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Multivariate Meixner, Charlier and Krawtchouk
polynomials

Genki Shibukawa

Abstract

We introduce some multivariate analogues of Meixner, Charlier and Krawtchouk
polynomials, and establish their main properties, that is, duality, degenerate limits,
generating functions, orthogonality relations, difference equations and recurrence for-
mulas. A particularly important and interesting result is that “the generating function
of the generating function” for the Meixner polynomials coincides with the generating
function of the Laguerre polynomials, which has previously not been known even for
the one variable case. Actually, main properties for the multivariate Meixner, Char-
lier and Krawtchouk polynomials are derived from some properties of the multivariate
Laguerre polynomials by using this key result.

1 Introduction

The standard Meixner, Charlier and Krawtchouk polynomials of single discrete variable are
defined by

1

a
—m, —x Tk m\ [\ (1"
ot =i (5) =2 2 (1) () G)
respectively. These polynomials have been generalized to the multivariate case [DG], [Grl],
[Gr2], and [I]. Although these multivariate discrete orthogonal polynomials are types written
in Aomoto-Gelfand hypergeometric series, we introduce other types of multivariate Meixner,
Charlier and Krawtchouk polynomials in this article, which are defined by generalized bi-
nomial coefficients. Moreover, we provide their fundamental properties, that is, duality,
degenerate limits, generating functions, orthogonality relations, difference equations and re-
currence formulas. The most basic result in these properties is Theorem 3.5, which states
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that “the generating function of the generating functions” for the multivariate Meixner poly-

nomials
) { > Mo (x; v, €) Py (z)} D, (w)

me m

xeZ
coincides with the generating function for the multivariate Laguerre polynomials

S ererle) ((% - 1) w) B (2).

me

Even though this result has not been known even for one variable, many properties for our
multivariate discrete special orthogonal polynomials follow from this and the unitary picture
(2.44).

Let us describe the our scheme in the one variable case more precisely. We put a > 1,
() = F%@ =ala+1)-(a+m—1), (7 = (-T2 D= {weC| | <1},
T :={z € C| Rez > 0}, m is the Lebesgue measure on (C Further, we introduce the
followmg function spaces and their complete orthogonal bases.

(1) wm ;exponential multiplied by Laguerre polynomials

L2(Ro0) = {6 : Rog — C | [4]P.n., < 00},
2% >
1m0 = / () P dus,

o) = e = e Y ()

m! — ()

(2) £l Cayley transform of the power polynomials
HZ(T) :={F : T — C| F is analytic in T and || F||2 ; < oo},
T 2)|22* "2 m(dz),
Fy(na)(z) ::% L+2\" z—1
m! 2 z+1

(3) £ power polynomials

1FNS 7 =

H2(D) = {f : D — C | f is analytic in D and | f||% 5 < oo},

IFI2p = 201 — Jw]?)* 2 m(dw),
() .
fm (U)) T m'
We remark that
112 p = [EOI = [O)2 g, =
aD — aT — a,Rso = m) :



Furthermore, the following unitary isomorphisms are known.
Modified Laplace transform

2% - —zu, ,a—1
F(a)/o e *u" Y (u) du.

Lot I2(Rog) 5 HAT), (Lat)(z) =

Modified Cayley transform

ClHA(T) S HA(D), (CF)(w) = (1 —w) *F (H—w) .

1 —w
To summarize, we obtain the following picture given by the unitary transformations.

BRw) S HAT) =5 HAD).

@

R R

(1) (2) (3)

On the other hand, by elementary calculation, we have

6_%UZ% <12_CC) {Z %Mm(x;a,c)zm} ut = Z?ﬂ,(ﬁ‘)(u)zm

m>0 m>0

142

= (1 — z) @ "1 (1.2)

It is interesting to note that there is correspondence between Laguerre and Meixner polyno-
mials. The former has orthogonality defined by the integral on R>, and the latter is defined
by the summation on partitions.

From (1.1) and (1.2), for the Meixner polynomials, we derive (a) generating function,
(b) orthogonality relation, (c) difference equation and recurrence formula as follows.
(a) By comparing the coefficients of u on the first equality of (1.2),

— 1 - %Z ’ (a)m m
(1 —Z) <i) :;WMm(JI;OK,C)Z .
(b) By applying the unitary transformations C;' o £, in (1.1) to (1.2), we have

(1 —¢)” Z (Z?mcx {Z %Mm(x; a,c)zm} (1 —cw)™@ ( L-w ) = Z %wmzm

1—cw
x>0 m>0 m>0

=(1—wz)"* (1.3)

We remark that the generating functions of the Meixner polynomials appear in the top left
hand side of (1.3). Hence, by using the generating functions of the Meixner polynomials
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and comparing the coefficients of w and z in (1.3), we have the orthogonal relation for the
Meixner polynomials.

() _ . o™ om!
Z [)j" C Mm(a;a,c)Mn(x,oz,c) = mm(sm,n
x>0
(c) We recall the differential operator DY = —ud? — ad, + u — o which satisfies with

D) (u) = 2m¢§3)(u). Therefore, by applying %E%HDS) to (1.3) and comparing the
coefficients of z and wu, we obtain the following difference equation which is equivalent to
recurrence formula.

(c — V)ymM,,(z;a,¢) = c(x + @) M, (x + 1; ¢, ¢)
—(z+ (z + a)c) My, (x5 a0, )
+ oM, (v — 10, 0). (1.4)

The purpose of this article is to provide a multivariate analogue of this scheme which has
previously not been known even for the one variable case. Let us now describe the content
in this paper. The basic definitions and fundamental properties of Jordan algebras and
symmetric cones, and lemmas for analysis on symmetric cones and tube domains have been
presented in the first subsection of Section 2, so that they can be referred to later. The next
subsection presents a compilation of basic facts for the multivariate Laguerre polynomials
and their unitary picture. Section 3 which is main part of this papers provides a multivariate
analogue of the above results for Meixner, Charlier and Krawtchouk polynomials. Finally,
in Section4, we present a conjecture and some problems for a further generalization of the
multivariate Meixner, Charlier and Krawtchouk polynomials.

2 Preliminaries

Throughout the paper, we denote the ring of rational integers by Z, the field of real numbers
by R, the field of complex numbers by C, the partition set of length r by &

P ={m=(my,...,m,) €L, | mi >--->m,}. (2.1)
For any vector s = (s1,...,s,) € C", we put
Res := (Resy,...,Res,), (2.2)
|s| == s1+ -+ s, (2.3)
Is[] == ([sa], -, [se])- (2.4)

Moreover, for m € &
m! :=mq!---m,!

and we set § := (r — 1,7 —2,...,1,0). Refer to Faraut and Koranyi [FK] for the details in
this section.



2.1 Analysis on symmetric cones

Let € be an irreducible symmetric cone in V' which is a finite dimensional simple Euclidean
Jordan algebra of dimension n as a real vector space and rank r. The classification of irre-
ducible symmetric cones is well-known. Namely, there are four families of classical irreducible
symmetric cones I1.(R), I1,.(C), II,.(H), the cones of all » x r positive definite matrices over
R, C and H, the Lorentz cones A, and an exceptional cone II3(0) (see [FK]p.97). Also, let
VC be its complexification. For w, z € VC, we define

L(w)z = wz,
wlz := L(wz) + [L(w), L(2)],
P(w, z) := L(w)L(z) + L(z) L(w) — L(wz),
P(w) := P(w,w) = 2L(w)* — L(w?).

We denote the Jordan trace and determinant of the complex Jordan algebra V° by tr z and
by A(x) respectively.

Fix a Jordan frame {cy,...,c.} that is a complete system of orthogonal primitive idem-
potents in V' and define the following subspaces:

Vii=A{z e V| L(¢j)r =z},

Vig 1= {:E € V'L(cj)x = %x and L(cg)r = 1:5} :

2
Then, V; = Re; for j = 1,...,r are 1-dimensional subalgebras of V', while the subspaces Vj;
for j,k =1,...,r with j < k all have a common dimension d = dimg Vj;. Then, V' has the
Peirce decomposition
v (@n)o (@w).
j=1 i<k

which is the orthogonal direct sum. It follows that n = r + ¢r(r — 1). Let G(Q) denote
the automorphism group of €2 and let G be the identity component in G(£2). Then, G acts
transitively on ) and Q = G/K where K € G is the isotropy subgroup of the unit element,
e € V. K is also the identity component in Aut (V).

For any x € V, there exists £ € K and Ay,..., A\, € R such that

r=kY Nej, (A== 0.
j=1

As in the case of V, we also have the following spectral decomposition for V. Every z
in V® can be written
Z=1U Z )\jCj,
j=1
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with u in U which is the identity component of Str(VE) N UVE), Ay > -+ > A\, > 0.
Moreover, we define the spectral norm of z € VC by |z| = A; and introduce open unit ball
D € V© as follows.

D={zeV"]||z] <1}

Forj=1,...,r, let ¢j ;== c; + -+ ¢;j, and set
VU = {2z € V| L(ej)x = 2}.
Denote the orthogonal projection of V onto the subalgebra V) by P;, and define
A, (@) = 5,(Pye)

for x € V, where 0; denotes the Koecher norm function for VU, In particular, 6, = A.
Then, A; is a polynomial on V' that is homogeneous of degree j. Let s := (s1,...,s,) € C"
and define the function Ag on V' by

Au(z) = Ada)r [T A ()2 (2.5)

That is the generalized power function on V. Furthermore, for m € &, A, becomes a
polynomial function on V', which is homogeneous of degree |m)|.
The gamma function I'g for the symmetric cone (2 is defined, for s € C", with Res; >

g(]—l)(]zl,ﬂ”)by

Its evaluation gives
T~ d,.
Fofe) = (0% ][ (ss-56-1). (27)
]:

Hence, I'g extends analytically as a meromorphic function on C".
For s € C" and m € &2, we define the generalized shifted factorial by

It follows from (2.7) that

Lemma 2.1. Ifs € C",m,k € & and m Dk, then

(S)m| _ (sl +d(r =1)m
(S| = (sl +d(r =

IN

(2.10)




Proof. We remark that for any s € C, N € Z> and j = 1,...,r, the following is satisfied.

(2r —j —1).

d d d
s+N—§(j—1)'S|s|+N+d(r—1)—§(j—1):|s|+N+§

Hence,

T

d, .
=11 <$j+kj—§(1—1))
j—l J J

< ﬁ (‘Sj\ +kj+dlr—1) - %l(j N 1))mj b

(sl +der = 1)),
(Isll+ G = 1),

—hj

Corollary 2.2. Ifs€ C",m € &, then
[(S)m| < ([Isl] +d(r —1))m H|Sy|+dr—1) (2.11)

The space, P(V), of the polynomial ring on V' has the following decomposition.
-G
me

where each P, are mutually inequivalent, and finite dimensional irreducible G-modules.

Further, their dimensions are denoted by dp,. For dp,, the following formula is known (see,
[Up] Lemma 2.6 or [FK]p.315).

Lemma 2.3. For any m € &,

_ c(=p)
= c(p — m)c(m — p) (2.12)

~ my —mq + 5(¢—=p) B (my —mg, (g —p—1)+1)
— ISZEIST g(q _p) B (mp — my, g(q —p+ 1)) (213)
1 (%)

Hr@ras ooy

d L (my —mg+5(a—p+1))
1<1]3;‘[1<r (mp —mg + E(q _p)> T (mp —mg + g(q e 1) n 1) . (214)



Here, p=(p1,...,pr), pj = %(2j —r — 1), and c is the Harish-Chandra function:

e(s) = H B (54— 5p, %)

1<p<q<r B (%l(q - p>’ g) '

In particular, for d = 2

dm= ]I (mp_mq+q_p)2:sm(1,...,1)2. (2.15)

1<p<q<r a-p

Here, sm is the Schur polynomial corresponding to m € & defined by
det (A7 +7F
Sm()\l,. . .,)\r = %
det (A\}7")

The following lemma is necessary to evaluate the Fourier transform of the multivariate
Laguerre polynomial.

Lemma 2.4 ([FK] Theorem XI.2.3). For p € Py, Rea > (r —1)%, andy € Q +iV,

Ae—<y'x>p(x)A(x)“‘7 dr =To(m + a)A(y) "p(y ™). (2.16)

Here, « is regarded as (o, ..., a) € C".

For each m € &, the spherical polynomial of weight |m| on Q is defined by
W (z) := / A (k) dk. (2.17)
K

We often omit multiplicity d of P (). The algebra of all K-invariant polynomials on V,
denoted by P(V)X, decomposes as

PV = B CPp.

meY

By analytic continuation to the complexification V¢ of V| we can extend tr, A and &, to
polynomial functions on V.

Remark 2.5. (1)Since &, € Py, for 2 = k77| Ajej, Pm(x) can be expressed by

Dn(A,. s \) = Py (Z Ajcj> (= P ().

., () also has the following expression (see [F]).

PO\

d
k Sy

(2.18)



2
Here, Plid)()\l, ..., A\;) is an r-variable Jack polynomial (see [M], Chapter. VI.10). In partic-
ular, since Plil)()\l, o A) = Sm( AL, A, ®{2 becomes the Schur polynomial.
~sm(A o A) 0!

DB (N, ... = = m( Ay ). 2.1
m()‘b 7)\7’) Sm(].,...,l) Hp<q(mp—mq+q—p)8 ()‘1a 7)\) ( 9)

(2) When r = 2, ® has the following hypergeometric expression (see [Sal).

—(my —ms), L A — A
q)ggi,mQ(A17>\2):)‘gnl)‘§n22Fl( (ml dm2>’2; 1)\1 2)

oo (=

() —ms mi —ma) = §+ 1A

We remark that the function ®,(e 4+ ) is a K-invariant polynomial of degree |m| and

define the generalized binomial coefficients (Ilf) 4 by using the following expansion.
2

Q.| Nl

— \m1\m2
_>‘1 )‘2

oWe+x)= ) (rl’{“) o (z). (2.20)

k|<|m|

[M]fsH

For (rlf) 4, we also often omit %l. The fact that if k ¢ m, then (’i‘) = 0, is well known. Hence,
2

e Punle+a)= Y (‘i‘) Oy (). (2.21)

kCm

Lemma 2.6. For z = UZ;:1 Ajcj withu e U, \y > ---> X\, >0 and m € &, we have
[P (2)] < AT A < AP = (). (2.22)

Lemma 2.7. For any a € C,z2 € D,w € D, we have

> dm%%(z)@m(w) = A(w)‘o‘/KA(kw‘l — 2)"*dk. (2.23)

7)
meZ r/m

The spherical function, g, on  for s € C" is defined by

ps(x) = / Agip(ka) dk. (2.24)
K
We remark that for x € Q
ps(x71) = p_s(2) (2.25)
and for z € Q,m € &
P () = Pm—p(2). (2.26)



Let D(Q) be the algebra of G-invariant differential operators on 2, P(V)* be the space
of K-invariant polynomials on V, and P(V x V)¢ be the space of polynomials on V x V,
which are invariant in the sense that

p(gz, &) = p(x,9¢), (g€ ).

Here, we write g* for the adjoint of an element g (i.e., (gz|y) = (x|g*y) for all z,y € V'). The
spherical function g is an eigenfunction of every D € ID(€2). Thus, we denote its eigenvalues

by ¥(D)(s), that is, Dos = y(D)(s)ps.
The symbol op of a partial differential operator D which acts on the variable x € V is

defined by
De@l) = g (2,6)e@) (z,€ € V).

Differential operator D on € is invariant under G if and only if its symbol op belongs to
P(V x V)¢ In addition, the map D ~ op establishes a linear isomorphism from D(2) onto
P(V x V). Moreover, the map D + op(e,u) is a vector space isomorphism from D(Q)
onto P(V)X. In particular, for k € £, s € C", we put

e(8) = 7(Puc(0r))(8) = Prc(Dr) s ()] = (2.27)

Here, &, (0,) is a unique G-invariant differential operator, which is satisfied with

Ty () (€, &) = Pi(€) € P(V)X, e, pe(0,)e ™|, = D (€)™ .

We remark that ®(9,) = 0% and y4(s) = s(s — 1)+ (s — k + 1) in the r = 1 case, and for
any a € C, k € &, we have

Mela—p) = (1M (~a). (2.28)
The function ~p is an r variable symmetric polynomial and map D — ~p is an algebra
isomorphism from D(£2) onto algebra P(R")®r, which is a special case of the Harish-Chandra

isomorphism. If a K-invariant function ¢ is analytic in the neighborhood of e, it admits a
spherical Taylor expansion near e:

Ple + x) de {cpk ) (2) | ame }Pre ().

ke 7‘

By the definition of 7, we have
1
psle+x) = Z dk(n—)vk(s)ék(aj).
K

Since P, = Ym—p,

(III:) di (Tl)k%(m p)-

For a complex number «, we define the following differential operator on €

Dy = A(2) A0, A(z)~°.

10



For this operator, we have

T

7U%X$:II<%—Q+%&—10. (2.29)

The operators Dj%, j=0,...,r — 1 generate algebra ID(€2).

Lemma 2.8. For all k € &2, there exist some constant C' > 0 and integer N such that for
any s € C"

kMﬂgCHOM+%wJD. (2.30)

uts = o)l < OT] (Il + 50 - 1) (2.31)

Proof. Since algebra D((2) is generated by ng, j=0,....,7r—1, for &, (0,) € D(9),

I
(I)k(a:c) = Z ayy,..., lr71DéO% e D(T_ll)%'

10y.-es I —1;finite

Here, we remark that for j =0,...,7r—1

ﬁ(smLZ(r—l)—gj—l)

=1

Y(Dagy1)(s)] =

Therefore,
N
[7k(s)] < Z |a,..., 17-71\7(Dog)(5)l0 o 'V(D(r_l d lr TS CH <|Sl| +—(r— 1)) :
10,-.-,lr—1;finite =1

We immediately derive (2.31) from (2.30). O
Lemma 2.9. For allm,k € &, we have

Y(m — p) > 0. (2.32)
Proof. Since y(m — p) = 1 (ﬂ)k (m) and d, (r) > 0, it suffices to show (k) > 0 for all

T
m. k € &. From [00], generahzed binomial coefficients are written as

CE)_W

where P} (m; ¢) is the shifted Jack polynomial and H (4) (k) > 0 is a deformation of the hook
length. Moreover, by using (5.2) in [OO]

. d 4_dimm/k
ﬂ<0m5>=:1;Hf——%mKMH—1%“ﬂnﬂ—“ﬂ+1)
5-dimm

la

11



Further, the positivity of the generalized dimensions of the skew Young dlagram -dimm/k,
follows from (5.1) of [OO] and Chapter VI.6 of [M]. Therefore, we obtain the p081t1V1ty of
the shifted Jack polynomial and the conclusion. O

Theorem 2.10. (1) Forw e D, ke Z,a € C, we hcwe

(@A (e — w) ™ Py(w( Zd ) — )Py (w). (2.33)

xXeS
Here, we choose the branch of A(e —w)~* which takes the value 1 at w = 0.
(2) Forw € VE k € &, a K-invariant analytic function e *®y(w) has the following expan-
S10N.

e Py (w) = Y d — ) Dy (w). (2.34)

xe P 7“ X
Proof. (1) We take w = u) ', A\je; € D with w € U and 1 > Ay > ... > A\, > 0. By
Lemmas 2.6 and 2.8, there exist some C' > 0 and N € Z> such that

Z dx Ez; (x = p) Vs

xXEL

(% = ) [ @x(w)]

xe] 7‘

<CHZ ‘Oé|-|—d7’_1)) (:L’l—l—g(r—l))]v)\fl < 00.

=1 Z‘l>0

Therefore, the right hand side of (2.33) converges absolutely. By analytic continuation, it is
sufficient to show the assertion when Rea > 4(r — 1) and w e QN(e—Q) CD.

Z dx ) (I)X(w) Z dx (ﬂ) (I) (z>|z:eq)x(w)

xeP z=e xeP

- Y Ea; e — p) ().

xXeP

— / Ak *dk
z=e K P

= A(w)” / k(0)Akw™ = 2)7|___dk.

Here, from kw™! — z € Ty, for all kK € K and Lemma 2.4,

/ e_(w‘kwfl_z)A(x)aA(x)_% dx
Q

On the other hand,

0.) > d Z D (w)

xeP

Pu(0.)A(kw™! — 2)7|__ = ®u(0.)

FQ(Oé)
- / Di(0.)e) o=@ DA ()2 A(z)F da
Q

z=e€

n

= z)e~ Bl @ =) A ()2 A (2) 77 da
- [ o) Ar)"Ar)F d




Therefore,

— Afw)® /K (@A — o)y ((w" — )~) dk

= (a)Ae — w) @y (w(e —w) ™).

(2) Since the right hand side of (2.34) converges absolutely due to a similar argument of (1),

we have
e’ POy (w) = O}LIEO(a>kA (e B %) o (g <€ R %> _1)

= " gl = p) Jim o) (%)

xXEL T
Zd k(X = p) Py (w).
xeP 7“ X

O

Next, we preview the gradient for a C-valued and V-valued function f on simple Euclidean
Jordan algebra V. In this parts, we refer to [Di]. For differentiable function f : V — R and
z,u € V, we define the gradient, Vf(x) € V, of f by

(V(@)lu) = Duf() = & fo -+ 1)

t=0
For a C-valued function f = f; + ifs, we define Vf = Vf; + iV f,. For z = 2 +iy € VC,
we define D, = D, +iD,. Moreover, if {es,...,e,} is an orthonormal basis of V' and

x =" xe; € VE, then

Vi)=Y 8;;? ¢

i=1

We remark that this expression is independent of the choice of an orthonormal basis of V.
For a V-valued function f: V — V expressed by f(z) = Z;Zl fj(x)e;, we define V f by

Vf(x)= Z 82]9511') e;e.

]7121

That is also well defined. Let us present some derivation formulas.

Lemma 2.11. (1) The product rule of differentiation: For V -valued function f,h, we have

tr (V(f(z)h(x))) = tr (Vf(x))h(zx) + f(z) tr (Vh(z)). (2.35)
For C-valued functions f,h,
V(f(@)h(z)) = (Vf(2)h(z) + f(x)(Vh(z)). (2.36)

13



(2)

Va=oe (2.37)
(3) For any invertible element x € V',
tr (V)™ = tr (2(Va™)) = _§ tr z L. (2.38)
(4) For B € C and an invertible element z € VC,
V(AW)) = BAG 2

(1),(2), and (4) are well known (see [FK], [Di], and [FW1]). (3) follows from (1), (2), and
V(zz™') =V(e) = 0.

The following recurrence formulas for the spherical functions, some of which involve the
gradient, are also well known (see [Di] and [FW1]).

Lemma 2.12. Lets € C" and x € VC. Put

a5(s) = C(C& St (2.40)

S €; S;i — S
+ ]) k#j J k

Then,

(tr 2)s(2) = Y a;(s)psse; (), (2.41)

(1 D)) = 3 (5574 50 D) sy o), .42
(o @Oarte) = 3 (5= 4= D) s 5)puss (o). 243

2.2 Multivariate Laguerre polynomials and their unitary picture

In this subsection, we promote a unitary picture associated with the multivariate Laguerre
polynomials and provide some fundamental lemmas based on [FK]|, [FW1].

First, we recall some function spaces and their complete orthogonal basis as in the case
of one variable. Let a > 2% —1, m € &,

(1) @bﬁ{f) ; Multivariate Laguerre polynomials (to multiply exponential)
L2(Q)% :={¢: Q — C |+ is K-invariant and [|¢||2 o < oo},
2re n
2= WA (W) du,
[l = oy | 1000PAW)
V() =t “L$_7)(2u).

14



Here, L,(r? _%)(u) is the multivariate Laguerre polynomial defined by

2 () i g Dm ) (I;:) ((_al)lk By (u)

(2) F. Cayley transform of the spherical polynomials

H2(To)* :={F : To — C| F is K-invariant and analytic in Tq, and ||[F||2 1, < oo},

' 1 Io(a)
||FHocTQ = (4m)" T (04 - ?) To

(@) () .= (@)m etz) z—e)(z+e)!
P = 0 (57) Oulle =0l 4o

(3) f,({f‘ ) ; spherical polynomials

[F(2)PA@)™ m(dz),

HZ (D)X = {f :D — C | f is K-invariant and analytic in D, and || f]|Z 5 < oo},

171 = o /\f )Ph(w)* % m(duw),
h(w) —Det([vc—Qwa+P( )P (w ))2n’

Fl(w) = dp, (@)m Dy (u).

(%) n

Here, Det stands for the usual determinant of a complex linear operator on V°.
We remark that

L

m

and the orthogonality relations of wfﬁ‘) and qfﬁ‘) also hold for a > — 1.
Next, similar to the one variable case, we will consider some unitary isomorphisms.
Modified Laplace transform

Lot DK 2 H2(T0), (Lath)(2) = FQ(Q) / &1 A () () du.

Modified Cayley transform

o H2(To)™ S5 HAD)Y, (C5'F)(w) = Ale — w)F ((e + w)(e —w) ™).

«

15



To summarize the above, we obtain the following picture.

RO S W) s HAD)K

o
v v v (2.44)
S

(1) (2) (3)
Lemma 2.13. For any a € C,u € Q and z € D, we have

Z L o-?) (W) Pm(z) = Ale — z)_a/ e~ (kulzle=2)"Y) g, (2.45)
K

mey

Here, we define the branch by A(e)~ = 1.

Proof. By referring to [FK], (2.45) holds for a > % —1 = d(r — 1). Moreover, the right hand
side of (2.45) is well defined for any o € C. Hence, by analytic continuation, it is sufficient to
show the absolute convergence of the left hand side under the assumption. By Lemmas 2.1,

2.6 and 2.7,

a_n (@)m —1)k
CRTINEED P it ( ) ((a)) By (1) ()
me 2 mG]ka (%) k

1
< 2 Wy (ol T dlr ~ 1)
al+d(r—1))m
§jdm" = Dl (11— ) ()
me (?)m
aq
(1 —ay r|o¢\ dr(r—1) Z dk < U)
ke (%) 1=
= (1 — ap)"lel=drr=D=ay U < oo, (2.46)

O

Let us consider the operators DY for 7 = 1,2,3. The operator D is a first order
differential operator on the domain D:

DY = 2tr (wV,). (2.47)
Since this is the Euler operator,
D fi2) (w) = 2[m| £ (w).

The operators DY and DY are respectively defined by C;'DS = D{VC and £,D) =
DY L,. Hence, DY F\ (w) = 2|m|F1(na) (w) and

DV (w) = 2im[p{) (u). (2.48)

16



Moreover, they have the following expressions.

D® =tr ((2* — )V, + a(z — ae)), (2.49)
DV =tr (—uV? — aV, +u — ae). (2.50)

Lemma 2.14. (1)
DV pg() =Y a;(8)psse, (1) — raps(u)

_ Z (Sj L %(r _ 1)) <sj ta— %l(r 1) - 1) 0;(—=8)pac,(u).  (2.51)

- ; (xj + g(r - j)) (xj ta—1- Cg(j - 1)) i (—X) Py, (u).  (2.52)

Here,
:L’j—xk—%l —k—1
) = =) = JT 220 _é(._ = ) (253)
(3) For any C' € C,
(CrupWeCirug () — (1 — C?) Z (%) Prre, (1)
+ Z(C(?zj +a) — )Py (u)
Y (w50 (-1 56 - D) G000 (0)
- (2.54)

(2.51) is a corollary of Lemma3.18 in [FW1]. However, since Faraut and Wakayama’s
lemma is incorrect in terms of the sign, we re-prove it.

Proof. (1) The modified Laplace transform of ¢y is given by

27’06
[o(a)

FQ(S‘FOK"‘p)

(EaSDS)(Z) = FQ(Oz)

/ e og(u) Au)*r du =2 Ps—al(2)-
Q

17



Thus, from the definition of DY and Lemma 2.12,

Lao(DYPps)(2) = D (Latps)(2)
MD@)ap_s_a(z)

— 27’01

FQ(Oé) @
=3 (sra-fo-n)ararettBE AT,
_payeloStato)

FQ(Oé)
- (s 50 = ) s -2, o)

Since
(Z): FQ(S‘FOK"‘p)
SO—S—a:I:ej FQ(S o+ P i €

) £a(¢siej )(2),

we have

T

2 _ d Fa(s+a+p)
D (ap)() =3 (51 @ = 50 = 1) o) T f ()

Jj=1

—ra(Laps)(2)
_ ; (Sj + le(r — 1)) aj(_S)FQF(S(j ;rj_‘ :_p)ej)ﬁa( ;) (2)

~r, (Z 058y 1) — gl
- ; (Sj - g(r - 1)) (sj +a— %(r —1) - 1) a;(=8) s (u)) (2).

(2) Put s=m — p in (2.51).

(3) By
eCtr uvue—Ctru — —Ce, eCtrutr (uvi>e—0tru — 02 tr u

and the product rule of differentiation, we remark that

e“ Tty (uV2)e O D, (u) = tr (uV2) Dy (u)
+ 2tr (ueCt‘r “Vu(e_Ctr V(P (u)))
+ 9D, (u) tr (uVE)e Y
= {tr (uV2) + C*tr u—2C|x|} Px(u)

18



and

ety (V,)e O D, (u) = By (u) tr (eCT Ve ") +tr (V,) Py (u)
= —COr®y(u) + tr (V) Px(u).

Hence,

o

CrupWe=Ctrug (y) = DM, (u) — C*tr udy(u) + C(2]x| + 7a) Py (u).

Therefore, from (2.52) and (2.41),

eCtr uD((ll)e—Ctr u(I)x(u> = Z dj (X>(I)x+6j (u) — ra(I)x(u)

+ il(a;xj +a) — @)y (u)
=3 (et 50 =9) (=1 =500 G0

3 Multivariate Meixner, Charlier and Krawtchouk poly-
nomials
In this section, we assume that m,n,x,y € Z,a € C,0<¢,p<1,a>0,N € Z>, and
2= Zajcj, w = U2ijcj eV«
j=1 j=1

with uy,us € U, a1 > -+ >a, >0, by > --- > b, > 0 unless otherwise specified.

19



3.1 Definitions

Definition 3.1. We define the multivariate Meixner, Charlier and Krawtchouk polynomials

as follows.
weena- SRR ()
Slpee(-y

C S (1) @3

s = S5 (. (0) () ()

-3 ()en () i (3.5)

-y g e _(pﬁwk(X —r) <_1) - (3.6)

i )= 32 N (g\);;k (‘: (’;) (%) Y meN—.N) G
=06

_ kczm dk’Vk(n(l%;kp()jl;\(;){k_ p) ( % ) [k | (3.9)

When r = 1, these polynomials become the usual Meixner, Charlier and Krawtchouk
polynomials. By the definition, we immediately obtain a duality property for these polyno-
mials.

Proposition 3.2. (1) For all m,x € &, we have
M (x;a,¢) = My(m; o, ). (3.10)

(2) For all m,x € &, we have
Cm(x;a) = Cx(m;a). (3.11)

(3) For all N Dm,x € &, we have
Km(x;p, N) = Kx(m;p, N). (3.12)

We also obtain the following relations by the definitions.

20



Proposition 3.3. (1)

p—
(2)
. a
c}l—>nolo My, (X7 a - n a) = Cm(x;a). (3.14)
®) )
lim K, (x; N,N) = Om(x:a). (3.15)

Actually, (1) follows from the definitions. For (2) and (3), we remark that

3.2 Generating functions

To consider some generating functions of generating functions for the above polynomials, we
need to prove their convergences.

Lemma 3.4. (1) Ifl>a;>--->a,>0,b;>--->0b. >0, then

3 |dm (fj)"‘ Min(56; @, ©) B (2)dy e B (w)| < P (758 (71)) (1 ) rteeom),
x,me X (7)m (7)x
(3.16)
(2) For any z,w € VC, we have
1 1 r(a +b +M)
D dm o Crn (%, @) Py (2) d i Oy (w) | < €7 (H0F7T), (3.17)
x,me P (7)m (7)x

Proof. (1) By Lemma2.1, Lemma2.6 and Lemma 2.9,

(@)m 1
dpn M (x50, ¢) P (2)dy

1 1\
=2 (2), (la] + d(r — 1)) (E N 1)

ke r
37 A — )0 (0) 3 e )0
me T/ m xXeP r/x
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Moreover, from (2.33) and (2.34) of Theorem 2.10,

> (§ ) 1))“”vk(m — p)®m(a) = (Ja] + d(r = 1)i(L = ar) 7l 0D- Mg},
me

D dyr—ic(x — p)By(br) = €™ M.

xeP 7“ X

Therefore, we have

< erb1(1 _ r(Jal+d(r—1)) Z dk ) ((1 1) 1a1b1 )
- C — a1

ke

_ erb1(1+1‘j—}11(%—1))(1 — qy)rleltdrD) < oo

(2) By a similar argument,

S e Con (%, @) By (2) e (0)
x,me P (?)m (?)x
< Z dk a” Z A 7—7c(m — p) Py (ay) Z dyx——(x — p)Dx(b1)
ke 7‘ k me & m xeP 7‘)
b
— or(ar+b) dk (E)

— er(“1+b1+ 1a1) < 00.

O
The following theorem is the key result in our theory.
Theorem 3.5. (1) For z € D,w € V¢, a € C,0 < ¢ < 1, we obtain
tr w (O‘_%) 1 . Oz
Ze L ((c 1)w) Z dm ) M (x; @, ¢) Py (2)
me X, me Y T’ m
1
- dy O, (w) (3.18)

=Ale—z)™ / ekle=iaE=" g (3.19)
K

22



(2) For w,z € V€ a > 0, we obtain

> dm(;)metrwcpm (e - éw) =Y dm T)m £ 0) P (2)

e x,meP
1
: dx(n—)éx(w) (3.20)
— efr (w+z)/ e—%(kw|2’) dk. (321)
K

Proof. (1) By the above lemma, the series converges absolutely under the conditions. There-
fore, we derive

= dm%@,ﬂ(z) 3 <‘i‘)<% ( )kl Zd (X = ) Py (w)

me m kCm xeP r X

N

me 7‘ m kCm

-y et (e7%) ((% . 1) w) Bou(2).

meP

(3.19) follows from (2.45).

(2) Put ¢ = - w — ¥, a,a € Ry in (1) of Theorem 3.5 and take the limit of @ — co. [

The generating functions of our polynomials are a corollary of the above theorem.
Theorem 3.6. (1) Forz€e D,xe &, a € C,0<c<1, we have

Ae—2dy ((e=22)(e—2) =3 da f (5 0, ) B (2). (3.22)
(( g

C
ney

(2) For ze D,x € Z,a> 0, we have

e F Py (e ) Z dp—— ;a)Py(2). (3.23)
ne? T
(3) Forze D,xe £,0<p <1, we have

Ale + )V, <<e ! _pz> (e + z)_1> -y @) Ka(x: p, N)®y(2). (3.24)

p nCN
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Proof. (1) We evaluate the spherical Taylor expansion of (3.19) with respect to w:

— Afe— Z)—a/q)x(aw)eww(e—iz)(e—z)1>‘w:0 K

K

~ Ale— z)_a/KCI)x (k; (<e - %) (e — z)_1)> i
— Afe— 2)d, <(e - %z) (e — z)—1> |

@x(@w)A(e — z)_a/ (kw‘(e__z e—2) dk
K

q)x(aw)A(e — Z>_a/e(kw(e_‘122)(e—z)1) "
K

w=0

On the other hand, by (3.6),

Therefore, we obtain the conclusion.
(2) The result is proved by a similar argument as in (1). That is, by (2) of Theorem 3.5, we

have

Zd ca) Dy (2) = Dy (D)€ W) / e~ akwle) g

ney 7“ w=0

/ (aw)e w\k(e——z | —Odk

fo(e(e=32))

(3) By putting @« = —N in (3.6), we have

Ale — 2N, (<e _ %) (c— z)—l) _ I;Vdn(zgi“ Ma(x: =N, ) (2)
-> (‘]I\:)M (x; N, &) Bn(—2)

Since this series is a finite sum, we can take ¢ = p%l in the above. Therefore, we obtain

Ale — )N, ((e—l— ! _pz) (e—z)_l) -y (‘Z)Mn( N, ﬁ) By (—2)

p nCN

= Z( ) (x;p, N) ®p(—2).

nCN
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Next, we apply the unitary transformations in (2.44) to Theorem 3.5. Here, we also check
convergence.

Lemma 3.7. Fir 0 <c <1 andlet 0 <e <1 and w,z € D satisfy that

(c—i—(l—c)lig) (1+(1—c)1_€%) <1,
| P (w)], [Pra(2)] < Pra(€) = ™. (3.25)

Then,

(Wx x; (@)m , (@)n ,
dy dp——Mpn(x; a0, ¢) P (2)dn—— M (X; a, ¢) Py (cw
N o o o

< (1 =¢c)(1 =2(1 + c)e + (4c — 1)g?)) ~rlol=drr=1), (3.26)

Proof. By Lemma2.1 and Lemma 2.9, we have

(LHS) < 3 d, (ol +d(r = D)x
xe (T)x

Z Qe () E e ()

> A Dl o ) ()3, I D 0y ).

meP (T)m neyp (?)n

Furthermore, from Lemma2.10 and the definition of the generalized binomial coefficients
(2.21), we derive

(LHS) < (1 —2)(1 — ce))7lal=dre=0 ™ g, (o] + dn(r = D)x

xeS (? x

ZOE) 206 (=)

_ ((1 _ 8) o 08)) rla|—dr(r—1)

de(a|+ %; DIFPY <<c—|—(1—c)1i5> <1+(1—c)1_565)).

xXEL

Finally, by using the assumption and Lemma 2.10, we obtain

(LHS) < ((1 —e)(1 - ce) (1 - (c+ (1= ) 6) (1 +(1=0)s fcg)))_r|a_dr(r_l)

= (1= ¢)(1 = 2(1 + ) + (de — 1)) ~rlal=drt=1)

25



From this lemma, we can consider the following generating functions.

Theorem 3.8. (1) For z € D,u € VC, we obtain

Z ) (u Z dm g)m M (x; 00, ¢) P (2)

me X, me 7"
x|
1 2 c
: dxw (1—6) 6_% i u(I)x('LL) (327)
= —C

= A(e - z)_a/ e~ kuller2)e=2)™0) g
K

(2) Fiz 0 < ¢ < 1 and assume that w,z € D satisfy the condition in (1) of Lemma3.7. We
obtain

3" dum fj ()m(z) = (1= S dn fijm(x;a,c)cpm(z)

mey m X, meS
2 (@)

* (),

_ A / Alk=" — )= dk.

XA (e — cw) Dy ((e —w)(e — cw)™h)  (3.28)

(3) For w,z € V€ a > 0, we obtain

> (W)Pm(z) =€ Y dm m (X; @) P (2)
mey m X, me T)m
a 1
s dy e Dy (e — —w) (3.29)
(%) a

— 6trw/ e—a(kw\e—z) dk.
K

Proof. As (1) and (3) follow immediately from Theorem 3.5, we only prove (2).

First, we remark that the right hand side of (3.28) converges absolutely under the condi-
tions in Lemma 3.7. Thus, by analytic continuation, it suffices to show these equations when
a1 < 3. Moreover, we also remark that since (2.46)

—dr(r— _1-3ay
5 I ) (2} < (1 = ag) =D

meY

the exchange of unitary transformations L., Mg and F 1 and the summation are justified
under these restrictions. Therefore, to obtain the results, we apply the unitary transforms
to both sides of (3.27). We try to perform these calculations.
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For (2), we apply transform C;! o £, to both sides of (3.27). From Lemma 2.4, we have

_ (a)eA Gfiwz)_a o, <Gfie+z)_l> .
U ) (w) = 27 (a)xC ! (A Gjiejt z) h D, (Gtze + z) _1>> (w)

e ren (s (e 1))

1—c
o, (((e—i—w)(e —w) 11_26)_1)

— (@)al1 = e - cw) e (35 (e - wle - )t

14c
1ice+z}u) n

Oy (u)A(uw)*" 7 du

Furthermore,

14c

CloLy(e 1

«

Hence, the right-hand side of (3.27) becomes the right-hand side of (3.28). Therefore, since
Colo Loy(thpe)(w) = dm%q)m(w), we obtain the conclusion. O

T

3.3 Orthogonality relations

We provide the orthogonality relations for our discrete orthogonal polynomials as a corollary
of Theorem 3.8.

Theorem 3.9. (1) Fora > 2 —1,0 <c <1, we obtain

C_‘m‘

;: - EZ;iCX|Mm<X; @ Ml 000) = (1—c)e i 82 Omn = 0. (3.30)

(2) Fora >0, we obtain

n

x| =
Z dx(an—)cm()ﬁ G,)Cn(X; a) - a_mera%ém,n > 0. (331)

m

xeP X

(3) For0 < p <1, we obtain

5 (V) sinin Mt M = (S2) " (5) Tozo g

X m
xCN p
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Proof. (1) From (3.28) and (3.22), we have
> dm “) (W) m(2) = (1= 3" dum imem<x;a,c><I>m<z>
me m

xmeg 7")
_dXOQxcmugg,_cug—a@x«e_-w)@»—cug—g
(%)

= Y (1= g,

m,ney (%)m (%)n

{Zd i) M, (X;a,c)Mn(x;a,C)}<I>m(z)<1>n(w).
x€Z

Therefore, by comparing the coefficients of &, (2)®,(w) on both sides of this equation, we
obtain (3.30).

(2) From (3.29) and (3.23), we derive

o
> d oM (W) Py (2) = e Zrdm— m

me& m

e~ (Fm ()
ol
: {Z dwam(X; a)Cy(x; a)} P (2)Pp(w).

Then, by comparing the coefficients of ®p,(2)®,(w), we have the conclusion
(3) In (3.28), taking & = — N, one has

m;vd )m <>¢m<—z>=Z(N)<1>m<w>¢m<z>

m
mCN

(1—c)N ZNd ) Mo (x; =N, ¢) Py (—2)

(_N)x

- dy *A(e — c)ND, ((e — w)(e — cw)™).
(). ( e ( ) )7)

The first equality follows from (2.28). Since the above sum is finite, we can put ¢ = -5, (0 <
28



Therefore,

= (ememe= 2 (0)(25)" ()
-{Z ()0 s Wi, N>}®m<z><1>n<w>.

xCN

O

3.4 Difference equations and recurrence relations

In this subsection, we derive the difference equations and recurrence formulas for our poly-
nomials from (2.48), Lemma2.14 and (1) of Theorem 3.8.

Theorem 3.10. (1) Forx,m € & « € C,c € C*, we have

- d
dy(c — 1)|m| My (x; o, ¢) = deJrejdj(—x —€) (xj +a— 5(] — 1)) cMm(x+ €50, ¢)
=1

— de(mj + (xj + o)) M (x; v, €)
+ de_gjdj(x —€) (xj + g(r — ])) Mmn(x —€j;0,¢). (3.33)
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(2) Forx,m e £, a € C*, we have

—dy|m|Cin (X;0) =Y duye,@j(—X — €;)aCin(x + €3 )
j=1

— Z dy(z; + a)Cen(x; @)

T B d .
+ de_gjaj(x —€j) (xj + 5(7’ - ])) Cm(x —¢€j50a).
j=1

(3.34)

(3) Forx,m € & p e C*, we have

N d,.
_dx|m|Km(X;p> N) = de+6jaj(_x - Ej) (N — Ty + 5(] - 1)) me(X + €53 Ds N)

)+ 2;(1 = p)) Km(x;p, N)

Proof. (1) Let us apply operator %le%tr “DY to both sides of (3.27). Since DY) (u) =

2|m\1p,(ff)(u), we have

Y

meP
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On the other hand, by (2.54), we have

2

! T+ 1+ (r—j d
. { e, @i (—% — €)= ) 2(r = J) (:cj +a—=(j— 1)) Mm(x+ €550, ¢)
7j=1 T/ X+€;

- Z dxi(xj + (z; + a)c) Mm(x; , ¢)

= O
+ de_ﬁjdj(x — ej)ﬁMm(x — €5, c)} :

X—€5

Finally, the conclusion is obtained by

(= (01050 ) G,

and comparing the coefficients in the above.

(2) Put ¢ = 1= in (3.10) and take the limit as a — oo. Then, by (3.14), we have the
conclusion.

(3) Put ¢ = .25, 0 = =N and multiply 1 — p in (3.10). Then, by (3.13), we have the
conclusion. O

The recurrence formulas follow immediately from Theorem 3.10 and Proposition 3.2.
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Theorem 3.11. (1) Forx,m € & «a € C,c € C*, we have
T B d ‘
dm(c - 1)|X|Mm(x; «, C) = Z dm-i—sjaj(_m - ej) (mj +oa— 5(] - 1)) CMm—i—q (X§ Q, C)
j=1
— Z dm(m; + (m; + a)c) My (x; @, ¢)
j=1
+ idm_e,dj(m —€;) <mj + gl(r — j)) Mp . (x;0,¢). (3.36)
]_1 J 2 J
(2) Forx,m e £, a € C*, we have

—den[X|Con(%;0) = dine; 5 (—m — €;)aCin e, (x; @)
j=1

— Z den(m; + a)Cin(x; @)

+ ; dm—c;0;(m — ¢;) <mj + g(r — ])) Cm—e,(x;a). (3.37)
(3) Forx,m € &, p e C*, we have
T . d .
—dm |X|Km(x;p, N) = deJrejaj(—m —€;) <N —m; + 5(] — 1)) PEmie, (x50, N)
j=1
=Y dm(p(N = my) + m;(1 = p) Km(x;p, N)
j=1
T B d ‘
# Y donylm = ) (15 500 = 3)) (1= )i i ),
j=1

(3.38)

4 Concluding remarks

Interesting problems remain that are related to the multivariate Meixner, Charlier and
Krawtchouk polynomials. First, we may consider a generalization of our discrete orthog-
onal polynomials for an arbitrary real value of multiplicity d > 0. Actually, we can consider
the multivariate Meixner, Charlier and Krawtchouk polynomials and their orthogonality
without using the analysis on the symmetric cones as follows.
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Let n:=r+4r(r—1),d>0

2
Further, Plid)()\l, ..., As) is an r-variable Jack polynomial and

PO )

d
o (N, A = FEIT

(4.1)

Furthermore, we introduce the generalized (Jack) binomial coefficients based on [OO] b

DL+, 1HA) =Y (Il‘:) D (Ar,. .\,

kCm

Definition 4.1. We define the generalized multivariate Meixner, Charlier and Krawtchouk
polynomials by

e =L gie(0), (), (1) <4.2>
kad_lk (g)k (III:) a ()lz) (_%) ’ : (4.3)

K (xip,N) =3 d—lk(f_]\);;k @‘)(’;) Gg)kl (mcCN=(N,.  N). (44)

kCm

C9D(x;a) =

(]

By the definitions, Proposition3.2 and 3.3 also hold for the generalized multivariate
Meixner, Charlier and Krawtchouk polynomials. Therefore, we think the following conjecture
is natural.

Conjecture 4.2. Generating functions, orthogonality, difference equations and recurrence
formulas also hold for the generalized multivariate Meizner, Charlier and Krawtchouk poly-
nomials, as in Theorems 3.6, 3.9, 3.10 and 3.11 respectively. Here, we consider A(e — z) =

(I—2z)---(1—2z).
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We remark that when d = 1,2,4 or r = 2,d € Z~y or r = 3,d = 8, this conjecture is
proved by this paper and the classification of irreducible symmetric cones. However, it may
be necessary to consider some algebraic treatment to prove the general case. In particular,
since the difference equation for the multivariate Meixner polynomials is equivalent to the
differential equation for the multivariate Laguerre polynomials which is explained by the
degenerate double affine Hecke algebra [Kal, we expect the existence of a particular algebraic
structure related to this algebra for our polynomials. Once we obtain such an interpretation,
we may not only succeed in proving the above conjecture but also in providing further
generalizations of our polynomials associated with root systems.

It is also valuable to give a group theoretic picture of our multivariate discrete orthogonal
polynomials. In the one variable case, there are many geometric interpretations for these
polynomials [VK1], [VK2]. Moreover, for the multivariate case for the Aomoto-Gelfand
hypergeometric series, such group theoretic interpretations have recently been studied [GVZ],
[GMVZ]. On the other hand, since our multivariate discrete orthogonal polynomials have
many rich properties which are generalizations of the one variable case, they are considered
to be a good multivariate analogue of the Meixner, Charlier and Krawtchouk polynomials.
Hence, for our multivariate discrete orthogonal polynomials; it seems that there is some
group theoretic interpretation as some matrix elements or some spherical functions etc. We
are also interested in a connection between our multivariate discrete orthogonal polynomials
and the Aomoto-Gelfand type.

We are interested in whether we can apply our method to other discrete orthogonal

polynomials, for example, the Hahn polynomial which is a special orthogonal polynomial in
the Askey scheme [KLS],

Ou(s 0, B, N) = 3 (‘m’m tatftl -z 1)

a+1,—-N 7
Lo (1)) moerem

0

Namely, by considering “some generating functions of the generating functions” for these
discrete orthogonal polynomials, we expect to obtain correspondence between the Hahn
polynomials and other orthogonal polynomials, for example, the Jacobi polynomials.

Finally, we would like to raise the issue of applications of our multivariate Meixner,
Charlier and Krawtchouk polynomials. The standard Meixner, Charlier and Krawtchouk
polynomials of single discrete variable have found numerous applications in combinatorics,
stochastic processes, probability theory and mathematical physics (for their reference, see the
introduction in [GMVZ]). Hence, we hope that our multivariate polynomials can be applied
to various situations and we intend to investigate these in research tasks in the future.
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