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Abstract

Orthogonal polynomials for the multinomial distribution m(x,p) of N balls
dropped into d boxes (box i has probability pi) are called multivariate
Krawtchouk polynomials. This paper gives an introduction to their proper-
ties, collections of natural Markov chains which they explicitly diagonalize
and associated bivariate multinomial distributions.

Introduction

This paper relates orthogonal polynomials, Markov chains and statistical
modeling. Bill Studden loved all of these topics and their interactions. The
setting is a d-category multinomial distribution of N balls dropped into
d boxes with probabilities p = (p1, . . . , pd). Throughout pi > 0 and the
multinomial distribution is

m(x,p) =

(
N

x1, · · · , xd

) d∏

i=1

pxi

i , 0 ≤ xi,

d∑

i=1

xi = N.

Systems of orthogonal polynomials for the multinomial are defined in Griffiths
(1971). They generalize Krawtchouk polynomials for the Binomial and are
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called multivariate Krawtchouk polynomials. A self contained development
of these along with properties and pointers to an emerging literature is in
section two.

There is not a unique set of orthogonal polynomials in higher dimensions
than one because the ordering of powers xn1

1 · · · xnd

d is not unique within a
fixed degree |n| = n1 + · · · + nd. The definitions here lead to constructing
a unique set of polynomials by choosing an orthonormal basis of functions
on {1, 2, . . . , d}, see the definitions in section 2.1. Further orthogonal poly-
nomials in a particular set are uniquely defined by their multiple leading
coefficients (lemma 1 in section 2.1). This allows us to show that the poly-
nomials suggested by Grunbaum and Rahman (2011) and Xu (2013) fit into
our definition.

Multivariate Krawtchouk polynomials appear as the eigen-functions of
a variety of natural Markov chains generalizing the classical Ehrenfest urn.
Consider an urn containing N balls in d colours. A ball is chosen at random
and its colour changed to j with probability pj . This can be generalized
in various directions. The balls can be partitioned into groups in a gen-
eral way. Balls in the αth group have their colours changed in a general
way: a ball of colour i is changed to colour j with probability Pα(i, j).
With appropriate choices, all of these chains are diagonalized by multivari-
ate Krawtchouk polynomials. This work captures chains previously stud-
ied by Hoare and Rahman (2008), Khare and Zhou (2009), Zhou and Lange
(2009) and Mizukawa (2010), Mizukawa (2011). Multivariate Krawtchouk
polynomials also have a universal quality, diagonalizing symmetrized prod-
ucts of general Markov chains. These topics are explained in section three.

The third central topic is bivariate distributions with multinomial mar-
gins. This topic has a long history going back to work of Lancaster (1969).
Bivariate Lancaster distributions with multinomial margins have an expan-
sion

P (x,y) = m(x,p)m(y,p)
{
1 +

∑

n

ρnhnQn(x)Qn(y)
}
,

with Qn the multivariate Krawtchouk polynomials, and hn given by

E
[
Qn(X)Qn(Y )

]
= δmnhnρn.

The ρn are called generalized correlations. A basic problem, the Lancaster
problem, is what values of ρn are admissible to have P (x,y) ≥ 0?. This
problem was solved in the Binomial case by Eagleson (1969). A useful
necessary and sufficient condition appears in section three. This leans on
the multinomial hypergroup property which may be of independent interest.
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There are natural choices of ρn; if K(x,y) is a reversible Markov chain with
Krawtchouk polynomial eigenfunctions, then

P (x,y) = m(x,p)K(x,y)

has a Lancaster expansion with ρn the eigen-values of K. This paper is
a d-dimensional version of Diaconis and Griffiths (2012) which works out
the connections between generalized Ehrenfest urns with two colours, Lan-
caster expansions and one variable Krawtchouk polynomials. The theory is
more complete (and simpler) in this case and the reader might find it useful
motivation.

As usual, new developments raise new questions; what are the extreme
points of the d × d stochastic matrices with P as stationary distribution?
Find a full solution of the Lancaster problem. What is the connection to
Schur-Weyl duality and Bosonic Fock space? We are sorry not to be able to
call on Bill Studden’s expert help.

2.1 Definitions and Background

The multinomial distribution associated with dropping N balls into d boxes
having probabilities p = (p1, . . . , pd) is

m(x,p) =

(
N

x1, · · · , xd

) d∏

j=1

p
xj

j , 0 ≤ xj,
d∑

j=1

xj = N. (1)

Griffiths (1971) defines orthogonal polynomials for m(x,p) by choosing

a complete set of orthogonal functions {u(l)j } with respect to p, for l =

0, 1, . . . , d− 1, j = 1, 2, . . . , d. Insist throughout that u
(0)
j ≡ 1. Thus, for all

k, l = 0, 1, . . . , d− 1,
d∑

j=1

u
(k)
j u

(l)
j pj = δklak. (2)

In this paper we usually take these functions to be orthonormal when ak = 1,
k = 1, . . . , d− 1, unless indicated. Examples of natural choices of {u(l)} are
given in the following section 2.2. Often {u(l)} is a basis of eigen-functions
for a Markov chain on [d] = {1, 2, . . . , d}. Writing u for {u(l)}, Griffiths
(1971) defines a collection of orthogonal polynomials

{
Qn(x,u)

}
with n = (n1, . . . , nd−1), |n| ≤ N (3)
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as the coefficient of wn1

1 · · ·wnd−1

d−1 in the generating function

G(xxx,www,uuu) =

d∏

j=1

{
1 +

d−1∑

l=1

wlu
(l)
j

}xj

. (4)

For integer xj, expanding each term in the product by the binomial expan-
sion gives a polynomial in xj so the coefficient of wn is a polynomial in x.
It is easy to see that Qn is a polynomial of degree |n| = n1 + · · ·+ nd−1.
For example:

n = (0, . . . , 0) Qn ≡ 1

n = (0, . . . , 1l, . . . , 0) Qn =
∑d

j=1 u
(l)
j xj

Def
= Sl

n = (0, . . . , 1l, . . . , 1m, . . . , 0) Qn = 1
2SlSm − 1

2

∑d
i=1 xiu

(l)
i u

(m)
i

n = (0, . . . , 2l, . . . , 0) Qn = 1
2S

2
l − 1

2

∑d
i=1 xi

(
u
(l)
i

)2
.

(5)

It is straightforward to show, using (4), that the {Qn} are orthogonal:

E
[
Qn(X,u)Qm(X,u)

]
= δmn

(
N

|n|

)(|n|
n

)d−1∏

j=1

a
nj

j . (6)

In (6), X has a multinomial m(x,p) distribution. Griffiths (1971) also
gives a related construction of multivariate orthogonal polynomials on the
negative multinomial distribution via a generating function approach.

The {Qn} also have an easily verified stability property: their definition
does not depend on N , as long as |n| ≤ N the same {Qn} work for all
sufficiently large N .

As defined, it is not so clear how to express Qn as a polynomial. Recent
work of Mizukawa and Tanaka (2004) and Grunbaum and Rahman (2011)
clarifies this. They use hypergeometric notation. Let

F
(n)
1 (−m,−x;−N ;u) :=

∑

k··≤N

∏n
i=1(−mi)(ki·)

∏n
j=1(−xj)(k·j)∏

ij kij !(−N)(k··)

∏

i,j

u
kij
ij , (7)

where a · in an index means sum, eg k·j =
∑d−1

i=1 kij ,

a(n) = a(a+ 1) · · · (a+ n− 1), a[n] = a(a− 1) · · · (a− n+ 1)

and the sum is over all n×n matrices (kij) with non-negative integer entries
with sum of entries at most N .
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Proposition 1. Let {v(l)j } be an orthonormal basis, 0 ≤ l ≤ d−1, 1 ≤ j ≤ d,

with v
(l)
d ≡ 1. For all l, let uij = 1− v

(i)
j , i, j ∈ [d− 1], then with Qm(x,v)

defined in (3),(4)

Qm(x,v) =
N !

∏d
i=1 mi!

F
(d−1)
1 (−m,−x;−N ;u).

Proof Reduce the variables to x1, . . . , xd−1 by letting xd = N −∑d−1
i=1 xi,

then

G(x,w) =

d∏

j=1

(
1 +

d−1∑

i=1

wiv
(i)
j

)xj

=

d−1∏

j=1

(
1 +

d−1∑

i=1

wiv
(i)
j

)xj ×
(
1 + w·

)N−
∑d−1

j=1
xj

=

d−1∏

j=1

(
1 + w· −

d−1∑

i=1

wiuij

)xj ×
(
1 + w·

)N−
∑d−1

j=1
xj

=

d−1∏

j=1

(
1−

d−1∑

i=1

wi

1 + w·
uij

)xj ×
(
1 + w·

)N

=
∑

kij

(
1 + w·

)N−k··
d−1∏

i=1

wki·
i

∏

ij

(−uij)
kij

d−1∏

j=1

xj [k·j]∏d−1
i=1 kij!

.

The coefficient of
∏d−1

i=1 wmi

i in (8) is

∑

k··≤N

(N − k··)!∏d−1
i=1 (mi − ki·)!

∏

ij

(−uij)
kij

d−1∏

j=1

xj [k·j]∏d−1
i=1 kij !

=
N !

∏d−1
i=1 mi!

∑

k··≤N

∏d−1
i=1 (−mi)(ki·)

∏d−1
j=1(−xj)(k·j)∏

ij kij !(−N)(k··)

∏

i,j

u
kij
ij .

Equating coefficients now gives the result.

A well known and easy to check conditional product binomial construc-
tion is

m(x;p) =

d−1∏

j=1

b(xj , pj/(1 − |pj−1|), N − |xj−1|), (8)
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where b(x, p,N) =
(
N
x

)
px(1 − p)N−x, xk = (x1, . . . xk), |xk| = x1 + · · · + xk

with similar notation for the pk terms. The way that a set of multi-
dimensional orthogonal polynomials is constructed using (8) is to use 1-
dimensional Krawtchouk orthogonal polynomials on the conditional distri-
butions. Xu (2013) gives a unified treatment of multivariate Hahn, Jacobi
and Krawtchouk polynomials which are constructed from product condi-
tional distributions. In his treatment there are natural constructions begin-
ning with multivariate Jacobi polynomials which lead to Hahn polynomials
via a multinomial-Dirichlet mixture and then from multivariate Hahn poly-
nomials to multivariate Krawtchouk polynomials as a limit when the index
parameters in the multinomial-Dirichlet tend to infinity with the ratios tend-
ing to p. We show in the next theorem that his multivariate Krawtchouk
polynomials are a special case of the multivariate Krawtchouk polynomials
in this paper. A general preliminary lemma is needed.

Lemma 1. Let
{
Qn(x)

}
be a d-dimensional orthogonal polynomials set

on a random variable X. Then the polynomials are uniquely determined by
their leading coefficients.

Proof. Take the orthogonal polynomial set to be orthonormal without loss
of generality. Denote the reproducing kernel polynomials by

Qn(x,y) =
∑

|n|=n

Qn(x)Qn(y), n = 0, 1, . . . .

The reproducing kernel orthogonal polynomials are invariant under all choices
of multidimensional orthogonal polynomials on the given distribution. Let
the leading coefficient of Qn(x) be Sn(x). Then for |n| = |n′|

E
[
Sn(Y )Qn′(Y )

]
= E

[
Qn(Y )Qn′(Y )

]
= δnn′ ,

because Qn′(Y ) is orthogonal to polynomials in Y of degree less than |n′|.
Thus

E
[
Sn(Y )Qn(x,Y )

]
= Qn(x),

uniquely determining Qn(x) by Sn(x) among all orthogonal polynomial sets
on X.

Because of Lemma 1 to check that two orthogonal polynomials sets on
the same distribution are identical (up to normalizing constants) it is suf-
ficient to check that the leading coefficients are proportional. We now cal-
culate the leading coefficients in Xu (2013)’s orthogonal polynomials on the
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multinomial and show an identity with our multivariate Krawtchouk poly-
nomials. The notation in Xu (2013) is adapted to agree with notation in this
paper. In our orthogonal polynomials Qn(x,u) has a single leading term
proportional to

Sn(x) =

d−1∏

j=1

S
nj

j , where Sj =

d∑

k=1

u
(j)
k xk,

with {u(j)} a set of orthogonal functions on p = (p1, . . . , pd).
We now describe the conditional binomial constructed polynomials in

Xu (2013). The 1-dimensional Krawtchouk polynomials there are defined
by

Kn(x; p,N) = 2F1(−n,−x;−N ; p−1), n = 0, . . . , N,

where, with a standard definition,

2F1(a, b; c; z) =
∞∑

r=0

a(k)b(k)

c(k)

zk

k!
.

The scaling is such that Kn(0; p,N) = 1. The conditional binomial multidi-
mensional Krawtchouk polynomials are defined by

Kn(x;p, N) =
(−1)|n|

(−N)(|n|)

d−1∏

j=1

p
nj

j

(1− |pj−1|)nj
(−N + |xj−1|+ |nj+1|)(nj)

×Knj

(
xj;

pj
1− |pj−1|

, N − |xj−1| − |nj+1|
)
, (9)

where for j < d, nj = (nj, . . . , nd−1), |nj| = nj+· · ·+nd−1 and for notational
convenience |nd| = 0.

Proposition 2. The conditional binomial construction of multidimensional
Krawtchouk polynomials, Xu (2013), is a special case of the multidimen-
sional Krawtchouk polynomials where the orthogonal basis is the (unscaled)
Irwin-Lancaster basis: u(0) = 1 and

u
(j)
k =





0 k < j,

−(1− |pj |)/pj k = j,

1 k = j + 1, . . . , d.

(10)

for j = 1, . . . , d− 1; k = 1, . . . , d.
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Proof. By lemma 1, it is sufficient to show that the leading terms in both
sets of orthogonal polynomials are identical. Using the hypergeometric ex-
pansion

Knj

(
xj ;

pj
1− |pj−1|

, N − |xj−1| − |nj+1|
)
(−N + |xj−1|+ |nj+1|)(nj )

=

nj∑

k=0

(−nj)(k)(−xj)(k)

(−N + |xj−1|+ |nj+1|)(k)

(
1− |pj−1|

pj

)k
1

k!

× (−N + |xj−1|+ |nj+1|)(nj). (11)

The leading coefficient in

(−N + |xj−1|+ |nj+1|)(nj)

(−N + |xj−1|+ |nj+1|)(k)
= (−N + |xj−1|+ |nj+1|+ k) · · · (−N + |xj−1|+ |nj+1|+ nj − 1)

is
(−N + |xj−1|)nj−k.

The leading coefficient in (11) is therefore

nj∑

k=0

(−nj)(k)(−xj)
k

(
1− |pj−1|

pj

)k

(−N + |xj−1|)nj−k 1

k!

= (−1)nj

(
− xj

1− |pj−1|
pj

+N − |xj−1|
)nj

= (−1)nj

(
− xj

1− |pj |
pj

+ xj+1 + · · ·+ xd

)nj

= (−1)nj

(
d∑

k=1

u
(j)
k xk

)nj

.

The leading coefficient in Kn(x;p, N) is then seen to be

1

(−N)(|n|)

d−1∏

j=1

p
nj

j

(1− |pj−1|)nj

(
d∑

k=1

u
(j)
k xk

)nj

which completes the proof.
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We now calculate the proportionality constants in the two systems. If
x = Ned the generating function (4) for the multivariate Krawtchouk poly-
nomials is (

1 +
d−1∑

j=1

u
(j)
d wj

)N

=

(
1 +

d−1∑

j=1

wj

)N

so

Qn

(
Ned,u

)
=

N !

(N − |n|)!∏d−1
j=1 nj!

.

As a comparison

Kn(Ned;p, N) =
(−1)|n|

(−N)(|n|)

d−1∏

j=1

p
nj

j

(1− |pj−1|)nj
(−N + |nj+1|)(nj)

= (−1)|n|
d−1∏

j=1

(
pj

1− |pj−1|

)nj

Comparing the two polynomials at x = Ned+1 gives the next corollary.

Corollary 1.

Kn(x;p, N) =
1

(−N)(|n|)

d−1∏

j=1

nj!

(
pj

1− |pj−1|

)nj

Qn(x,u). (12)

The generating function definition makes it easy to compute various trans-
forms of Qn as a product of linear forms

E

[ d∏

i=1

φXi

i Qn(X)
]
=

(
N

|n|

)(|n|
n

)
T0(φ)

N−|n|T1(φ)
n1 · · ·Td−1(φ)

nd−1 (13)

where

Ti(φ) =
d∑

j=1

φjpju
(i)
j , 0 ≤ i ≤ d− 1.

Using random variable notation can provide elegant formulae. Let Z1, . . . , ZN

be independent identically distributed random variables with P (Z = k) =
pk, 1 ≤ k ≤ d. Set Xi = |{k : Zk = i}| so (X1, . . . ,Xd) has a m(x,p)
distribution. Then (6) gives (with both sides random variables)

G(X;w;u) =

N∏

k=1

(
1 +

d−1∑

l=1

wlv
(l)
Zk

)
. (14)
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Expanding the right hand side gives

Qnnn(XXX,uuu) =
∑

{Al}

∏

k1∈A1

u
(1)
Zk1

· · ·
∏

kd−1∈Ad−1

u
(d−1)
Zkd−1

, (15)

where the summation is over all partitions of N into subsets {Al} such that
|Al| = nl, l = 1, . . . , d − 1. This shows that Qn(x,u) is a polynomial of
degree n− |n| in

(
S1(x), . . . , Sd−1(x)

)
with

Si(x) =

d∑

j=1

u
(l)
j xj, i = 1, . . . , d− 1

whose only term of maximal degree is
∏d−1

k=1 S
nk

k (x).
General 1-dimensional orthogonal polynomials {Pn(x)} satisfy a three

term recurrence for xPn(x). A similar recurrence holds for Si(x)Qn(x;u).
Scale Qn(x;u) so that the leading coefficient of

∏d−1
i=1 Si(x)

ni is unity by

taking Q∗
n(x;u) =

∏d−1
i=1 ni!Qn(x;u). Let c(i, l, k) =

∑d
j=1 u

(i)
j u

(l)
j u

(k)
j pj.

Then a generating function argument shows that

Si(x)Q
∗
n(x,u) = Q∗

n+ei
(x,u) + (N − |n|+ 1)Q∗

n−ei
(x,u)

+

d−1∑

l,k=1

c(i, l, k)Q∗
n−el+ek

(x,u). (16)

2.2 Three Examples

This section develops three detailed examples; the first gives an ‘always
available’ basis {u(l)} for general p. This turns out to diagonize a Metropolis
algorithm and satisfy a hypergroup property developed further in section
2.4. The second involves group characters and ‘explains’ the hypergroup
nomenclature; the third is a development from physics. It offers ways of
generalizing the construction of section 2.1 to general space.

Example 2.1 One simple closed form choice of {u(l)} is given by Irwin-
Helmert matrices (Lancaster, 1969).The basis is a scaled version of (10).
Given p, let a2i = pi, A

2
i = pd + · · · + pi. Define a d× d matrix U with first

row (1, . . . , 1) and ith row

( d−i︷ ︸︸ ︷
0, . . . , 0,

−Ad+2−i

ad+1−iAd+1−i
,

ad+1−i

Ad+2−iAd+1−i
, . . . ,

ad+1−i

Ad+2−iAd+1−i

)
, 2 ≤ i ≤ d.

10



Thus when d = 5, U is




1 1 1 1 1

0 0 0 − A5

a4A4

a4
A4A5

0 0 − A4

a3A3

a3
A3A4

a3
A3A4

0 − A3

a2A2

a2
A2A3

a2
A2A3

a2
A2A3

−A2

a1
a1

A1A2

a1
A1A2

a1
A1A2

a1
A1A2




The rows of U are an orthonormal basis. Thus

u
(0)
j ≡ 1, u

(i)
j =





0 1 ≤ j ≤ i− 1

−Ai+1

aiAi
j = i

ai
AiAi+1

j > i.

(17)

These matrices were used by Lancaster and Irwin to decompose the usual
chi-square test for goodness of fit to a multinomial model into d orthogonal
pieces. See Lancaster (1969). Saltzman (2010) has observed that the u(l)

diagonalize a natural Markov chain. We state this formally:

Proposition 3. (Saltzman) Let p1 ≥ · · · ≥ pd be a probability distribution
on [d] = {1, 2, . . . , d} and u(l) be defined by (17). Let K(i, j) be the ‘random
scan Metropolis’ Markov chain on [d]: From i, pick j uniformly in [d]. If
j ≤ i, move to j. If j > i, flip a pj/pi coin. If heads, move to j; else stay at
i. This is a reversible Markov chain with stationary distribution p. It has
u(l) as (right) eigenfunctions: Ku(0) = u(0) and Ku(l) = βlu

(l) with

βl = 1− A2
l

da2l
, 1 ≤ l ≤ d− 1.

Proof The diagonalization of the random scan Metropolis chain is a special
case of a theorem of Liu (1996). His result gives similar eigen-values and
eigen-vectors for the Metropolis chain with general proposal.

The hypergroup property of an orthogonal basis {u(l)} allows delin-
eation of all Markov chains and all (Lancaster) bivariate distributions ad-
miting {u(l)} as eigen-bases. Section 2.4 below shows that the multivari-
ate Krawtchouk polynomials satisfy the hypergroup property provided the
underlying {u(l)} do. To provide examples, we now give a necessary and
sufficient condition on the Irwin-Helmert basis for this property.

11



One way to state the property is to transform {u(l)} into an orthogonal

matrix H by multiplying each column by p
1/2
j ; thus suppose {u(l)} satisfies

(2.2) and define

Hij = u
(i−1)
j p

1/2
j for i, j ∈ [d]. (Thus h1j = p

1/2
j for j ∈ [d]). (18)

For a general orthogonal H, the hypergroup property is

s(j, k, l) =
d∑

i=1

hijhikhil/hid ≥ 0, for all j, k, l ∈ [d]. (19)

For this to be defined, hid 6= 0 for i ∈ [d]. This property is equivalent to
the usual conception of a hypergroup if we take (without loss of generality)
hid > 0 because

hijhik = hid

d∑

l=1

s(j, k, l)hil .

That is, the product hijhik can be expressed as a linear combination of
terms hil with non-negative coefficients. The property (19) is satisfied by
the Irwin-Helmert matrices and will be assumed throughout this section. A
familiar example, with d = 4 and p = (14 ,

1
4 ,

1
4 ,

1
4) is

H =
1

2




1 1 1 1
−1 1 −1 1
1 1 −1 −1

−1 1 1 −1


 . (20)

However the reader will find it impossible to construct a 3×3 orthogonal H
satisfying (19) with first row ( 1√

3
, 1√

3
, 1√

3
). Indeed Bakry and Huet (2008)

show that a d×d orthogonal H satisfying (19) with constant first row exists if
and only if d = 2k for some k ≥ 1. This raises the question: what (p1, . . . , pd)
admit u(l) and H satisfying (19)? The proposition below gives examples if
p satisfies a monotonicity property. Say that p is strongly monotone if

pd ≤ pd−1, pd + pd−1 ≤ pd−2, . . . , pd + · · ·+ p2 ≤ p1. (21)

For example when d = 3, (12 ,
1
3 ,

1
6) and (12 ,

1
4 ,

1
4) are strongly monotone.

Proposition 4. Suppose that p is strongly monotone. For the Irwin-Helmet
matrix (17) define an orthogonal matrix H by (18). Then H satisfies the hy-
pergroup property. Further the strongly monotone p form a full dimensional
(dimension d− 1) compact-convex simplex with extreme points

(0, . . . , 0, 1), (0, . . . , 0,
1

2
,
1

2
), (0, . . . , 0,

1

4
,
1

4
,
1

2
), . . . , (

1

2d−1
,

1

2d−1
,

1

2d−2
, . . . ,

1

2
).
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Proof It may help the reader to have an example. For d = 5, a2i = pi,
A2

i = pd + pd−1 + · · ·+ pi, (so A1 = 1),

H =




a1 a2 a3 a4 a5
0 0 0 −A5

A4

a4a5
A4A5

0 0 −A4

A3

a3a4
A3A4

a3a5
A3A4

0 −A3

A2

a2a3
A2A3

a2a4
A2A3

a2a5
A2A3

−A2
a1a2
A2

a1a3
A2

a1a4
A2

a1a5
A2



. (22)

Observe that s(j, k, l) is invariant under permutation of indices, so without
loss of generality take j ≤ k ≤ l. The following argument shows that

s(j, k, l) ≥ 0 if any of j, k, l = d,

indeed s(j, j, d) = s(d, d, d) = 1, s(j, d, d) = s(j, k, d) = 0; (23)

s(i, i, j) ≥ 0; (24)

s(i, j, j) = 0; (25)

s(j, k, l) = 0 for 1 ≤ j < k < l < d. (26)

Inequalities (23)-(26) hold for any ai. Strong monotonicity is not needed.
This covers all choices except s(i, i, i), i ∈ [d]. The positivity of these
quantities is in a one to one correspondence with the linear inequalities
pd + · · · + pi+1 ≤ pi, 1 ≤ i ≤ d − 1. To prove (23) observe eg s(j, k, d) =∑d

i=1 hijhik = δjk ≥ 0. The other cases are similar. Thus without loss of
generality 1 ≤ j ≤ k ≤ l < d for the rest of the proof. For (24), observe that
for i < j, s(i, i, j) is the sum of positive terms.

The proof of (25) is by induction on d. It is basic to check for d = 2, 3.
For larger d, first consider

s(1, j, j) =
a1a

2
j

ad
−A2

(
a1aj
A2

)2
A2

a1ad
= 0.

Next consider the matrix H with the first column and last row deleted. This
is a (d− 1)× (d− 1) matrix of the same form with the first row divided by
A2. By induction

pd
A2

≤ pd−1

A2
,
pd + pd−1

A2
≤ pd−2

A2
, . . . ,

pd + · · ·+ pj
A2

≤ p2
A2

.

This finishes the proof of the hypergroup property. The final claims are
about the set of strongly monotone probabilities. Observe that pd + · · · +

13



p2 ≤ p1 is equivalent to p1 ≥ 1
2 . From this p2 ≤ 1

2 . Also p2 + p3 ≤ 1
2 .

Along with p3 ≤ p2, this gives p2 ≤ 1
4 . Continuing gives pi ≤ 1

2i
, 2 ≤

i ≤ d. From this the claimed extreme points are all extreme. They can
be seen to be all of the extreme points with unique representation by a
similar greedy algorithm. Given strongly monotone (p1, . . . , pd), subtract off
pd2

d−1( 1
2d−1 ,

1
2d−1 , . . . ,

1
2). The difference is positive and normalizing gives

a strictly monotone probability with the first entry zero. Continuing gives
p as a linear combination of extreme points. The representation is unique
because the extreme points

(1, 0, 0, . . . , 0), (
1

2
,
1

2
, 0, . . . , 0), (

1

2
,
1

4
,
1

4
, 0, . . . , 0), . . . , (

1

2
,
1

4
,
1

8
, . . . ,

1

2d−1
,

1

2d−1
)

are linearly independent.

Proposition 4 suggests a question about the Irwin-Lancaster bases. {u(l)}
posesses the GKS property, Bakry and Huet (2008), if for all l, r

u(l)u(r) =
∑

k

cklru
(k),

where cklr ≥ 0 for l, r, k = 0, . . . , d − 1. The GKS property insures a variety
of probabilistic inequalities hold. Do the Irwin-Helmert bases (17) satisfy
GKS under the assumptions of Proposition 4? The next proposition affirms
that this is true.

Proposition 5. The Irwin-Lancaster bases possess the GKS property if
and only if p is strongly monotone.

Proof The GKS property holds if and only if for 0 ≤ l ≤ m ≤ d− 1

d∑

j=1

u
(l)
j u

(m)
j u

(r)
j pj ≥ 0. (27)

It is convenient to define

v
(r)
j =

ArAr+1

ar
u
(r)
j

=

{
−pr+1+···+pd

pr
if j = r

1 if j > r.
(28)

14



Then (27) holding is equivalent to

c(l,m, r)
Def
=

d∑

j=1

v
(l)
j v

(m)
j v

(r)
j pj ≥ 0.

Evaluating the triple sum

c(l,m, r) =





−pr+1+···+pd
pr

pr + pr+1 + · · · + pd = 0, if l ≤ m < r
(pr+1+···+pd)

2

p2r
pr + pr+1 + · · ·+ pd ≥ 0, if l < m = r

(pr+1+···+pd)
p2r

(
p2r − (pr+1 + · · ·+ pd)

2
)
≥ 0, if l = m = r.

(29)
Positivity in the last case holds if and only if p is strongly monotone.

Hypergroups for Groups. Let G be a finite group with conjugacy classes
C1, C2, . . . , Cd and irreducible characters χ1, . . . , χd. Label those so that
Cd = {id}, χ1 ≡ 1 (the trivial character). Background can be found in
James and Liebeck (2001), Issacs (1994), Diaconis (1988). Define pi =
|Ci|/|G|, for i = 1, . . . , d. It is a classical fact that

∑

i

χi(Cj)χi(Ck)χi(Cl) ≥ 0 for all j, k, l ∈ [d],

see eg Bakry and Huet (2008), Proposition 2.6. This implies

Proposition 6. Let G be a finite group with d conjugacy classes. Suppose
that all of the characters are real valued. Then the matrix H

hij = χi(Cj)
√
pj, (pj = |Cj|/|G|)

is orthogonal and satisfies the hypergroup and GKS properties.

Example Let G = Cn
2 , the group of binary n-tuples under commutative

addition. This is an abelian group so the conjugacy classes are single points.
For x ∈ G, let χx(y) = (−1)x·y. {χx}x∈G are the irreducible characters and
G is real. Here |G| = 2n, and pi = 1/2n. When n = 2 the relevant basis is
displayed in (20).

Example Let G = S3, the symmetric group. There are three conjugacy
classes

C1 = {(1, 2), (1, 3), (2, 3)}, C2 = {(1, 2, 3), (1, 3, 2)}, C3 = {id}.
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Thus p1 = 1
2 , p2 = 1

3 , p3 = 1
6 . The character table and associated H are

(bordered rows and columns)




C1 C2 C3
χ1 1 1 1
χ2 0 −1 2
χ3 −1 1 1


 H =




1√
2

1√
3

1√
6

0 − 1√
3

2√
6

− 1√
2

1√
3

1√
6


 . (30)

The orthogonal matrices H in these examples also have a probabilistic
interpretation; they are the eigenvectors of any random walk on G which is
constant on conjugacy classes, see Diaconis (1988), chapter 3.

Example Bosonic Fock space and second quantization.
The multivariate Krawtchouk polynomials are closely related to a basic

construction in modern physics. This connection illuminates the construc-
tion, suggesting natural generalizations to infinite spaces and to varying
numbers of particles. Good references for physics are Desai (2010), chapter
3, Reed and Simon (1975), chapter X.7 and Feynman (1972), chapter 6.7.

We begin with the general story – symmetrized tensors, then symmetrized
to the multinomial, finally discussions and generalizations.

Let V be a vector space V ⊗N the N -fold tensor product and V ⊗N
S the

elements in V ⊗N invariant under the symmetric group SN . If < ·|· > is
an inner product on V then V ⊗N becomes an inner product space with
< a1 ⊗ · · · ⊗ aN | b1 ⊗ · · · ⊗ bN >=< a1|b1 > · · · < aN |bN >. Further, V ⊗N

S

inherits an inner product. If a1 ⊗ · · · ⊗ aN denotes symmetrization,

< a1 ⊗ · · · ⊗ aN | b1 ⊗ · · · ⊗ bN >= per



< a1 | b1 > . . . , < a1 | bN >

· · ·
< aN | b1 > . . . , < aN | bN >


 ,

Feynman (1972), (6.3). If {u(l)}l∈L is an orthogonal basis for V (dim V = ∞
is allowed,) then V ⊗N has u(l1) ⊗ · · · ⊗ u(lN ) = u(l) as an orthogonal basis
with li ∈ L. Symmetrizing these gives

u(l) =
∑

σ∈SN

u(lσ1) ⊗ · · · ⊗ u(lσN ).

Because of the symmetry, ū(l) only depends on ni1 , ni2 , . . ., with nl the
number of i such that li = l. The ū(l) are an orthonormal basis for V ⊗w

S . In
the physics literature they are often denoted by |n1, n2 · · · >. Specialize to
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the case where V = L2(µ) for µ a probability measure on (X,B). Let {u(l)}
be an orthogonal basis with u(0)(x) ≡ 1. The basis elements are

f̄ (l)(y1, y2, . . . , yN ) =
∑

σ∈SN

N∏

i=1

f (li)(yσ(i)).

The degree of f (n) is |n| = n1 + n2 + · · · . Thus the degree 0 element is

f̄ (0) ≡ 1.

The degree one basis vectors are (up to the proportionality constant (N−1)!)

f̄ (l)(y1, . . . , yN ) =
∑

σ∈SN

f (li)(yσ(i)).

Now suppose that the underlying space X = [d] with µ = P . If {u(l)} is
chosen as in (2) and z1, . . . , zN has i appearing xi(z) times

f̄ (el) =

d∑

j=1

u
(l)
j xj, 1 ≤ l ≤ d− 1.

These are the linear Krawtchouk polynomials. Similarly, the higher degree
basis terms are the multivariate Krawtchouk polynomials.

In the physics literature if A is a self adjoint operator on V , then

(A⊗ I ⊗ · · · ⊗ I) + (I ⊗A⊗ · · · ⊗) + · · · + (I ⊗ I ⊗ · · · ⊗A)

operates on V ⊗N
S . It is called the second quantization of A. If V = L2(µ)

is our d-dimensional space and A is the transition matrix of a p-reversible
Markov chain, the second quantization (divided by N) is just “pick a co-
ordinate at random, if it is colour i change it to j with probability A(i, j)”.
See Feynman (1972), section 6.8, for the physics version.

The development above shows how to generalize from [d] to a general
space. The physics development has an additional feature; the creation and
destruction operators a+(·) and a−(·). These translate into “add or subtract
a ball” in the multinomial picture. They necessitate working in the enhanced
state space

⊕∞
N=0 V

⊗N
S (Bosonic Fock space). We will not develop the story

further, but believe there is a lot to be done translating between fields.
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2.3 Self Duality

The univariate Krawtchouk polynomials Qn satisfy the useful duality equa-
tion Qn(x) = Qx(n). This section defines a d-dimensional extension, used
in section 2.4 to prove the hypergroup property which is a crucial ingredient
in section three.

Duality is the easiest to describe by considering a more general class
of polynomials Q̂n+(x,H), where H is a d × d orthogonal matrix, n+ =
(n+

1 , . . . , n
+
d ) with |n+| = N , x = (x1, . . . , xd) has |x| = N . Define Q̂nnn+(xxx,H)

as the coefficient of (
N

nnn+

) d∏

j=1

w
n+

j

j

(
N

xxx

) d∏

i=1

zxi

i (31)

in
[ d∑

i,j=1

hijwizj

]N
. (32)

Q̂nnn+(xxx,H) is also the coefficient of

(
N

nnn+

) d∏

j=1

w
n+

j

j in
d∏

j=1

{
d∑

i=1

hijwi

}xi

.

or the coefficient of

(
N

xxx

) d∏

i=1

z
xj

i in
d∏

i=1

{
d∑

j=1

hijzj

}n+

i

.

There is an evident duality

Q̂nnn+(xxx,H) = Q̂xxx(nnn
+,HT ), (33)

where HT denotes the transpose of H. The generating function (32) is a
generating function for both systems in (33). The variable is xxx with index
nnn+ for the system on the left side, and the variable is nnn+ with index xxx for
the dual system on the right side. To make the connection to Krawtchouk
polynomials for {u(l)} set

hij = u
(i−1)
j p

1/2
j , i, j ∈ {1, . . . , d}, so hij = p

1/2
j , (34)

and
nnn+ = (N − |n|, n1, . . . , nd−1), |nnn| ≤ N.
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Then

Q̂nnn+(xxx,H) =

(
N

nnn+

)−1

Qnnn(xxx,vvv)

d∏

j=1

p
xj/2
j . (35)

with H from (34). {Q̂nnn+} satisfy the orthogonality relations

∑

xxx

Q̂mmm+(xxx,H)Q̂nnn+(xxx,H)

(
N

xxx

)
= δmmmnnn

(
N

nnn+

)−1

∑

nnn+

Q̂nnn+(xxx,HT )Q̂nnn+(yyy,HT )

(
N

nnn+

)
= δxxxyyy

(
N

xxx

)−1

. (36)

This shows that {Q̂nnn+} are orthogonal polynomials for the flat multinomial
{pi = 1/d}. A symmetrized product form is

Q̂nnn+(xxx,H) =

(
N

nnn+

)−1 ∑

{Al}dl=1

∏

k∈A1

h1zk · · ·
∏

k∈Ad

hdzk ,

where the summation is over all partitions of subsets of {1, . . . , N} , {Al}
such that |Al| = nl, l = 1, . . . , d with {z1, . . . , zN} a multi-set containing xj
entries equal to j, j = 1, . . . , d.

2.4 The Hypergroup Property

Univariate Krawtchouk polynomials Qn(x) with E
[
Qm(X)Qn(X)

]
= δmnhn

satisfy the hypergroup property

N∑

n=0

hnQn(x)Qn(y)Qn(z) ≥ 0, for all x, y, z = 0, 1, . . . , N.

This property was discovered and exploited by Eagleson (1969) in his so-
lution of the Lancaster problem for the Binomial distribution. Vere-Jones
(1971) and Dunkl and Ramirez (1974) study group theoretic properties of
the hypergroup property of the Krawtchouk polynomials. In Diaconis and Griffiths
(2012) the hypergroup property is used to characterize reversible Markov
chains with (univariate) Krawtchouk polynomials as eigen-functions. Fol-
lowing Eagleson’s work, a host of univariate orthogonal polynomials have
been shown to satisfy the hypergroup property. A wonderful survey of this
work is given by Bakry and Huet (2008). The purpose of this subsection
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is to study the hypergroup property for multivariate Krawtchouk polyno-
mials. Applications are in section three. The main result shows that the
hypergroup property is equivalent to a hypergroup property for the chosen
underlying basis {u(l)}. This allows the examples developed in section 2.2
to be used for the multinomial.

It is convenient to consider scaled multivariate Krawtchouk polynomials

Q⋄
nnn(xxx,uuu) =

Qnnn(xxx,uuu)

Qnnn(Neeed,uuu)
. (37)

Recall that u = {u(0), . . . , u(d−1)} is an orthonormal basis for functions on
[d] with respect to p. The scaling gives Q⋄

nnn(Neeed;uuu) = 1 (the choice of
coordinate d in ed is chosen without loss of generality). From the generating
function (4)

Qn(Ned,u) =

(
N

n+

) d−1∏

i=1

bni

i , (38)

where
bi = u

(i)
d 6= 0 (39)

is an assumption in force throughout. This is automatic if Irwin-Helmert
matrices are used. In general

E

[
Q⋄

mmm(XXX,uuu)Q⋄
nnn(XXX,uuu)

]
= δmmmnnn

(
N

nnn+

)−1 d−1∏

i=1

b−2ni

i . (40)

Denote

h⋄nnn =

(
N

nnn+

) d−1∏

i=1

b2ni

i . (41)

The appropriate hypergroup property is

∑

nnn

Q⋄
nnn(xxx,uuu)Q

⋄
nnn(yyy,uuu)Q

⋄
nnn(zzz,uuu)h

⋄
nnn ≥ 0. (42)

The first result shows that (42) is equivalent to a similar property for the
original basis {u(l)}. Define an orthogonal matrix as in (18) by

hij = u
(i−1)
j

√
pj, i, j ∈ [d] (43)

and set

s(j, k, l) =

d∑

i=1

hijhikhilh
−1
id . (44)
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Proposition 7. For an orthonormal basis {u(l)j } as in (2) with u
(l)
d 6= 0 for

l = 0, 1, . . . , d− 1, the hypergroup property (42) holds if and only if

s(j, k, l) ≥ 0 for all j, k, l ∈ [d]. (45)

Proof A generating function proof now follows. Note that Q̂nnn+(xxx,H) =
Q̂xxx(nnn

+,HT ) is the coefficient of

(
N

xxx

) d∏

j=1

z
xj

j

in
d∏

i=1

( d∑

j=1

hijzj

)n+

i

.

Multiply the sum of the triple products in (42) by

(
N

xxx

) d∏

i=1

αxi

i

(
N

yyy

) d∏

j=1

β
yj
i

(
N

zzz

) d∏

j=1

γzki (46)

and sum over xxx,yyy,zzz to obtain

[ d∑

j,k,l=1

s(j, k, l)αjβkγl

]N
. (47)

The coefficients of (46) in (47) are non-negative if and only if (42) holds.
The sufficiency clearly holds. For the necessity first note that for k, j 6= d

s(d, k, k) = 1, s(d, d, k) = 1, s(d, k, j) = 0, s(d, d, d) = 1.

The coefficient of αjβkγl(αdβdγd)
N−1 in (47) is Ns(j, k, l), which is neces-

sarily non-negative.
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2.5 A Linearization Formula

Linearization formulas for classical orthogonal polynomials express the prod-
uct of two polynomials as a linear combination

PiPj =

i+j∑

k=0

LijkPk.

Positivity and integrality of the Lijk is of particular interest. Background,
motivation and references are in Ismail (2005) or Hounkonnou Belmedhi and Ronveaux
(2000). The celebrated Littlewood-Richardson rule (Macdonald, 1998) gives
a multivariate example. It expresses the product of two Schur functions.
The hypergroup property allows such a result for multivariate Krawtchouk
polynomials.

With notation as in section 2.3, let Q⋄
n be defined by (37). Set

φxy = m(z;p)
∑

n

Q⋄
n(x;u)Q

⋄
n(y;u)Q

⋄
n(z;u)h

⋄
n.

From Proposition 7, φxy(z) is a probability distribution in z if and only
if s(j, k, l) ≥ 0 for all j, k, l ∈ [d]. If this is true (ie when the hypergroup
property holds for the original basis {u(l)}) then

Q⋄
n(x,u)Q

⋄
n(y,u) = Eφxy

[
Q⋄

n(Z,u)
]
. (48)

Expanding the right hand side gives a positive linearization formula.

3. Markov Chains with Multivariate Krawtchouk Polynomial Eigen-

vectors

This section gives many natural examples of Markov chains with multivari-
ate Krawtchouk polynomial eigenvectors. Section 3.1 reviews the work of
Khare and Zhou (2009) and Zhou and Lange (2009) on composition Markov
chains. These include generalized Ehrenfest urns, chains occurring in the
evolution of DNA, neutral theory of biodiversity and others. These authors
have used the polynomials to get sharp rates of convergence and to build
martingales to calculate moments of coalescent times.

Section 3.2 develops a non-reversible theory using bi-orthogonal expan-
sions. This is applied to generalizations of an urn model of (Mizukawa, 2010,
2011). Section 3.3 offers further generalizations all of which are diagonalized
by multivariate Krawtchouk polynomials. Section 3.4 applies this construc-
tion to give a universal property of the Krawtchouk construction (and many
more examples).
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3.1 Composition Markov Chains

Begin with a Markov chain P (i, j) with stationary distribution p on [d].
This induces a variety of Markov chains on the product space [d]N . One
may ‘pick a coordinate at random and change that coordinate from i to j
with probability P (i, j)’. One may change all of the coordinates in turn,
independently with P . More generally, one may pick a subset S ⊆ [N ] with
probability µ(S) which is exchangeable (so µ(S) only depends on |S|) and
change the values of coordinates in S independently with P . The sym-
metric group SN acts on [d]N by permuting coordinates. The orbit of
a point x ∈ [d]N is n = (n1, . . . , nd) with nj(x) = #{i : xi = j}. If
Pµ(x,y) is the chain constructed above on [d] then Pµ(x,y) = Pµ(x

σ,yσ)
for all σ ∈ SN . It follows from Dynkins Criteria (Kemeny and Snell, 1976;
Boyd Diaconis Parillo and Xiao, 2005) that Pµ induces a Markov chain on
the orbit space

χ(d,N) = {n1, . . . , nd : 0 ≤ ni,
d∑

i=1

ni = N} so |χ(d,N)| =
(
d+N − 1

N

)

with a multinomial m(x,p) distribution. These are the composition chains
of Khare and Zhou (2009), Zhou and Lange (2009) and Khare and Mukherjee
(2013). These authors give a detailed development of many examples using
the multivariate Krawtchouk polynomials to give sharp rates of convergence
to stationarity and to build martingales used to bound first hitting times.

To whet the reader’s appetite, here is a brief list.

Example (Ehrenfest Urns) Consider N labeled balls distributed in d
urns. At each stage, a set of s balls (say |s| = k is fixed) is chosen uniformly
at random and, for each ball, if in urn i, it is moved to urn j with probability
P (i, j). Some special cases due to Mizukawa are considered in section 3.2.

Example (Hoare-Rahmann chain) With N balls in d urns, attempt to
move all N each time as follows; balls in urn i are left fixed with probability
αi and moved with probability 1−αi; if moved, they are re-distributed with
probability (θ1, . . . , θd).

Example (Evolution of DNA Chromosomes). Here a string of N nu-
cleotides labeled {A,T,C,G} undergoes independent mutation from a fixed
4× 4 transition matrix (so d = 4).

Example (Lightbulb problem) There are N light bulbs. At time t,
choose a set St, and for i ∈ St, if the bulb is off, switch it on, if on, switch it
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off. Of interest are the total number of bulbs on at time t, and the first time
all bulbs are off. The Krawtchouk polynomials are used to build martingales
that give exact formulas for these distributions.

Example (Coalescence times for a multiperson random walk on
a graph) Fix a connected simple graph G with d vertices, distribute N
chips on the vertices. At each time, a randomly chosen chip picks a nearest
neighbour at random and moves. Of interest is the first time all the chips
are at a common vertex.

3.2 Non-reversible Chains and Biorthogonal Expansions

Markov chains with a Lancaster expansion are usually thought of as re-
versible. This section treats non-reversible chains using Biorthogonal ex-
pansions. Some examples of (Mizukawa, 2010, 2011) are treated.

Let P = (Pij) be a Markov transition matrix on [d] with stationary
distribution {pi}. Suppose that P is diagonalizable with left eigenvectors

{piβ(k)
i }d−1

k=0, right eigenvectors {α
(k)
j }d−1

k=0 and eigenvalues {ρk}d−1
k=0 with ρ0 =

1. Then P has spectral representation

pij = pj
{
1 +

d−1∑

k=1

ρkα
(k)
i β

(k)
j

}
, i, j = 1, . . . , d. (49)

We may also call (49) a Lancaster expansion. Examples are given below
and a host of further examples of non-reversible chains with explicit real left
and right eigen-vectors are in Diaconis, Pang, and Ram (2011). Of course,
without reversibility, the eigen-vectors may take complex values and need
not be othogonal, but they satisfy the biorthogonality relationship

d∑

i=1

piα
(k)
i β

(l)
i = δkl. (50)

Define two sets of multivariate Krawtchouk polynomials

{
Qn(x,α)

}
,
{
Qn(x,β)

}
(51)

using the generating function (4).
Any of the schemes of section 3.1 can now be used to get a Markov

chain on X(d,N) with N particles and a multinomial stationary distribution.
These chains have spectral expansions with respect to Qn(x,α), Qn(x,β).
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For example, if each of the N particles independently makes a transition at
each stage, the transition matrix from x → y is

m(y;p)
{
1 +

∑

{n:1≤|n|≤N}
γnQn(x,α)Qn(x,β)

}
, (52)

where

γn =
d−1∏

j=1

ρ
nj

j .

Example Mizukawa (2010, 2011) considered N balls distributed in d urns
arranged around a circle and moved to another urn in one of three schemes:

(a) a randomly chosen different urn;
(b) the next urn right (mod d); and
(c) one of the two adjacent urns (mod d) with equal probability.

All of these examples have transition matrices for a single ball change
which are circulants (Davis, 1979). Let P be a general d × d circulant
transition matrix with first row {qj}dj=1 and other rows rotated successively

from the first, so the ith row is {qj−i}dj=1 with subscripts taken mod d.
P is doubly stochastic, with a uniform stationary distribution on [d]. An
eigenfunction expansion of P is

pab =
1

d

d−1∑

k=0

ηke
2πik(a−1)/de−2πik(b−1)/d, a, b = 1, . . . , d, (53)

where

ηk =
d−1∑

r=0

qr+1e
2πirk/d. (54)

Here P is reversible if and only if it is symmetric. (eg cases (a), (c)).
Construct the multivariate Krawtchouk polynomials (51) by taking

α(l)
a = e2πil(a−1)/d, β

(l)
b = e−2πil(b−1)/d, l = 0, . . . , d− 1, a, b ∈ [d].

Then the representation (52) holds with

γn =

d−1∑

l=0

ηl
nl

N
. (55)
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In this circulant case, the eigenfunctions Qn are the monomial symmetric
functions as recognized by Mizukawa. To see this, label the balls so that
Zl = k if ball j is in urn k. Then from (24)

Qn(X,u) =
∑

{Al}

∏

k1∈A1

e(2πi/d)(Zk1
−1) · · ·

∏

kd−1∈Ad−1

e
(2πi(d−1)/d)(Zkd−1

−1)

where the summation is over subsets of [n], {Al} with |Al| = nl, 1 ≤
l ≤ d. Let n0 = N − |n|, so {nj}d−1

j=0 is a composition of N . Regard

(Zk − 1)Nk=1 as a partition 0x11x2 · · · (d − 1)xd . Let ξ = e2πi/d and Ξ =(
(1)n0(ξ)n1 · · · (ξd−1)nd−1

)
then

Qn(X,α) = mn(Ξ). (56)

It is plausible that very similar results hold if P is a G-circulant (Diaconis,
1990).

3.3 Further Generalizations

There is a natural generalization of the processes in sections 3.1, 3.2 that
leads to Markov chains with Krawtchouk eigen-functions. Fix a basis {u(l)},
orthonormal with respect to p = (p1, . . . , pd). Let L(β,u) = {(β1, . . . , βd−1)}
such that

Kβ(i, j) = pj
{
1 +

d−1∑

l=1

βlu
(l)
i u

(l)
j

}
= 0. (57)

This L is a non-empty, compact, convex set, the Lancaster set for {u(l),p}
(Koudou, 1996). Observe that β ∈ L implies that Kβ is a reversible Markov
Kernel with p a stationary distribution and {u(l)} as (right) eigen-functions.
Since β are the eigen-values, −1 ≤ βi ≤ 1. L contains 1 in an open neigh-
bourhood of zero and if β = (1, . . . , 1), Kβ is allowable. Finally, L is closed
under coordinate-wise product (Hadamard product) and so forms a com-
mutative semi-group with 1 as identity. Further KβKγ = KγKβ = Kβ◦γ .
Determining an exact description of L is an ongoing research area. See
Bakry and Huet (2008) and Ismail (2005) section 4.7 and the references in
Diaconis, Khare and Saloff-Coste (2008). If the {u(l)} satisfy the hyper-
group property

d∑

l=0

u
(l)
i u

(l)
j u

(l)
k

u
(l)
i0

≥ 0
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for some fixed i0 and all i, j, k ∈ [d], then the extreme points of L are

β =

(
u
(l)
1

u
(l)
i0

, . . . ,
u
(l)
d

u
(l)
i0

)
, 0 ≤ l ≤ d− 1.

See Bakry and Huet (2008) for a proof and section 2.2 for examples.
With L in focus, a general class of Markov chains with multinomial

(N,p) stationary distributions and Krawtchouk polynomial eigen-functions
can be defined.

Let µ be an exchangeable probability on LN . DefineKµ(x,y) on X(N, d)
as the orbit chain on [d]N derived from picking (β1, . . . ,βd) from µ and
moving the jth coordinate with Kβj

(j, j′). The eigen-values of the product
chain are

λi1...iN =

∫
βi1 · · ·βid µ(dβ1 · · · dβN ).

Because of exchangeability, this only depends on i = (i1, i2, . . . , iN ) through
n1(i), . . . , nd(i). This defines

λn1...nd
. (58)

Summarizing:

Proposition 8. Let {u(l)}d−1
l=0 be an orthonormal set on [d] with repect to

p. Let µ be an exchangeable probability on LN . The Markov chain Kµ

on X(N, d) has a m(x,p) stationary distribution, multinomial Krawtchouk
eigen-functions

{
Qn(x,u)

}
|n|≤N

with eigenvalues {λn}|n|≤N .

This construction includes all of the examples in section 3.1. It shows
that the multivariate Krawtchouk polynomials have a kind of universal qual-
ity, diagonalizing the orbit chains of arbitrary products of Markov chains
with {u(l)} as eigen-vectors.

The set of all exchangeable probabilities µ on LN is a convex simplex
whose extreme points are straightforward to describe: put N balls in an
urn labeled with β1,β2, . . . ,βN with βi ∈ L and draw them out sampling
without replacement (Diaconis and Freeman, 1980).

Acknowledgment

Thanks to Yuan Xu for his substantial comments on the paper and to Pratha
Dharmawansa for his carefull reading and list of corrections. Robert Griffiths
was supported by the Department of Statistics, Stanford University in 2011;
the Miller Foundation, Berkeley, in a visit to the Department of Statistics,

27



Berkeley in 2012; the Clay Mathematics Institute in a visit to the University
of Montreal in 2013; and the Institute of Statistical Mathematics, Tokyo, in
2014. He thanks the institutions for their support and hospitality.

References

Aitken, A. C. and Gonin, H. T. (1935) On fourfold sampling with and
without replacement. Proc. Roy. Soc. Edinb. 55 114–125.

Askey, R. (1975) Orthogonal polynomials and special functions. SIAM

Bakry, D. and Huet, N. (2006) The hypergroup property and represen-
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