Jacobsthal Numbers and Alternating Sign Matrices

Darrin D. Frey and James A. Sellers
Department of Science and Mathematics
Cedarville College
Cedarville, OH 45314
Email addresses: freyd@cedarville.edu and sellersj@cedarville.edu

Abstract

Let $A(n)$ denote the number of $n \times n$ alternating sign matrices and J_{m} the $m^{\text {th }}$ Jacobsthal number. It is known that $$
A(n)=\prod_{\ell=0}^{n-1} \frac{(3 \ell+1)!}{(n+\ell)!} .
$$

The values of $A(n)$ are in general highly composite. The goal of this paper is to prove that $A(n)$ is odd if and only if n is a Jacobsthal number, thus showing that $A(n)$ is odd infinitely often.

2000 Mathematics Subject Classification: 05A10, 15A15 Keywords: alternating sign matrices, Jacobsthal numbers

\section*{1 Introduction}

In this paper we relate two seemingly unrelated areas of mathematics: alternating sign matrices and Jacobsthal numbers. We begin with a brief discussion of alternating sign matrices.

An $n \times n$ alternating sign matrix is an $n \times n$ matrix of $1 \mathrm{~s}, 0 \mathrm{~s}$ and -1 s such that - the sum of the entries in each row and column is 1 , and - the signs of the nonzero entries in every row and column alternate.

Alternating sign matrices include permutation matrices, in which each row and column contains only one nonzero entry, a 1.

For example, the seven 3×3 alternating sign matrices are

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), \\
\quad\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & -1 & 1 \\
0 & 1 & 0
\end{array}\right) .
\end{gathered}
$$

The determination of a closed formula for $A(n)$ was undertaken by a variety of mathematicians over the last 25 years or so. David Bressoud's text [1] chronicles these endeavors and discusses the underlying mathematics in a very readable way. See also the survey article [2] by Bressoud and Propp.

As noted in [1], a formula for $A(n)$ is given by

$$
\begin{equation*}
A(n)=\prod_{\ell=0}^{n-1} \frac{(3 \ell+1)!}{(n+\ell)!} \tag{1}
\end{equation*}
$$

It is clear from this that, for most values of $n, A(n)$ will be highly composite. The following table shows the first few values of $A(n)$ (sequence $\underline{\text { A005130 in [8]). Other sequences related to alternating sign matrices }}$ can also be found in [8].

n	$A(n)$	Prime Factorization of $A(n)$
1	1	1
2	2	2
3	7	7
4	42	$2 \cdot 3 \cdot 7$
5	429	$3 \cdot 11 \cdot 13$
6	7436	218348

Table 1: Values of $A(n)$

Examination of this table and further computer calculations reveals that the first few values of n for which $A(n)$ is odd are

$$
1,3,5,11,21,43,85,171
$$

These appear to be the well-known Jacobsthal numbers $\left\{J_{n}\right\}$ (sequence A001045 in [8]). They are defined by the recurrence

$$
\begin{equation*}
J_{n+2}=J_{n+1}+2 J_{n} \tag{2}
\end{equation*}
$$

with initial values $J_{0}=1$ and $J_{1}=1$.
This sequence has a rich history, especially in view of its relationship to the Fibonacci numbers. For examples of recent work involving the Jacobsthal numbers, see [3], [4], [5] and [6].

The goal of this paper is to prove that this is no coincidence: for a positive integer $n, A(n)$ is odd if and only if n is a Jacobsthal number.

2 The Necessary Machinery

To show that $A\left(J_{m}\right)$ is odd for each positive integer m, we will show that the number of factors of 2 in the prime decomposition of $A\left(J_{m}\right)$ is zero. To accomplish this, we develop formulas for the number of factors of 2 in

$$
N(n)=\prod_{\ell=0}^{n-1}(3 \ell+1)!\quad \text { and } \quad D(n)=\prod_{\ell=0}^{n-1}(n+\ell)!
$$

Once we prove that the number of factors of 2 is the same for $N\left(J_{m}\right)$ and $D\left(J_{m}\right)$, but not the same for $N(n)$ and $D(n)$ if n is not a Jacobsthal number, we will have our result.

We will make frequent use of the following lemma. For a proof, see for example [7, Theorem 2.29].
Lemma 2.1. The number of factors of a prime p in N ! is equal to

$$
\sum_{k \geq 1}\left\lfloor\frac{N}{p^{k}}\right\rfloor
$$

It follows that the number of factors of 2 in $N(n)$ is

$$
N^{\#}(n)=\sum_{\ell=0}^{n-1} \sum_{k \geq 1}\left\lfloor\frac{3 \ell+1}{2^{k}}\right\rfloor=\sum_{k \geq 1} N_{k}^{\#}(n)
$$

where

$$
\begin{equation*}
N_{k}^{\#}(n)=\sum_{\ell=0}^{n-1}\left\lfloor\frac{3 \ell+1}{2^{k}}\right\rfloor . \tag{3}
\end{equation*}
$$

Similarly, the number of factors of 2 in $D(n)$ is given by

$$
D^{\#}(n)=\sum_{\ell=0}^{n-1} \sum_{k \geq 1}\left\lfloor\frac{n+\ell}{2^{k}}\right\rfloor=\sum_{k \geq 1} D_{k}^{\#}(n)
$$

where

$$
\begin{equation*}
D_{k}^{\#}(n)=\sum_{\ell=0}^{n-1}\left\lfloor\frac{n+\ell}{2^{k}}\right\rfloor \tag{4}
\end{equation*}
$$

For use below we note that the recurrence for the Jacobsthal numbers implies the following explicit formula (cf. [9]).

Theorem 2.2. The $m^{\text {th }}$ Jacobsthal number J_{m} is given by

$$
\begin{equation*}
J_{m}=\frac{2^{m+1}+(-1)^{m}}{3} \tag{5}
\end{equation*}
$$

3 Formulas for $N_{k}^{\#}(n)$ and $D_{k}^{\#}(n)$

Lemma 3.1. The smallest value of ℓ for which

$$
\left\lfloor\frac{3 \ell+1}{2^{k}}\right\rfloor=m
$$

where m and k are positive integers and $k \geq 2$, is

$$
\begin{cases}\frac{m}{3} 2^{k} & \text { if } m \equiv 0 \quad(\bmod 3) \\ \frac{m-1}{3} 2^{k}+J_{k-1} & \text { if } m \equiv 1 \quad(\bmod 3) \\ \frac{m-2}{3} 2^{k}+J_{k} & \text { if } m \equiv 2 \quad(\bmod 3)\end{cases}
$$

Proof. Suppose $m \equiv 0 \quad(\bmod 3)$ and $\ell=\frac{m}{3} 2^{k}$. Then

$$
\left\lfloor\frac{3 \ell+1}{2^{k}}\right\rfloor=\left\lfloor\frac{3\left(\frac{m}{3} 2^{k}\right)+1}{2^{k}}\right\rfloor=\left\lfloor\frac{m 2^{k}}{2^{k}}+\frac{1}{2^{k}}\right\rfloor=m
$$

and no smaller value of ℓ yields m since the numerators differ by multiples of three.
If $m \equiv 1 \quad(\bmod 3)$ and $\ell=\frac{m-1}{3} 2^{k}+J_{k-1}$, then

$$
\begin{aligned}
\left\lfloor\frac{3 \ell+1}{2^{k}}\right\rfloor & =\left\lfloor\frac{3\left(\frac{m-1}{3} 2^{k}+J_{k-1}\right)+1}{2^{k}}\right\rfloor \\
& =\left\lfloor\frac{(m-1) 2^{k}+3\left(\frac{2^{k}+(-1)^{k-1}}{3}\right)+1}{2^{k}}\right\rfloor \\
& =\left\lfloor\frac{(m-1) 2^{k}+2^{k}+(-1)^{k-1}+1}{2^{k}}\right\rfloor \\
& =m, \text { if } k \geq 2,
\end{aligned}
$$

and no smaller value of ℓ yields m.
If $m \equiv 2 \quad(\bmod 3)$ and $\ell=\frac{m-2}{3} 2^{k}+J_{k}$, then

$$
\begin{aligned}
\left\lfloor\frac{3 \ell+1}{2^{k}}\right\rfloor & =\left\lfloor\frac{3\left(\frac{m-2}{3} 2^{k}+J_{k}\right)+1}{2^{k}}\right\rfloor \\
& =\left\lfloor\frac{(m-2) 2^{k}+3\left(\frac{2^{k+1}+(-1)^{k}}{3}\right)+1}{2^{k}}\right\rfloor \\
& =\left\lfloor\frac{(m-2) 2^{k}+2^{k+1}+(-1)^{k}+1}{2^{k}}\right\rfloor
\end{aligned}
$$

and no smaller value of ℓ yields m.

Lemma 3.2. For any positive integer $k, J_{k-1}+J_{k}=2^{k}$.
Proof. Immediate from (5).

Lemma 3.3. For any positive integer k,

$$
\sum_{v=0}^{2^{k}-1}\left\lfloor\frac{3 v+1}{2^{k}}\right\rfloor=2^{k}
$$

Proof. The result is immediate if $k=1$. If $k \geq 2$, then by Lemma 3.1, J_{k-1} is the smallest value of v for which $\left\lfloor\frac{3 v+1}{2^{k}}\right\rfloor=1$ and J_{k} is the smallest value of v for which $\left\lfloor\frac{3 v+1}{2^{k}}\right\rfloor=2$. Thus

$$
\begin{aligned}
\left.\sum_{v=0}^{2^{k}-1} \left\lvert\, \frac{3 v+1}{2^{k}}\right.\right\rfloor & =0 \times J_{k-1}+1 \times\left[\left(J_{k}-1\right)-\left(J_{k-1}-1\right)\right]+2 \times\left[\left(2^{k}-1\right)-\left(J_{k}-1\right)\right] \\
& =J_{k}-J_{k-1}+2\left(2^{k}-J_{k}\right) \\
& =2^{k+1}-2^{k} \text { by Lemma } 3.2 \\
& =2^{k}
\end{aligned}
$$

Theorem 3.4. Let $n=2^{k} q+r$, where q is a nonnegative integer and $0 \leq r<2^{k}$. Then

$$
\begin{equation*}
N_{k}^{\#}(n)=\left(\frac{n-r}{2^{k+1}}\right)\left(3(n-r)-2^{k}\right)+\operatorname{tail}(n) \tag{6}
\end{equation*}
$$

where

$$
\operatorname{tail}(n)=\left\{\begin{array}{lll}
3 q r & \text { if } \quad 0 \leq r \leq J_{k-1} \tag{7}\\
3 q r+\left(r-J_{k-1}\right) & \text { if } J_{k-1}<r \leq J_{k} \\
(3 q+2) r-2^{k} & \text { if } \quad J_{k}<r<2^{k}
\end{array}\right.
$$

Proof. To analyze the sum

$$
N_{k}^{\#}(n)=\sum_{\ell=0}^{n-1}\left\lfloor\frac{3 \ell+1}{2^{k}}\right\rfloor
$$

we let $\ell=2^{k} u+v$, where $0 \leq v<2^{k}$. Then

$$
\left\lfloor\frac{3 \ell+1}{2^{k}}\right\rfloor=\left\lfloor\frac{3\left(2^{k} u+v\right)+1}{2^{k}}\right\rfloor=\left\lfloor\frac{2^{k}(3 u)}{2^{k}}+\frac{3 v+1}{2^{k}}\right\rfloor=3 u+\left\lfloor\frac{3 v+1}{2^{k}}\right\rfloor .
$$

Thus

$$
\begin{aligned}
\sum_{\ell=0}^{2^{k} q-1}\left\lfloor\frac{3 \ell+1}{2^{k}}\right\rfloor & =\sum_{u=0}^{q-1} \sum_{v=0}^{2^{k}-1}\left(3 u+\left\lfloor\frac{3 v+1}{2^{k}}\right\rfloor\right) \\
& =\sum_{u=0}^{q-1}\left((3 u) 2^{k}+\sum_{v=0}^{2^{k}-1}\left\lfloor\frac{3 v+1}{2^{k}}\right\rfloor\right) \\
& =\sum_{u=0}^{q-1}\left((3 u) 2^{k}+2^{k}\right) \quad \text { by Lemma } 3.3 \\
& =2^{k} \sum_{u=0}^{q-1}(3 u+1) \\
& =2^{k}\left(3\left(\frac{(q-1) q}{2}\right)+q\right)
\end{aligned}
$$

$$
\begin{aligned}
& =2^{k} q\left(3\left(\frac{n-r-2^{k}}{2^{k+1}}\right)+1\right) \\
& =\left(\frac{q}{2}\right)\left(3\left(n-r-2^{k}\right)+2^{k+1}\right) \\
& =\left(\frac{n-r}{2^{k+1}}\right)\left(3(n-r)-2^{k}\right)
\end{aligned}
$$

If $r=0$, we have our result. If $r>0$ and $k=1$, then $r=1$ and we have one extra term in our sum, namely,

$$
\left\lfloor\frac{3(2 q)+1}{2}\right\rfloor=3 q
$$

and again we have our result since $r=1$. If $r>0$ and $k \geq 2$, then by Lemma 3.1, $2^{k} q$ is the smallest value of ℓ for which $\left\lfloor\frac{3 \ell+1}{2^{k}}\right\rfloor=3 q, 2^{k} q+J_{k-1}$ is the smallest value of ℓ for which

$$
\left\lfloor\frac{3 \ell+1}{2^{k}}\right\rfloor=3 q+1
$$

and $2^{k} q+J_{k}$ is the smallest value of ℓ for which

$$
\left\lfloor\frac{3 \ell+1}{2^{k}}\right\rfloor=3 q+2 .
$$

Hence

$$
\sum_{\ell=2^{k} q}^{2^{k} q+r-1}\left\lfloor\frac{3 \ell+1}{2^{k}}\right\rfloor= \begin{cases}3 q r & \text { if } r \leq J_{k-1} \\ 3 q J_{k-1}+(3 q+1)\left(r-J_{k-1}\right) & \text { if } J_{k-1}<r \leq J_{k} \\ 3 q J_{k-1}+(3 q+1)\left(J_{k}-J_{k-1}\right)+(3 q+2)\left(r-J_{k}\right) & \text { if } J_{k}<r<2^{k}\end{cases}
$$

So, if $n=2^{k} q+r$ where $0 \leq r<2^{k}$,

$$
\begin{aligned}
N_{k}^{\#}(n) & =\sum_{\ell=0}^{n-1}\left\lfloor\frac{3 \ell+1}{2^{k}}\right\rfloor \\
& =\sum_{\ell=0}^{2^{k} q-1}\left\lfloor\frac{3 \ell+1}{2^{k}}\right\rfloor+\sum_{\ell=2^{k} q}^{2^{k} q+r-1}\left\lfloor\frac{3 \ell+1}{2^{k}}\right\rfloor \\
& =\left(\frac{n-r}{2^{k+1}}\right)\left(3(n-r)-2^{k}\right)+\operatorname{tail}(n)
\end{aligned}
$$

where

$$
\operatorname{tail}(n)= \begin{cases}3 q r & \text { if } r \leq J_{k-1} \\ 3 q J_{k-1}+(3 q+1)\left(r-J_{k-1}\right) & \text { if } J_{k-1}<r \leq J_{k} \\ 3 q J_{k-1}+(3 q+1)\left(J_{k}-J_{k-1}\right)+(3 q+2)\left(r-J_{k}\right) & \text { if } J_{k}<r<2^{k}\end{cases}
$$

The second expression in $\operatorname{tail}(n)$ is clearly equal to $3 q r+r-J_{k-1}$. For the third expression, we have

$$
\begin{aligned}
3 q J_{k-1}+(3 q+1)\left(J_{k}-J_{k-1}\right)+(3 q+2)\left(r-J_{k}\right) & =3 q r+J_{k}-J_{k-1}+2 r-2 J_{k} \\
& =(3 q+2) r-2^{k} \quad \text { by Lemma 3.2 }
\end{aligned}
$$

Theorem 3.5. Let $n=2^{k} q+r$ where q is a nonnegative integer and $0 \leq r<2^{k}$. Then we have

$$
D_{k}^{\#}(n)= \begin{cases}\left(\frac{n-r}{2^{k+1}}\right)\left(3(n+r)-2^{k}\right) & \text { if } \quad 0 \leq r \leq 2^{k-1} \tag{8}\\ \left(\frac{n-\left(2^{k}-r\right)}{2^{k+1}}\right)\left(3(n-r)+2^{k+1}\right) & \text { if } \quad 2^{k-1}<r<2^{k}\end{cases}
$$

Proof. We may write

$$
D_{k}^{\#}(n)=\sum_{\ell=0}^{2 n-1}\left\lfloor\frac{\ell}{2^{k}}\right\rfloor-\sum_{\ell=0}^{n-1}\left\lfloor\frac{\ell}{2^{k}}\right\rfloor
$$

In both sums,

$$
\left\lfloor\frac{\ell}{2^{k}}\right\rfloor=s
$$

if $2^{k} s \leq \ell<2^{k}(s+1)$, so if $n=2^{k} q+r$, where $0<r \leq 2^{k}$, we have

$$
\begin{aligned}
\sum_{\ell=0}^{n-1}\left\lfloor\frac{\ell}{2^{k}}\right\rfloor & =2^{k}[1+2+\cdots+q-1]+q r \\
& =q\left(\frac{n+r-2^{k}}{2}\right)
\end{aligned}
$$

If $0<r \leq 2^{k-1}$, then $2 n-1=2^{k}(2 q)+(2 r-1)$, which means

$$
\begin{aligned}
\sum_{\ell=0}^{2 n-1}\left\lfloor\frac{\ell}{2^{k}}\right\rfloor & =2^{k}[1+2+\cdots+(2 q-1)]+(2 r-1+1)(2 q) \\
& =q\left(2 n+2 r-2^{k}\right)
\end{aligned}
$$

Hence in this case

$$
\begin{aligned}
D_{k}^{\#}(n) & =\sum_{\ell=0}^{n-1}\left\lfloor\frac{n+\ell}{2^{k}}\right\rfloor \\
& =\sum_{\ell=0}^{2 n-1}\left\lfloor\frac{\ell}{2^{k}}\right\rfloor-\sum_{\ell=0}^{n-1}\left\lfloor\frac{\ell}{2^{k}}\right\rfloor \\
& =q\left(2 n+2 r-2^{k}\right)-q\left(\frac{n+r-2^{k}}{2}\right) \\
& =\left(\frac{n-r}{2^{k+1}}\right)\left(3(n+r)-2^{k}\right)
\end{aligned}
$$

If $2^{k-1}<r \leq 2^{k}$, say, $r=2^{k-1}+s$ where $0<s \leq 2^{k-1}$, then

$$
\begin{aligned}
2 n-1 & =2\left(2^{k} q+r\right)-1 \\
& =2^{k}(2 q)+2\left(2^{k-1}+s\right)-1 \\
& =2^{k}(2 q+1)+2 s-1
\end{aligned}
$$

Thus

$$
\begin{aligned}
\sum_{\ell=0}^{2 n-1}\left\lfloor\frac{\ell}{2^{k}}\right\rfloor & =2^{k}[1+2+\cdots+2 q]+(2 s-1+1)(2 q+1) \\
& =(2 q+1)\left(n+r-2^{k}\right)
\end{aligned}
$$

So in this case

$$
\begin{aligned}
D_{k}^{\#}(n) & =\sum_{\ell=0}^{n-1}\left\lfloor\frac{n+\ell}{2^{k}}\right\rfloor \\
& =\sum_{\ell=0}^{2 n-1}\left\lfloor\frac{\ell}{2^{k}}\right\rfloor-\sum_{\ell=0}^{n-1}\left\lfloor\frac{\ell}{2^{k}}\right\rfloor \\
& =(2 q+1)\left(n+r-2^{k}\right)-q\left(\frac{n+r-2^{k}}{2}\right) \\
& =\left(\frac{n+r-2^{k}}{2^{k+1}}\right)\left(3(n-r)+2^{k+1}\right)
\end{aligned}
$$

The reader will note that in the statement of the theorem we have separated the cases according as $0 \leq r \leq 2^{k-1}$ and $2^{k-1}<r<2^{k}$, whereas in the proof the cases are $0<r \leq 2^{k-1}$ and $2^{k-1}<r \leq 2^{k}$. However, these are equivalent since $\frac{n-0}{2^{k+1}}\left(3(n+0)-2^{k}\right)=\frac{n-\left(2^{k}-2^{k}\right)}{2^{k+1}}\left(3\left(n-2^{k}\right)+2^{k+1}\right)$.

$4 \quad A\left(J_{m}\right)$ is odd

Now that we have closed formulas for $N_{k}^{\#}(n)$ and $D_{k}^{\#}(n)$ we can proceed to prove that $A\left(J_{m}\right)$ is odd for all Jacobsthal numbers J_{m}.

Theorem 4.1. For all positive integers $m, A\left(J_{m}\right)$ is odd.
Proof. The proof simply involves substituting J_{m} into (6) and (8) and showing that $N_{k}^{\#}\left(J_{m}\right)=D_{k}^{\#}\left(J_{m}\right)$ for all k. This implies that $N^{\#}\left(J_{m}\right)=D^{\#}\left(J_{m}\right)$, and so the number of factors of 2 in $A\left(J_{m}\right)$ is zero. Our theorem is then proved.

We break the proof into two cases, based on whether the parity of k is equal to the parity of m.

- Case 1: The parity of m equals the parity of k. Then

$$
\begin{aligned}
2^{k}\left(J_{m-k}-1\right)+J_{k} & =2^{k}\left(\frac{2^{m-k+1}+(-1)^{m-k}}{3}-1\right)+\frac{2^{k+1}+(-1)^{k}}{3} \\
& =\frac{2^{m+1}+2^{k}-3 \cdot 2^{k}+2^{k+1}+(-1)^{k}}{3} \text { since }(-1)^{m-k}=1 \\
& =\frac{2^{m+1}+(-1)^{m}}{3} \text { since }(-1)^{k}=(-1)^{m} \\
& =J_{m}
\end{aligned}
$$

Thus, in the notation of Theorems 3.4 and $3.5, q=J_{m-k}-1$ and $r=J_{k}$. We now calculate $N_{k}^{\#}\left(J_{m}\right)$ and $D_{k}^{\#}\left(J_{m}\right)$ using Theorems 3.4 and 3.5.

$$
\begin{aligned}
N_{k}^{\#}\left(J_{m}\right)= & \left(\frac{J_{m}-J_{k}}{2^{k+1}}\right)\left(3\left(J_{m}-J_{k}\right)-2^{k}\right) \\
& \quad+3\left(J_{m-k}-1\right) J_{k}+\left(J_{k}-J_{k-1}\right) \\
= & \frac{1}{2^{k+1}}\left(\frac{2^{m+1}+(-1)^{m}}{3}-\frac{2^{k+1}+(-1)^{k}}{3}\right)\left(3\left(\frac{2^{m+1}+(-1)^{m}}{3}-\frac{2^{k+1}+(-1)^{k}}{3}\right)-2^{k}\right) \\
& \quad+\left(3 J_{m-k}-1\right) J_{k}-2^{k} \text { by Lemma } 3.2 \\
= & \frac{1}{3 \cdot 2^{k+1}}\left(2^{m+1}-2^{k+1}\right)\left(2^{m+1}-2^{k+1}-2^{k}\right) \\
& \quad+\left(3\left(\frac{2^{m-k+1}+(-1)^{m-k}}{3}\right)-1\right)\left(\frac{2^{k+1}+(-1)^{k}}{3}\right)-2^{k} \text { since }(-1)^{m}=(-1)^{k} \\
= & \frac{1}{3}\left(2^{2 m-k+1}-2^{m+2}+2^{k+1}-2^{m}+2^{k}\right) \\
& \quad+\frac{1}{3}\left(2^{m-k+1}\left(2^{k+1}+(-1)^{k}\right)-3 \cdot 2^{k}\right) \text { since }(-1)^{m-k}=1 \\
= & \frac{1}{3}\left(2^{2 m-k+1}-2^{m}+(-1)^{k} 2^{m-k+1}\right)
\end{aligned}
$$

after much simplification. Next, we calculate $D_{k}^{\#}\left(J_{m}\right)$, recalling that $2^{k-1}<r=J_{k}<2^{k}$.

$$
\begin{aligned}
D_{k}^{\#}\left(J_{m}\right) & =\frac{\left(J_{m}-2^{k}+J_{k}\right)}{2^{k+1}}\left(3\left(J_{m}-J_{k}\right)+2^{k+1}\right) \\
& =\frac{1}{2^{k+1}}\left(\frac{2^{m+1}+(-1)^{m}}{3}+\frac{2^{k+1}+(-1)^{k}}{3}-2^{k}\right)\left(3\left(\frac{2^{m+1}+(-1)^{m}}{3}-\frac{2^{k+1}+(-1)^{k}}{3}\right)+2^{k+1}\right) \\
& =\frac{1}{3 \cdot 2^{k+1}}\left(2^{m+1}+2^{k+1}+2(-1)^{k}-3 \cdot 2^{k}\right)\left(2^{m+1}-2^{k+1}+2^{k+1}\right) \text { since }(-1)^{m}=(-1)^{k} \\
& =\frac{1}{3}\left(2^{2 m-k+1}+2^{m+1}+2^{m-k+1}(-1)^{k}-3 \cdot 2^{m}\right) \\
& =\frac{1}{3}\left(2^{2 m-k+1}-2^{m}+(-1)^{k} 2^{m-k+1}\right)
\end{aligned}
$$

after simplification. We see that $N_{k}^{\#}\left(J_{m}\right)=D_{k}^{\#}\left(J_{m}\right)$.

- Case 2: The parity of m is not equal to the parity of k. Then

$$
\begin{aligned}
2^{k}\left(J_{m-k}\right)+J_{k-1} & =2^{k}\left(\frac{2^{m-k+1}+(-1)^{m-k}}{3}\right)+\frac{2^{k}+(-1)^{k-1}}{3} \\
& =\frac{2^{m+1}-2^{k}+2^{k}+(-1)^{k-1}}{3} \\
& =J_{m} .
\end{aligned}
$$

Thus, in the notation of Theorems 3.4 and $3.5, q=J_{m-k}$ and $r=J_{k-1}$. We now calculate $N_{k}^{\#}\left(J_{m}\right)$ and $D_{k}^{\#}\left(J_{m}\right)$ using Theorems 3.4 and 3.5.

$$
\begin{gathered}
N_{k}^{\#}\left(J_{m}\right)=\left(\frac{J_{m}-J_{k-1}}{2^{k+1}}\right)\left(3\left(J_{m}-J_{k-1}\right)-2^{k}\right) \\
+3 J_{m-k} J_{k-1}
\end{gathered}
$$

$$
\begin{aligned}
= & \frac{1}{2^{k+1}}\left(\frac{2^{m+1}+(-1)^{m}}{3}-\frac{2^{k}+(-1)^{k-1}}{3}\right)\left(3\left(\frac{2^{m+1}+(-1)^{m}}{3}-\frac{2^{k}+(-1)^{k-1}}{3}\right)-2^{k}\right) \\
& \quad+3\left(\frac{2^{m-k+1}+(-1)^{m-k}}{3}\right)\left(\frac{2^{k}+(-1)^{k-1}}{3}\right) \\
= & \frac{1}{3 \cdot 2^{k+1}}\left(2^{m+1}-2^{k}\right)\left(2^{m+1}-2 \cdot 2^{k}\right) \\
& \quad+\frac{1}{3}\left(\left(2^{m-k+1}-1\right)\left(2^{k}+(-1)^{k-1}\right)\right) \text { since }(-1)^{m}=(-1)^{k-1} \text { and }(-1)^{m-k}=-1 \\
= & \frac{1}{3}\left(2^{2 m-k+1}-2^{m+1}-2^{m}+2^{k}+2^{m+1}-2^{k}+2^{m-k+1}(-1)^{k-1}+(-1)^{k}\right) \\
= & \frac{1}{3}\left(2^{2 m-k+1}-2^{m}+2^{m-k+1}(-1)^{k-1}+(-1)^{k}\right)
\end{aligned}
$$

after much simplification. Again we find that $N_{k}^{\#}\left(J_{m}\right)=D_{k}^{\#}\left(J_{m}\right)$.
Now we calculate $D_{k}^{\#}\left(J_{m}\right)$, recalling that $0<r<2^{k-1}$.

$$
\begin{aligned}
D_{k}^{\#}\left(J_{m}\right) & =\frac{\left(J_{m}-J_{k-1}\right)}{2^{k+1}}\left(3\left(J_{m}+J_{k-1}\right)-2^{k}\right) \\
& =\frac{1}{2^{k+1}}\left(\frac{2^{m+1}+(-1)^{m}}{3}-\frac{2^{k}+(-1)^{k-1}}{3}\right)\left(3\left(\frac{2^{m+1}+(-1)^{m}}{3}+\frac{2^{k}+(-1)^{k-1}}{3}\right)-2^{k}\right) \\
& =\frac{1}{3 \cdot 2^{k+1}}\left(2^{m+1}-2^{k}\right)\left(2^{m+1}+2(-1)^{k-1}\right) \text { since }(-1)^{m}=(-1)^{k-1} \\
& =\frac{1}{3}\left(2^{2 m-k+1}-2^{m}+2^{m-k+1}(-1)^{k-1}+(-1)^{k}\right)
\end{aligned}
$$

after simplification. Again we find that $N_{k}^{\#}\left(J_{m}\right)=D_{k}^{\#}\left(J_{m}\right)$.
This completes the proof that $A\left(J_{m}\right)$ is odd for all Jacobsthal numbers J_{m}.

5 The Converse

We now prove the converse to Theorem 4.1. That is, we will prove that $A(n)$ is even if n is not a Jacobsthal number. As a guide in how to proceed, we include a table of values for $N_{k}^{\#}(n)$ and $D_{k}^{\#}(n)$ for small values of n and k. This table suggests that $N_{k}^{\#}(n) \geq D_{k}^{\#}(n)$ for all positive integers n and k. It also suggests that for each value of n, there is at least one value of k for which $N_{k}^{\#}(n)$ is strictly greater than $D_{k}^{\#}(n)$ except when n is a Jacobsthal number. (The rows that begin with a Jacobsthal number are indicated in bold-face.)

n	$N_{1}^{\#}(n)$	$D_{1}^{\#}(n)$	$N_{2}^{\#}(n)$	$D_{2}^{\#}(n)$	$N_{3}^{\#}(n)$	$D_{3}^{\#}(n)$	$N_{4}^{\#}(n)$	$D_{4}^{\#}(n)$	$N_{5}^{\#}(n)$	$D_{5}^{\#}(n)$	$N_{6}^{\#}(n)$	$D_{6}^{\#}(n)$
1	0	0	- 0	0	- 0	- 0	0	0	0	0	0	- 0
2	2	2	1	0	0	0	0	0	0	0	0	0
3	5	5	2	2	0	0	0	0	0	0	0	0
4	10	10	4	4	1	0	0	0	0	0	0	0
5	16	16	7	7	2	2	0	0	0	0	0	0
6	24	24	11	10	4	4	1	0	0	0	0	0
7	33	33	15	15	6	6	2	0	0	0	0	0
8	44	44	20	20	8	8	3	0	0	0	0	0
9	56	56	26	26	11	11	4	2	0	0	0	0
10	70	70	33	32	14	14	5	4	0	0	0	0
11	85	85	40	40	17	17	6	6	0	0	0	0
12	102	102	48	48	21	20	8	8	1	0	0	0
13	120	120	57	57	25	25	10	10	2	0	0	0
14	140	140	67	66	30	30	12	12	3	0	0	0
15	161	161	77	77	35	35	14	14	4	0	0	0
16	184	184	88	88	40	40	16	16	5	0	0	0
17	208	208	100	100	46	46	19	19	6	2	0	0
18	234	234	113	112	52	52	22	22	7	4	0	0
19	261	261	126	126	58	58	25	25	8	6	0	0
20	290	290	140	140	65	64	28	28	9	8	0	0
21	320	320	155	155	72	72	31	31	10	10	0	0
22	352	352	171	170	80	80	35	34	12	12	1	0
23	385	385	187	187	88	88	39	37	14	14	2	0
24	420	420	204	204	96	96	43	40	16	16	3	0
25	456	456	222	222	105	105	47	45	18	18	4	0

(We note in passing that the values of $N_{1}^{\#}(n)$ form sequence A001859 in [8].)
In order to prove the first assertion (that $\left.N_{k}^{\#}(n) \geq D_{k}^{\#}(n)\right)$, we separate the functions defined by the cases in equations (6) and (8) into individual functions denoted by $N_{k}^{\#(1)}(n), N_{k}^{\#(2)}(n), \ldots, D_{k}^{\#(2)}(n)$. That is,

$$
\begin{aligned}
N_{k}^{\#(1)}(n) & :=\left(\frac{n-r}{2^{k+1}}\right)\left(3(n-r)-2^{k}\right)+3 q r \\
N_{k}^{\#(2)}(n) & :=\left(\frac{n-r}{2^{k+1}}\right)\left(3(n-r)-2^{k}\right)+3 q r+\left(r-J_{k-1}\right) \\
N_{k}^{\#(3)}(n) & :=\left(\frac{n-r}{2^{k+1}}\right)\left(3(n-r)-2^{k}\right)+(3 q+2) r-2^{k} \\
D_{k}^{\#(1)}(n) & :=\left(\frac{n-r}{2^{k+1}}\right)\left(3(n+r)-2^{k}\right) \\
D_{k}^{\#(2)}(n) & :=\left(\frac{n-\left(2^{k}-r\right)}{2^{k+1}}\right)\left(3(n-r)+2^{k+1}\right)
\end{aligned}
$$

For a given value of $n, N_{k}^{\#}(n)$ will equal $N_{k}^{\#(i)}(n)$ for some $i \in\{1,2,3\}$ and $D_{k}^{\#}(n)$ will be $D_{k}^{\#(j)}(n)$ for some $j \in\{1,2\}$ depending on the value of r. Note that not all combinations of i and j are possible (for example, there is no value of n such that $i=1$ and $j=2$). In Lemmas 5.1 through 5.4 we show that $N_{k}^{\#(i)}(n) \geq D_{k}^{\#(j)}(n)$ for all possible combinations of i and j (that correspond to some integer n) which implies that $N_{k}^{\#}(n) \geq D_{k}^{\#}(n)$ for all positive integers n.

Lemma 5.1. For all integers n and $k, N_{k}^{\#(1)}(n)=D_{k}^{\#(1)}(n)$.
Proof. We first note that, in the notation of Theorem 3.4, $\frac{n-r}{2^{k+1}}=\frac{2^{k} q}{2^{k+1}}=\frac{q}{2}$. Then

$$
N_{k}^{\#(1)}(n)=\left(\frac{n-r}{2^{k+1}}\right)\left(3(n-r)-2^{k}\right)+3 q r
$$

$$
\begin{aligned}
& =\left(\frac{n-r}{2^{k+1}}\right)\left(3(n-r)-2^{k}+3 q r\left(\frac{2}{q}\right)\right) \text { since } \frac{n-r}{2^{k+1}}=\frac{q}{2} \\
& =\left(\frac{n-r}{2^{k+1}}\right)\left(3 n+3 r-2^{k}\right) \\
& =D_{k}^{\#(1)}(n)
\end{aligned}
$$

Lemma 5.2. For all integers k and all integers n such that $r>J_{k-1}$ (in the notation of Theorem 3.4),

$$
N_{k}^{\#(2)}(n)>D_{k}^{\#(1)}(n)
$$

Proof.

$$
\begin{aligned}
N_{k}^{\#(2)}(n) & =\left(\frac{n-r}{2^{k+1}}\right)\left(3(n-r)-2^{k}\right)+3 q r+\left(r-J_{k-1}\right) \\
& >\left(\frac{n-r}{2^{k+1}}\right)\left(3(n-r)-2^{k}\right)+3 q r \text { since } r>J_{k-1} \\
& =N_{k}^{\#(1)}(n) \\
& =D_{k}^{\#(1)}(n) \quad \text { by Lemma } 5.1 .
\end{aligned}
$$

This proves our result.

Lemma 5.3. For all integers k and all integers n such that $r \leq J_{k}$ (in the notation of Theorem 3.4),

$$
N_{k}^{\#(2)}(n) \geq D_{k}^{\#(2)}(n)
$$

Proof. We see that $r \leq J_{k}=2^{k}-J_{k-1}$ by Lemma 3.2. Thus, $2^{k} q+r \leq 2^{k}(q+1)-J_{k-1}$. This implies $n \leq 2^{k}(q+1)-J_{k-1}$, so $2 n-2^{k}(q+1) \leq n-J_{k-1}$. Hence,

$$
\begin{aligned}
N_{k}^{\#(2)}(n) & =\left(\frac{n-r}{2^{k+1}}\right)\left(3(n-r)-2^{k}\right)+3 q r+\left(r-J_{k-1}\right) \\
& =\frac{q}{2}\left(3\left(2^{k} q\right)-2^{k}\right)+3 q\left(n-2^{k} q\right)+n-2^{k} q-J_{k-1} \\
& =q^{2}\left(-3\left(2^{k-1}\right)\right)+q\left(-3\left(2^{k-1}\right)+3 n\right)+n-J_{k-1} \\
& \geq q^{2}\left(-3\left(2^{k-1}\right)\right)+q\left(-3\left(2^{k-1}\right)+3 n\right)+2 n-2^{k}(q+1) \text { by the above argument } \\
& =\frac{2 n-2^{k}-2^{k} q}{2^{k+1}}\left(3\left(2^{k} q\right)+2^{k+1}\right) \\
& =D_{k}^{\#(2)}(n) .
\end{aligned}
$$

Lemma 5.4. For all positive integers n and $k, N_{k}^{\#(3)}(n)=D_{k}^{\#(2)}(n)$.

Proof.

$$
\begin{aligned}
N_{k}^{\#(3)}(n) & =\left(\frac{n-r}{2^{k+1}}\right)\left(3(n-r)-2^{k}\right)+(3 q+2) r-2^{k} \\
& =\left(\frac{q}{2}\right)\left(3\left(2^{k} q\right)-2^{k}\right)+3 q\left(n-2^{k} q\right)+2\left(n-2^{k} q\right)-2^{k} \\
& =\frac{n-2^{k}+n-2^{k} q}{2^{k}+1}\left(3\left(2^{k} q\right)+2^{k+1}\right) \\
& =D_{k}^{\#(2)}(n) .
\end{aligned}
$$

Remark 5.5. To summarize, Lemmas 5.1 through 5.4 tell us that for any positive integer n,

$$
N_{k}^{\#}(n) \geq D_{k}^{\#}(n)
$$

For Propositions 5.6 through 5.9 we make the assumption that $J_{\ell}<n<J_{\ell+1}$ for some positive integer ℓ.
Proposition 5.6. For ℓ and n, as given above, $N_{\ell+1}^{\#}(n)=n-J_{\ell}$.
Proof. By Lemma 3.1,

$$
\begin{aligned}
\sum_{i=0}^{n-1}\left\lfloor\frac{3 i+1}{2^{\ell+1}}\right\rfloor & =0 \times\left(J_{\ell}\right)+1 \times\left((n-1)-\left(J_{\ell}-1\right)\right) \\
& =n-J_{\ell}
\end{aligned}
$$

Proposition 5.7. $D_{k}^{\#}(n)=0$ if $n<2^{k-1}$. In particular, $D_{\ell+1}^{\#}(n)=0$ if $n<2^{\ell}$.
Proof. If $n<2^{k}$ then, in the notation of Theorem $3.5, n=r$ and $q=0$, so by Theorem $3.5, D_{k}^{\#}(n)=0$.

Proposition 5.8. $D_{\ell+1}^{\#}(n)=2\left(n-2^{\ell}\right)$ if $2^{\ell} \leq n<J_{\ell+1}$.
Proof. If $2^{\ell} \leq n<J_{\ell+1}$ then, in the notation of Theorem 3.5, $q=0$ and $r=n$. Since $n \geq 2^{\ell}$, we are in the second case of Theorem 3.5 so

$$
D_{\ell+1}^{\#}(n)=\frac{n-2^{\ell+1}+n}{2^{\ell+2}}\left(0+2^{\ell+2}\right)=2\left(n-2^{\ell}\right)
$$

Proposition 5.9. For n and ℓ as given above, $2\left(n-2^{\ell}\right)<n-J_{\ell}$.
Proof. We begin by showing that $J_{\ell+1}-2^{\ell}=2^{\ell}-J_{\ell}$. We have

$$
\begin{aligned}
J_{\ell+1}-2^{\ell} & =\frac{2^{\ell+2}+(-1)^{\ell+1}}{3}-2^{\ell} \\
& =2^{\ell}-\frac{2^{\ell+1}+(-1)^{\ell}}{3} \\
& =2^{\ell}-J_{\ell}
\end{aligned}
$$

and hence

$$
\begin{aligned}
2\left(n-2^{\ell}\right) & =n-2^{\ell}+n-2^{\ell} \\
& <n-2^{\ell}+J_{\ell+1}-2^{\ell} \\
& =n-2^{\ell}+2^{\ell}-J_{\ell} \text { from the above argument } \\
& =n-J_{\ell}
\end{aligned}
$$

so we have our result.
We are now ready to prove our theorem.
Theorem 5.10. $A(n)$ is even if n is not a Jacobsthal number.
Proof. Our goal is to show that there is some k such that $N_{k}^{\#}(n)$ is strictly greater than $D_{k}^{\#}(n)$ since, by Remark 5.5, we have shown that $N_{k}^{\#}(n) \geq D_{k}^{\#}(n)$ for all positive integers k and n.

Given n, not a Jacobsthal number, there exists a positive integer ℓ such that $J_{\ell}<n<J_{\ell+1}$. Then $N_{\ell+1}^{\#}(n)=n-J_{\ell}$ by Proposition 5.6, and since $n>J_{\ell}, N_{\ell+1}^{\#}(n)>0$. On the other hand, by Proposition 5.7, if $n<2^{\ell}$, then $D_{\ell+1}^{\#}(n)=0$. If $2^{\ell} \leq n<J_{\ell+1}$, then by Proposition $5.8, D_{\ell+1}^{\#}(n)=2\left(n-2^{\ell}\right)$ which is strictly less than $n-J_{\ell}=N_{\ell+1}^{\#}(n)$ by Proposition 5.9. Hence, in every case, $N_{\ell+1}^{\#}(n)$ is strictly greater than $D_{\ell+1}^{\#}(n)$ so there is at least one factor of two in $A(n)$ and we have our result.

6 A Closing Remark

We close by noting that we can prove a stronger result than Theorem 5.10. If $J_{\ell}<n<J_{\ell+1}$, then

$$
N_{\ell+1}^{\#}(n)-D_{\ell+1}^{\#}(n)=\left\{\begin{array}{lll}
n-J_{\ell} & \text { if } \quad J_{\ell}<n \leq 2^{\ell} \\
J_{\ell+1}-n & \text { if } & 2^{\ell} \leq n<J_{\ell+1}
\end{array}\right.
$$

by Propositions 5.6, 5.7, 5.8 and Lemma 3.2.
Let $\operatorname{ord}_{2}(n)$ be the highest power of 2 that divides n. By Remark $5.5, N_{k}^{\#}(n)-D_{k}^{\#}(n) \geq 0$ for all n and for all k, so that

$$
\operatorname{ord}_{2}(A(n)) \geq\left\{\begin{array}{lll}
n-J_{\ell} & \text { if } \quad J_{\ell}<n \leq 2^{\ell} \\
J_{\ell+1}-n & \text { if } \quad 2^{\ell} \leq n<J_{\ell+1}
\end{array}\right.
$$

which strengthens Theorem 5.10.
Finally, we see that $\operatorname{ord}_{2}\left(A\left(2^{\ell}\right)\right)=J_{\ell-1}$ since, for all $k<\ell+1, N_{k}^{\#}\left(2^{\ell}\right)=N_{k}^{\#(1)}\left(2^{\ell}\right)=D_{k}^{\#(1)}\left(2^{\ell}\right)=$ $D_{k}^{\#}\left(2^{\ell}\right)$, and $2^{\ell}-J_{\ell}=J_{\ell+1}-2^{\ell}=J_{\ell-1}$. So, for example, we know that $A\left(2^{10}\right)$ is divisible by $2^{J_{9}}$, which equals 2^{341}, and that $A\left(2^{10}\right)$ is not divisible by 2^{342}.

7 Acknowledgements

The authors gratefully acknowledge the excellent technical help of Robert Schumacher in the preparation of this document.

References

[1] D. M. Bressoud, "Proofs and Confirmations: The story of the alternating sign matrix conjecture", Cambridge University Press, 1999.
[2] D. M. Bressoud and J. Propp, How the Alternating Sign Matrix Conjecture Was Solved, Notices of the American Mathematical Society, 46 (6) (1999), 637-646.
[3] A. F. Horadam, Jacobsthal Representation Numbers, Fibonacci Quarterly, 34 (1) (1996), 40-53.
[4] A. F. Horadam, Jacobsthal Representation Polynomials, Fibonacci Quarterly, 35 (2) (1997), 137-148.
[5] A. F. Horadam, Rodriques' Formulas for Jacobsthal-Type Polynomials, Fibonacci Quarterly, 35 (4) (1997), 361-370.
[6] A. F. Horadam and P. Filipponi, Derivative Sequences of Jacobsthal and Jacobsthal-Lucas Polynomials, Fibonacci Quarterly, 35 (4) (1997), 352-357.
[7] C. T. Long, "Elementary Introduction to Number Theory", 3rd edition, Waveland Press, Inc., Prospect Heights, IL, 1995.
[8] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. Published electronically at http://www.research.att.com/~njas/sequences/.
[9] A. Tucker, "Applied Combinatorics", 3rd edition, John Wiley \& Sons, 1995.
(Concerned with sequences A001045, A001859 and A005130.)

Received Jan. 13, 2000; published in Journal of Integer Sequences June 1, 2000.

Return to Journal of Integer Sequences home page.

