 63 102 165 267
8 15 24 40 64 104 168 272 440
13 24 39 64 104 168 272 440 712 ¢
13 21 39 63 104 168 273 441 714 1155
21 34 63 102 168 272 441 714 1155 1869
34 55 102 165 272 440 714 1155 1879 3025
55 89 165 267 440 712 1155 1869 3025 4895

From the definition of 2,,, we derive the following lemma.
Lemma 2.5: For j23, q;; = F(F, 3+ F,_,F).

Proof: We know that g; ,=F’+F +F = FF,; hence, ¢, 3=FF =F(F+FF) for
Fy=0. By induction, g5; = Fy(F,_;+ F,_,5). O

We know that g3, =¢y3=F; and g3, =¢,3=F,. Also we see that g, 1 =qy 4, 94,2 =924,
and ¢, 3 = g3 4. By induction, we have the following lemma.

Lemma 2.6: For j24, q, = F(F,_4+F,_F+F_;F).

From Lemmas 2.5 and 2.6, we know ¢y, ¢s 5, ¢s 3, and ¢s 4. From these facts and the defi-
nition of 2, we have the following lemma.

Lemma 2.7: For j25, gs5; = F;_sF,(1+ F; + F5)+ F,_ FsFg.
Proof: Since g5 ; = F;Fg we have, by induction, g5, = F,_JF,(1+ F;+ F5)+ F;_FF;. O

From the definition of 9, together with Lemmas 2.5, 2.6, and 2.7, we have the following
lemma by induction on i.

Lemma 2.8: For j2i>6,
q; = F}__iF;(l + 5+ )+ F}_,-Fst + F}—iF%F7 toeeet Fj—iE‘-—lE + ‘F}—i+lEE+1'
Now we have the following theorem.

Theorem 2.9: For n>1 a positive integer, H H, _, --- H,H,2,,= %! and the Cholesky factoriza-
tion of 2,, is given by 2, = %, %/ .

Proof: By Corollary 2.4, H H, | --- H,H, =% So, if we have ¥;'9, =%/, then the theo-
rem holds.

Let X =[x;]1=%;'2,. Then, by (4), we have the following:
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F, ifi=1,
Xy =951 ifi=2,

~Ging,; — i, ; Ty  Otherwise.

Now we consider the case i >3. Since 3, is a symmetric matrix, —g,_, ; ~ ¢y ; +¢; =
~q},1-2— 94,1 +q;- Hence, by the definition of 9,,, x, =0 for j+1<i. So, we will prove that
~Gig j G, j+ Oy = Fjoi for j 21

In the case in which i <5, we have x; = F_,,; by Lemmas 2.5, 2.4, and 2.7.

Now suppose that j>i>6. Then, by Lemma 2.8, we have

Xyj = Gi—g,j -1, ; Ty
=(Fr~ Fon— F) B+ B+ F)+ (F - FiLy — F o) FE
oot (= F g~ F ) B SR + (- Fia — Fria) o F
+(Fr — Fr ) FF A+ F g FE,

. . _ 3 B
Since ‘bj—nr' - F}—i+l - Fj—i+2 = _21;;'—-1'4-1’ F;‘—i - F;‘—i+i - F;'—i+3 =-3F_,, and Foi—F = _F}——H—la

we have

¥ = F 20 - 2BF, + FFs+ -+ FoF ) - F_ F - F L F+FF )

Since F, =3, using (3) we have

E,. +FE_F, -1
xy=[—6-2( A —E@—%)—E-ZE_I—F F+E, }F

Since F,,, = F, + F_; and by (1) we have
Xy =(-2F_F_, - Fy 53— F_ F+EF,)F 4
=(=2F_F By s+ FDF
=(-F - By - 2K F, + FDF
=(1-(F_ +F_ )+ Fiz)ﬁ}—m
=(1- EZ +E2)Ef—i+l = F}—i+l'

Therefore, #;'9, =%/, i.e., the Cholesky factorization of 2,, is givenby 2, =%, F.. [

In particular, since ;! = (F!Y'F 1 =(F,' ) %}, we have

3.0 -1 0 0
0 3 0 -1 - 0
-1 0 3 0 - 0
o0 0 2L ®
0 0 0 0 - 3 0 -1
0 0 0 0 « 0 2 -l
o0 0 0 0© -1 -1 1,

From Theorem 2.9, we have the following corollary.
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Corcllary 2.10: If kis an odd number, then

F;1E1—(k—l) —-F, ifnisodd,
EF + o+ Fu k= Lo
FnFn-(k-n if n is even.

If & is an even number, then

EF, if n is odd,
EF, y++Ryk= oo
FF, - F ifniseven
For the case when we multiply the /™ row of %, and the i® column of %, , we have the
famous formula (2). Also, formula (2) is the case when & = 0 in Corollary 2.10.

3. EIGENVALUES OF 2,

In this section, we consider the eigenvalues of 9, .

Let @={x=(x,%,..,%)eR":x,2x,>->x}. Forx,yed, x<y if T&, x <TF, y,
k=12,...,n and if £ = n, then the equality holds. When x <y, x is said to be majorized by y, or
y is said to majorize x. The condition for majorization can be rewritten as follows: for x,y € 9,
x<yif Zhox, >3 vy, k=0,1,...,n—2, and if k = n—1, then equality holds.

The foliowing is an interesting simple fact:

(%,...,%)<(x,...,x,), where ¥ = 2"’:71&.
More interesting facts about majorizations can be found in [4].

An nxn matrix P=[p,] is doubly stochastic if p;20 for i,j=12,.,n, X, p, =1,
j=12,...,n, and Z;;l py=1,i=12,..,n In1929, Hardy, Littlewood, and Polya proved that a
necessary and sufficient condition that x <y is that there exist a doubly stochastic matrix P such
that x =yP.

We know both the eigenvalues and the main diagonal elements of a real symmetrix matrix are
real numbers. The precise relationship between the main diagonal elements and the eigenvalues is
given by the notion of majorization as follows: the vector of eigenvalues of a symmetrix matrix is
majorized by the diagonal elements of the matrix.

Note that det ¥, =1 and det 2, =1. Let 4, 4,,..., 4, be the eigenvalues of 2. Since 2, =
% F! and T F? = F,,,F,, the eigenvalues of 9, are all positive and

=1 % §
FosFo EF gy Y= (A, Agy ooy 1)

ntltn n-1s -
In [1], we find the interesting combinatorial property, Yro(";')=F,,;. So we have the

following corollaries.

Corollary 3.1: Let A,, A,, ..., A, be the eigenvalues of 9,,. Then

(7)Y -1 ifmis odd,
A+ Ay +t A, = (Ziol )) ifnis
( ?=0(n_'i))2 if n is even.

i
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Proof: Since (F,, F, FF, i, ..., ER)<(A}, 4,,..., 4,), and from Corollary 2.10,

E. .Y -F ifni n (-1 ifnisodd,
i

O
2 s ; . .
(Frin) if niseven, ( ol ))2 if mis even.
Corollary 3.2: Ifn is an odd number, then
2 (m-i\)
ni, < Z( ; )) —-1<nd,.
=0
If n is an even number, then
2 (n-i\}
nl, < Z( i ) <ni,.
i=0
Proaf: Lets,=A,+A,+--+1, Since
Sﬂ s)’i sﬂ
T L (T Pa |
(n’n’ an) (la PAEERS] n)’
we have A, <= < A,. Therefore, the proof is complete. 0
From equation (5), we have
1 1 1
33..32, )<+ e 6
(’ 2 3 2 ’) (An,ln_l’ 7]/1) ()
Thus, there exists a doubly stochastic matrix 7' =[z;] such that
L . hh by v Iy
[ Z oo f
3,3,...,3,2, 1):(———, ,~—) noz 2.
‘Z’YI ln_l ﬂ"l . o eee .
Im L o by
That is, we have 34, + 71—ty + - + 51, =1 and £, + 1, ++--+1,, = 1.
Lemma 3.3: Foreachi=12,..,n, 4, ;4 ,< 7:13
Proof: Suppose that ,__, , > % Then
A A A 1
By, byt 1, > n—ll +n_21+-=- n_"l = n_l(/11+lz+--»+/ln).
Since #, +1,,+- +1,, =1 and 27 4, = n, this yields a contradiction, so ¢,_;_j, , < ;ﬂ_—l 0

From Lemma 3.3, we have 1-(n— 1);%,’3:—(:’—1), 220, Let a=s5,—(n—1). Therefore, we have
the following theorem.

Theorem 3.4: For (a,L,L,..,0 €D, (a,L1,..., D<A, 4,,...,4,).
Proof: A necessary and sufficient condition that (o, L 1, ..., 1)< (44, 4,5, ..., 4,) is that there
exist a doubly stochastic matrix P such that (o, L, 1,..., 1} =(1, 45,..., 4, )P.
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We define an n x n matrix P =[p,] as follows:

Pun P o D
p=|Pnr Pn " Pn

Pun P2 ' Pm
where p, = t,,_(, -y, and py=1-(m-Dp,, i=12,..,n. Since T is doubly stochastic and
,1,.>O,p,220 i=12,..,n Bylemma3.3, p,1201—12,... n. Then

Lo Ly -1, n bin
P12+P22+“‘+Pn2=71"+ 7, +- +7L:“‘1,
Dtm=Dp,=1-(n-Dp,+(n-DHp, =1,
and
PutDnt APy =1-(-Dpy+1-(n-Dpyy +---+1-(n-Dp,,
=A-n(Pu+Pp+t - tPp)t Pt Pt Py =1

Thus, p is a doubly stochastic matrix. Furthermore,

by f,

APia+ gDy + o+ AP = A LR Y= Sy 1

1£12 2022 2 /1 2 ’12 ﬂ,
e o S +h, =1

and
b+ Aoby o+ Ay = (1= =Dpy) + -+ 1,(1-(n~Dp,,)
=+t A, —=-DApy + ApPay + 0 + A,D0)
=4 +A,+ 4+ A, -(n-D=a.

Thus, (o, L1,..., D=1, 45,.., 4, )P, s0 (o, L 1,..., D < (A}, 4,, ..., 4,). O
From equation (6), we have the following lemma.
Lemma 3.5: Fork=2,3,..,n, 1, > 3(k 5
Proof: From (6),fork>2,
)%+/112 +- +—,117< 14243+ +3=3(k-1).
Thus,

1 1 1
—<3(k-1 e 1< 3k -1
”i’k ( ) (/11 ]’2 ’1/: l) ( )

Therefore, for k=2,3,...,n, 4, 23—(7‘1—_—1—). 0

Corollary 3.6: For k=12,..,.n-2, A, ., <(hk+1)~ 3(nk1) In particular, o <A, and 7 3(k 5 <
A,<t

n—3
Proof: If k=1, then 1,+4,,<2. By Lemma 3.5, we have 1, , <2-55. Hence, by
induction on 7, the proofis complete for k =1,2,...,n~2. In particular, by Theorem 3.4 and (6),
sA=<A4,<1. DO
3(n 3(-1) n=3-
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>

Since det 2, = 414;... 4, =1, A,45...4, =4, we have 47" 2 4;...4,, = . Thus

Therefore,
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