

Jacobsthal Numbers and Alternating Sign Matrices

Darrin D. Frey and James A. Sellers

Department of Science and Mathematics Cedarville College Cedarville, OH 45314

Email addresses: freyd@cedarville.edu and sellersj@cedarville.edu

Abstract

Let A(n) denote the number of $n \times n$ alternating sign matrices and J_m the m^{th} Jacobsthal number. It is known that

$$A(n) = \prod_{\ell=0}^{n-1} \frac{(3\ell+1)!}{(n+\ell)!}.$$

The values of A(n) are in general highly composite. The goal of this paper is to prove that A(n) is odd if and only if n is a Jacobsthal number, thus showing that A(n) is odd infinitely often.

2000 Mathematics Subject Classification: 05A10, 15A15 Keywords: alternating sign matrices, Jacobsthal numbers

1 Introduction

In this paper we relate two seemingly unrelated areas of mathematics: alternating sign matrices and Jacobsthal numbers. We begin with a brief discussion of alternating sign matrices.

An $n \times n$ alternating sign matrix is an $n \times n$ matrix of 1s, 0s and -1s such that

- the sum of the entries in each row and column is 1, and
- the signs of the nonzero entries in every row and column alternate.

Alternating sign matrices include permutation matrices, in which each row and column contains only one nonzero entry, a 1.

For example, the seven 3×3 alternating sign matrices are

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

The determination of a closed formula for A(n) was undertaken by a variety of mathematicians over the last 25 years or so. David Bressoud's text [1] chronicles these endeavors and discusses the underlying mathematics in a very readable way. See also the survey article [2] by Bressoud and Propp.

As noted in [1], a formula for A(n) is given by

$$A(n) = \prod_{\ell=0}^{n-1} \frac{(3\ell+1)!}{(n+\ell)!}.$$
 (1)

It is clear from this that, for most values of n, A(n) will be highly composite. The following table shows the first few values of A(n) (sequence $\underline{A005130}$ in [8]). Other sequences related to alternating sign matrices can also be found in [8].

n	A(n)	Prime Factorization of $A(n)$
1	1	1
$\frac{2}{3}$	$\frac{2}{7}$	$\frac{2}{2}$
		7
$\frac{4}{5}$	42	$2 \cdot 3 \cdot 7$
5	429	$3 \cdot 11 \cdot 13$
6	7436	$2^2 \cdot 11 \cdot 13^2$
7	218348	$2^2 \cdot 13^2 \cdot 17 \cdot 19$
8	10850216	$2^3 \cdot 13 \cdot 17^2 \cdot 19^2$
9	911835460	$2^2 \cdot 5 \cdot 17^2 \cdot 19^3 \cdot 23$
10	129534272700	$2^2 \cdot 3 \cdot 5^2 \cdot 7 \cdot 17 \cdot 19^3 \cdot 23^2$
11	31095744852375	$3^2 \cdot 5^3 \cdot 7 \cdot 19^2 \cdot 23^3 \cdot 29 \cdot 31$
12	12611311859677500	$2^2 \cdot 3^3 \cdot 5^4 \cdot 19 \cdot 23^3 \cdot 29^2 \cdot 31^2$
13	8639383518297652500	$2^2 \cdot 3^5 \cdot 5^4 \cdot 23^2 \cdot 29^3 \cdot 31^3 \cdot 37$
14	9995541355448167482000	$2^4 \cdot 3^5 \cdot 5^3 \cdot 23 \cdot 29^4 \cdot 31^4 \cdot 37^2$
15	19529076234661277104897200	$2^4 \cdot 3^3 \cdot 5^2 \cdot 29^4 \cdot 31^5 \cdot 37^3 \cdot 41 \cdot 43$
16	64427185703425689356896743840	$2^5 \cdot 3^2 \cdot 5 \cdot 11 \cdot 29^3 \cdot 31^5 \cdot 37^4 \cdot 41^2 \cdot 43^2$
17	358869201916137601447486156417296	$2^4 \cdot 3 \cdot 7^2 \cdot 11 \cdot 29^2 \cdot 31^4 \cdot 37^5 \cdot 41^3 \cdot 43^3 \cdot 47$
18	3374860639258750562269514491522925456	$2^4 \cdot 7^3 \cdot 13 \cdot 29 \cdot 31^3 \cdot 37^6 \cdot 41^4 \cdot 43^4 \cdot 47^2$
19	53580350833984348888878646149709092313244	$2^2 \cdot 7^3 \cdot 13^2 \cdot 31^2 \cdot 37^6 \cdot 41^5 \cdot 43^5 \cdot 47^3 \cdot 53$
20	1436038934715538200913155682637051204376827212	$2^2 \cdot 7^4 \cdot 13^2 \cdot 31 \cdot 37^5 \cdot 41^6 \cdot 43^6 \cdot 47^4 \cdot 53^2$
21	64971294999808427895847904380524143538858551437757	$7^5 \cdot 13 \cdot 37^4 \cdot 41^6 \cdot 43^7 \cdot 47^5 \cdot 53^3 \cdot 59 \cdot 61$
22	4962007838317808727469503296608693231827094217799731304	$2^3 \cdot 3 \cdot 7^6 \cdot 37^3 \cdot 41^5 \cdot 43^7 \cdot 47^6 \cdot 53^4 \cdot 59^2 \cdot 61^2$

Table 1: Values of A(n)

Examination of this table and further computer calculations reveals that the first few values of n for which A(n) is odd are

These appear to be the well–known $Jacobsthal\ numbers\ \{J_n\}$ (sequence $\underline{A001045}$ in [8]). They are defined by the recurrence

$$J_{n+2} = J_{n+1} + 2J_n (2)$$

with initial values $J_0 = 1$ and $J_1 = 1$.

This sequence has a rich history, especially in view of its relationship to the Fibonacci numbers. For examples of recent work involving the Jacobsthal numbers, see [3], [4], [5] and [6].

The goal of this paper is to prove that this is no coincidence: for a positive integer n, A(n) is odd if and only if n is a Jacobsthal number.

2 The Necessary Machinery

To show that $A(J_m)$ is odd for each positive integer m, we will show that the number of factors of 2 in the prime decomposition of $A(J_m)$ is zero. To accomplish this, we develop formulas for the number of factors of 2 in

$$N(n) = \prod_{\ell=0}^{n-1} (3\ell+1)!$$
 and $D(n) = \prod_{\ell=0}^{n-1} (n+\ell)!$.

Once we prove that the number of factors of 2 is the same for $N(J_m)$ and $D(J_m)$, but not the same for N(n) and D(n) if n is not a Jacobsthal number, we will have our result.

We will make frequent use of the following lemma. For a proof, see for example [7, Theorem 2.29].

Lemma 2.1. The number of factors of a prime p in N! is equal to

$$\sum_{k \ge 1} \left\lfloor \frac{N}{p^k} \right\rfloor.$$

It follows that the number of factors of 2 in N(n) is

$$N^{\#}(n) = \sum_{\ell=0}^{n-1} \sum_{k>1} \left\lfloor \frac{3\ell+1}{2^k} \right\rfloor = \sum_{k>1} N_k^{\#}(n)$$

where

$$N_k^{\#}(n) = \sum_{\ell=0}^{n-1} \left\lfloor \frac{3\ell+1}{2^k} \right\rfloor. \tag{3}$$

Similarly, the number of factors of 2 in D(n) is given by

$$D^{\#}(n) = \sum_{\ell=0}^{n-1} \sum_{k \ge 1} \left\lfloor \frac{n+\ell}{2^k} \right\rfloor = \sum_{k \ge 1} D_k^{\#}(n)$$

where

$$D_k^{\#}(n) = \sum_{\ell=0}^{n-1} \left\lfloor \frac{n+\ell}{2^k} \right\rfloor. \tag{4}$$

For use below we note that the recurrence for the Jacobsthal numbers implies the following explicit formula (cf. [9]).

Theorem 2.2. The m^{th} Jacobsthal number J_m is given by

$$J_m = \frac{2^{m+1} + (-1)^m}{3}. (5)$$

3 Formulas for $N_k^{\#}(n)$ and $D_k^{\#}(n)$

Lemma 3.1. The smallest value of ℓ for which

$$\left\lfloor \frac{3\ell+1}{2^k} \right\rfloor = m,$$

where m and k are positive integers and $k \geq 2$, is

$$\begin{cases} \frac{m}{3}2^k & \text{if } m \equiv 0 \pmod{3} \\ \frac{m-1}{3}2^k + J_{k-1} & \text{if } m \equiv 1 \pmod{3} \\ \frac{m-2}{3}2^k + J_k & \text{if } m \equiv 2 \pmod{3}. \end{cases}$$

Proof. Suppose $m \equiv 0 \pmod{3}$ and $\ell = \frac{m}{3}2^k$. Then

$$\left\lfloor \frac{3\ell+1}{2^k} \right\rfloor = \left\lfloor \frac{3\left(\frac{m}{3}2^k\right)+1}{2^k} \right\rfloor = \left\lfloor \frac{m2^k}{2^k} + \frac{1}{2^k} \right\rfloor = m,$$

and no smaller value of ℓ yields m since the numerators differ by multiples of three.

If $m \equiv 1 \pmod{3}$ and $\ell = \frac{m-1}{3}2^k + J_{k-1}$, then

$$\left[\frac{3\ell+1}{2^k} \right] = \left[\frac{3\left(\frac{m-1}{3}2^k + J_{k-1}\right) + 1}{2^k} \right]$$

$$= \left[\frac{(m-1)2^k + 3\left(\frac{2^k + (-1)^{k-1}}{3}\right) + 1}{2^k} \right]$$

$$= \left[\frac{(m-1)2^k + 2^k + (-1)^{k-1} + 1}{2^k} \right]$$

$$= m, \text{ if } k > 2.$$

and no smaller value of ℓ yields m. If $m \equiv 2 \pmod{3}$ and $\ell = \frac{m-2}{3}2^k + J_k$, then

$$\left[\frac{3\ell+1}{2^k} \right] = \left[\frac{3\left(\frac{m-2}{3}2^k + J_k\right) + 1}{2^k} \right] \\
= \left[\frac{(m-2)2^k + 3\left(\frac{2^{k+1} + (-1)^k}{3}\right) + 1}{2^k} \right] \\
= \left[\frac{(m-2)2^k + 2^{k+1} + (-1)^k + 1}{2^k} \right] \\
= m,$$

and no smaller value of ℓ yields m.

Lemma 3.2. For any positive integer k, $J_{k-1} + J_k = 2^k$.

Proof. Immediate from (5).

Lemma 3.3. For any positive integer k,

$$\sum_{v=0}^{2^k - 1} \left\lfloor \frac{3v + 1}{2^k} \right\rfloor = 2^k.$$

Proof. The result is immediate if k = 1. If $k \ge 2$, then by Lemma 3.1, J_{k-1} is the smallest value of v for which $\left|\frac{3v+1}{2^k}\right| = 1$ and J_k is the smallest value of v for which $\left|\frac{3v+1}{2^k}\right| = 2$. Thus

$$\sum_{v=0}^{2^{k}-1} \left\lfloor \frac{3v+1}{2^{k}} \right\rfloor = 0 \times J_{k-1} + 1 \times \left[(J_{k}-1) - (J_{k-1}-1) \right] + 2 \times \left[(2^{k}-1) - (J_{k}-1) \right]$$

$$= J_{k} - J_{k-1} + 2(2^{k} - J_{k})$$

$$= 2^{k+1} - 2^{k} \text{ by Lemma } 3.2$$

$$= 2^{k}.$$

Theorem 3.4. Let $n = 2^k q + r$, where q is a nonnegative integer and $0 \le r < 2^k$. Then

$$N_k^{\#}(n) = \left(\frac{n-r}{2^{k+1}}\right) (3(n-r) - 2^k) + tail(n)$$
(6)

where

$$tail(n) = \begin{cases} 3qr & if & 0 \le r \le J_{k-1} \\ 3qr + (r - J_{k-1}) & if & J_{k-1} < r \le J_k \\ (3q + 2)r - 2^k & if & J_k < r < 2^k. \end{cases}$$
 (7)

Proof. To analyze the sum

$$N_k^{\#}(n) = \sum_{\ell=0}^{n-1} \left\lfloor \frac{3\ell+1}{2^k} \right\rfloor$$

we let $\ell = 2^k u + v$, where $0 \le v < 2^k$. Then

$$\left| \frac{3\ell+1}{2^k} \right| = \left| \frac{3(2^k u + v) + 1}{2^k} \right| = \left| \frac{2^k (3u)}{2^k} + \frac{3v+1}{2^k} \right| = 3u + \left| \frac{3v+1}{2^k} \right|.$$

Thus

$$\sum_{\ell=0}^{2^k q - 1} \left\lfloor \frac{3\ell + 1}{2^k} \right\rfloor = \sum_{u=0}^{q - 1} \sum_{v=0}^{2^k - 1} \left(3u + \left\lfloor \frac{3v + 1}{2^k} \right\rfloor \right)$$

$$= \sum_{u=0}^{q - 1} \left((3u)2^k + \sum_{v=0}^{2^k - 1} \left\lfloor \frac{3v + 1}{2^k} \right\rfloor \right)$$

$$= \sum_{u=0}^{q - 1} ((3u)2^k + 2^k) \quad \text{by Lemma 3.3}$$

$$= 2^k \sum_{u=0}^{q - 1} (3u + 1)$$

$$= 2^k \left(3\left(\frac{(q - 1)q}{2} \right) + q \right)$$

$$= 2^{k} q \left(3 \left(\frac{n - r - 2^{k}}{2^{k+1}} \right) + 1 \right)$$

$$= \left(\frac{q}{2} \right) \left(3(n - r - 2^{k}) + 2^{k+1} \right)$$

$$= \left(\frac{n - r}{2^{k+1}} \right) \left(3(n - r) - 2^{k} \right).$$

If r = 0, we have our result. If r > 0 and k = 1, then r = 1 and we have one extra term in our sum, namely,

$$\left| \frac{3(2q)+1}{2} \right| = 3q$$

and again we have our result since r=1. If r>0 and $k\geq 2$, then by Lemma 3.1, 2^kq is the smallest value of ℓ for which $\left|\frac{3\ell+1}{2^k}\right|=3q$, 2^kq+J_{k-1} is the smallest value of ℓ for which

$$\left| \frac{3\ell+1}{2^k} \right| = 3q+1,$$

and $2^k q + J_k$ is the smallest value of ℓ for which

$$\left| \frac{3\ell+1}{2^k} \right| = 3q+2.$$

Hence

$$\sum_{\ell=2^kq}^{2^kq+r-1} \left\lfloor \frac{3\ell+1}{2^k} \right\rfloor = \begin{cases} 3qr & \text{if } r \leq J_{k-1} \\ 3qJ_{k-1} + (3q+1)(r-J_{k-1}) & \text{if } J_{k-1} < r \leq J_k \\ 3qJ_{k-1} + (3q+1)(J_k-J_{k-1}) + (3q+2)(r-J_k) & \text{if } J_k < r < 2^k. \end{cases}$$

So, if $n = 2^k q + r$ where $0 \le r < 2^k$,

$$\begin{split} N_k^{\#}(n) &= \sum_{\ell=0}^{n-1} \left\lfloor \frac{3\ell+1}{2^k} \right\rfloor \\ &= \sum_{\ell=0}^{2^k q-1} \left\lfloor \frac{3\ell+1}{2^k} \right\rfloor + \sum_{\ell=2^k q}^{2^k q+r-1} \left\lfloor \frac{3\ell+1}{2^k} \right\rfloor \\ &= \left(\frac{n-r}{2^{k+1}} \right) (3(n-r)-2^k) + tail(n), \end{split}$$

where

$$tail(n) = \begin{cases} 3qr & \text{if } r \leq J_{k-1} \\ 3qJ_{k-1} + (3q+1)(r-J_{k-1}) & \text{if } J_{k-1} < r \leq J_k \\ 3qJ_{k-1} + (3q+1)(J_k - J_{k-1}) + (3q+2)(r-J_k) & \text{if } J_k < r < 2^k. \end{cases}$$

The second expression in tail(n) is clearly equal to $3qr + r - J_{k-1}$. For the third expression, we have

$$3qJ_{k-1} + (3q+1)(J_k - J_{k-1}) + (3q+2)(r - J_k) = 3qr + J_k - J_{k-1} + 2r - 2J_k$$

= $(3q+2)r - 2^k$ by Lemma 3.2.

Theorem 3.5. Let $n = 2^k q + r$ where q is a nonnegative integer and $0 \le r < 2^k$. Then we have

$$D_k^{\#}(n) = \begin{cases} \left(\frac{n-r}{2^{k+1}}\right) \left(3(n+r) - 2^k\right) & \text{if } 0 \le r \le 2^{k-1} \\ \left(\frac{n-(2^k-r)}{2^{k+1}}\right) \left(3(n-r) + 2^{k+1}\right) & \text{if } 2^{k-1} < r < 2^k. \end{cases}$$
(8)

Proof. We may write

$$D_k^{\#}(n) = \sum_{\ell=0}^{2n-1} \left\lfloor \frac{\ell}{2^k} \right\rfloor - \sum_{\ell=0}^{n-1} \left\lfloor \frac{\ell}{2^k} \right\rfloor.$$

In both sums,

$$\left\lfloor \frac{\ell}{2^k} \right\rfloor = s \,,$$

if $2^k s \le \ell < 2^k (s+1)$, so if $n = 2^k q + r$, where $0 < r \le 2^k$, we have

$$\sum_{\ell=0}^{n-1} \left\lfloor \frac{\ell}{2^k} \right\rfloor = 2^k [1 + 2 + \dots + q - 1] + qr$$
$$= q \left(\frac{n + r - 2^k}{2} \right).$$

If $0 < r \le 2^{k-1}$, then $2n - 1 = 2^k(2q) + (2r - 1)$, which means

$$\sum_{\ell=0}^{2n-1} \left\lfloor \frac{\ell}{2^k} \right\rfloor = 2^k [1 + 2 + \dots + (2q-1)] + (2r-1+1)(2q)$$
$$= q(2n+2r-2^k).$$

Hence in this case

$$\begin{split} D_k^{\#}(n) &= \sum_{\ell=0}^{n-1} \left\lfloor \frac{n+\ell}{2^k} \right\rfloor \\ &= \sum_{\ell=0}^{2n-1} \left\lfloor \frac{\ell}{2^k} \right\rfloor - \sum_{\ell=0}^{n-1} \left\lfloor \frac{\ell}{2^k} \right\rfloor \\ &= q(2n+2r-2^k) - q\left(\frac{n+r-2^k}{2}\right) \\ &= \left(\frac{n-r}{2^{k+1}}\right) (3(n+r)-2^k). \end{split}$$

If $2^{k-1} < r \le 2^k$, say, $r = 2^{k-1} + s$ where $0 < s \le 2^{k-1}$, then

$$2n-1 = 2(2^{k}q + r) - 1$$
$$= 2^{k}(2q) + 2(2^{k-1} + s) - 1$$
$$= 2^{k}(2q + 1) + 2s - 1.$$

Thus

$$\sum_{\ell=0}^{2n-1} \left\lfloor \frac{\ell}{2^k} \right\rfloor = 2^k [1+2+\dots+2q] + (2s-1+1)(2q+1)$$
$$= (2q+1)(n+r-2^k).$$

So in this case

$$D_k^{\#}(n) = \sum_{\ell=0}^{n-1} \left\lfloor \frac{n+\ell}{2^k} \right\rfloor$$

$$= \sum_{\ell=0}^{2n-1} \left\lfloor \frac{\ell}{2^k} \right\rfloor - \sum_{\ell=0}^{n-1} \left\lfloor \frac{\ell}{2^k} \right\rfloor$$

$$= (2q+1)(n+r-2^k) - q\left(\frac{n+r-2^k}{2}\right)$$

$$= \left(\frac{n+r-2^k}{2^{k+1}}\right) (3(n-r) + 2^{k+1}).$$

The reader will note that in the statement of the theorem we have separated the cases according as $0 \le r \le 2^{k-1}$ and $2^{k-1} < r < 2^k$, whereas in the proof the cases are $0 < r \le 2^{k-1}$ and $2^{k-1} < r \le 2^k$. However, these are equivalent since $\frac{n-0}{2^{k+1}}(3(n+0)-2^k) = \frac{n-(2^k-2^k)}{2^{k+1}}(3(n-2^k)+2^{k+1})$.

4 $A(J_m)$ is odd

Now that we have closed formulas for $N_k^{\#}(n)$ and $D_k^{\#}(n)$ we can proceed to prove that $A(J_m)$ is odd for all Jacobsthal numbers J_m .

Theorem 4.1. For all positive integers m, $A(J_m)$ is odd.

Proof. The proof simply involves substituting J_m into (6) and (8) and showing that $N_k^{\#}(J_m) = D_k^{\#}(J_m)$ for all k. This implies that $N^{\#}(J_m) = D^{\#}(J_m)$, and so the number of factors of 2 in $A(J_m)$ is zero. Our theorem is then proved.

We break the proof into two cases, based on whether the parity of k is equal to the parity of m.

• Case 1: The parity of m equals the parity of k. Then

$$2^{k}(J_{m-k}-1) + J_{k} = 2^{k} \left(\frac{2^{m-k+1} + (-1)^{m-k}}{3} - 1\right) + \frac{2^{k+1} + (-1)^{k}}{3}$$

$$= \frac{2^{m+1} + 2^{k} - 3 \cdot 2^{k} + 2^{k+1} + (-1)^{k}}{3} \quad \text{since } (-1)^{m-k} = 1$$

$$= \frac{2^{m+1} + (-1)^{m}}{3} \quad \text{since } (-1)^{k} = (-1)^{m}$$

$$= J_{m}$$

Thus, in the notation of Theorems 3.4 and 3.5, $q = J_{m-k} - 1$ and $r = J_k$. We now calculate $N_k^{\#}(J_m)$ and $D_k^{\#}(J_m)$ using Theorems 3.4 and 3.5.

$$\begin{split} N_k^\#(J_m) &= \left(\frac{J_m - J_k}{2^{k+1}}\right) \left(3(J_m - J_k) - 2^k\right) \\ &+ 3(J_{m-k} - 1)J_k + (J_k - J_{k-1}) \\ &= \frac{1}{2^{k+1}} \left(\frac{2^{m+1} + (-1)^m}{3} - \frac{2^{k+1} + (-1)^k}{3}\right) \left(3\left(\frac{2^{m+1} + (-1)^m}{3} - \frac{2^{k+1} + (-1)^k}{3}\right) - 2^k\right) \\ &+ (3J_{m-k} - 1)J_k - 2^k \quad \text{by Lemma } 3.2 \\ &= \frac{1}{3 \cdot 2^{k+1}} \left(2^{m+1} - 2^{k+1}\right) \left(2^{m+1} - 2^{k+1} - 2^k\right) \\ &+ \left(3\left(\frac{2^{m-k+1} + (-1)^{m-k}}{3}\right) - 1\right) \left(\frac{2^{k+1} + (-1)^k}{3}\right) - 2^k \quad \text{since } (-1)^m = (-1)^k \\ &= \frac{1}{3} \left(2^{2m-k+1} - 2^{m+2} + 2^{k+1} - 2^m + 2^k\right) \\ &+ \frac{1}{3} (2^{m-k+1} (2^{k+1} + (-1)^k) - 3 \cdot 2^k) \quad \text{since } (-1)^{m-k} = 1 \\ &= \frac{1}{3} \left(2^{2m-k+1} - 2^m + (-1)^k 2^{m-k+1}\right) \end{split}$$

after much simplification. Next, we calculate $D_k^{\#}(J_m)$, recalling that $2^{k-1} < r = J_k < 2^k$.

$$D_k^{\#}(J_m) = \frac{\left(J_m - 2^k + J_k\right)}{2^{k+1}} \left(3(J_m - J_k) + 2^{k+1}\right)$$

$$= \frac{1}{2^{k+1}} \left(\frac{2^{m+1} + (-1)^m}{3} + \frac{2^{k+1} + (-1)^k}{3} - 2^k\right) \left(3\left(\frac{2^{m+1} + (-1)^m}{3} - \frac{2^{k+1} + (-1)^k}{3}\right) + 2^{k+1}\right)$$

$$= \frac{1}{3 \cdot 2^{k+1}} \left(2^{m+1} + 2^{k+1} + 2(-1)^k - 3 \cdot 2^k\right) \left(2^{m+1} - 2^{k+1} + 2^{k+1}\right) \text{ since } (-1)^m = (-1)^k$$

$$= \frac{1}{3} \left(2^{2m-k+1} + 2^{m+1} + 2^{m-k+1}(-1)^k - 3 \cdot 2^m\right)$$

$$= \frac{1}{3} \left(2^{2m-k+1} - 2^m + (-1)^k 2^{m-k+1}\right)$$

after simplification. We see that $N_k^{\#}(J_m) = D_k^{\#}(J_m)$.

• Case 2: The parity of m is not equal to the parity of k. Then

$$2^{k}(J_{m-k}) + J_{k-1} = 2^{k} \left(\frac{2^{m-k+1} + (-1)^{m-k}}{3}\right) + \frac{2^{k} + (-1)^{k-1}}{3}$$
$$= \frac{2^{m+1} - 2^{k} + 2^{k} + (-1)^{k-1}}{3}$$
$$= J_{m}.$$

Thus, in the notation of Theorems 3.4 and 3.5, $q = J_{m-k}$ and $r = J_{k-1}$. We now calculate $N_k^{\#}(J_m)$ and $D_k^{\#}(J_m)$ using Theorems 3.4 and 3.5.

$$N_k^{\#}(J_m) = \left(\frac{J_m - J_{k-1}}{2^{k+1}}\right) \left(3(J_m - J_{k-1}) - 2^k\right) + 3J_{m-k}J_{k-1}$$

$$= \frac{1}{2^{k+1}} \left(\frac{2^{m+1} + (-1)^m}{3} - \frac{2^k + (-1)^{k-1}}{3} \right) \left(3 \left(\frac{2^{m+1} + (-1)^m}{3} - \frac{2^k + (-1)^{k-1}}{3} \right) - 2^k \right)$$

$$+ 3 \left(\frac{2^{m-k+1} + (-1)^{m-k}}{3} \right) \left(\frac{2^k + (-1)^{k-1}}{3} \right)$$

$$= \frac{1}{3 \cdot 2^{k+1}} \left(2^{m+1} - 2^k \right) \left(2^{m+1} - 2 \cdot 2^k \right)$$

$$+ \frac{1}{3} \left((2^{m-k+1} - 1)(2^k + (-1)^{k-1}) \right) \text{ since } (-1)^m = (-1)^{k-1} \text{ and } (-1)^{m-k} = -1$$

$$= \frac{1}{3} \left(2^{2m-k+1} - 2^{m+1} - 2^m + 2^k + 2^{m+1} - 2^k + 2^{m-k+1}(-1)^{k-1} + (-1)^k \right)$$

$$= \frac{1}{3} \left(2^{2m-k+1} - 2^m + 2^{m-k+1}(-1)^{k-1} + (-1)^k \right)$$

after much simplification. Again we find that $N_k^{\#}(J_m) = D_k^{\#}(J_m)$.

Now we calculate $D_k^{\#}(J_m)$, recalling that $0 < r < 2^{k-1}$.

$$D_k^{\#}(J_m) = \frac{(J_m - J_{k-1})}{2^{k+1}} (3(J_m + J_{k-1}) - 2^k)$$

$$= \frac{1}{2^{k+1}} \left(\frac{2^{m+1} + (-1)^m}{3} - \frac{2^k + (-1)^{k-1}}{3} \right) \left(3 \left(\frac{2^{m+1} + (-1)^m}{3} + \frac{2^k + (-1)^{k-1}}{3} \right) - 2^k \right)$$

$$= \frac{1}{3 \cdot 2^{k+1}} (2^{m+1} - 2^k) (2^{m+1} + 2(-1)^{k-1}) \text{ since } (-1)^m = (-1)^{k-1}$$

$$= \frac{1}{3} (2^{2m-k+1} - 2^m + 2^{m-k+1}(-1)^{k-1} + (-1)^k)$$

after simplification. Again we find that $N_k^{\#}(J_m) = D_k^{\#}(J_m)$.

This completes the proof that $A(J_m)$ is odd for all Jacobsthal numbers J_m .

5 The Converse

We now prove the converse to Theorem 4.1. That is, we will prove that A(n) is even if n is not a Jacobsthal number. As a guide in how to proceed, we include a table of values for $N_k^{\#}(n)$ and $D_k^{\#}(n)$ for small values of n and k. This table suggests that $N_k^{\#}(n) \geq D_k^{\#}(n)$ for all positive integers n and k. It also suggests that for each value of n, there is at least one value of k for which $N_k^{\#}(n)$ is strictly greater than $D_k^{\#}(n)$ except when n is a Jacobsthal number. (The rows that begin with a Jacobsthal number are indicated in bold-face.)

n	$N_1^{\#}(n)$	$D_1^{\#}(n)$	$N_2^{\#}(n)$	$D_2^{\#}(n)$	$N_3^{\#}(n)$	$D_3^{\#}(n)$	$N_4^{\#}(n)$	$D_4^{\#}(n)$	$N_5^{\#}(n)$	$D_5^{\#}(n)$	$N_{6}^{\#}(n)$	$D_6^{\#}(n)$
1	0	0	0	0	0	0	0	0	0	0	0	0
2	2	2	1	0	0	0	0	0	0	0	0	0
3	5	5	2	2	0	0	0	0	0	0	0	0
4	10	10	4	4	1	0	0	0	0	0	0	0
5	16	16	7	7	2	2	0	0	0	0	0	0
6	24	24	11	10	4	4	1	0	0	0	0	0
7	33	33	15	15	6	6	2	0	0	0	0	0
8	44	44	20	20	8	8	3	0	0	0	0	0
9	56	56	26	26	11	11	4	2	0	0	0	0
10	70	70	33	32	14	14	5	4	0	0	0	0
11	85	85	40	40	17	17	6	6	0	0	0	0
12	102	102	48	48	21	20	8	8	1	0	0	0
13	120	120	57	57	25	25	10	10	2	0	0	0
14	140	140	67	66	30	30	12	12	3	0	0	0
15	161	161	77	77	35	35	14	14	4	0	0	0
16	184	184	88	88	40	40	16	16	5	0	0	0
17	208	208	100	100	46	46	19	19	6	2	0	0
18	234	234	113	112	52	52	22	22	7	4	0	0
19	261	261	126	126	58	58	25	25	8	6	0	0
20	290	290	140	140	65	64	28	28	9	8	0	0
21	320	$\bf 320$	155	155	72	72	31	31	10	10	0	0
22	352	352	171	170	80	80	35	34	12	12	1	0
23	385	385	187	187	88	88	39	37	14	14	2	0
24	420	420	204	204	96	96	43	40	16	16	3	0
25	456	456	222	222	105	105	47	45	18	18	4	0

Table 2: Values for $N_k^{\#}(n)$ and $D_k^{\#}(n)$

(We note in passing that the values of $N_1^{\#}(n)$ form sequence A001859 in [8].)

In order to prove the first assertion (that $N_k^{\#}(n) \geq D_k^{\#}(n)$), we separate the functions defined by the cases in equations (6) and (8) into individual functions denoted by $N_k^{\#(1)}(n), N_k^{\#(2)}(n), \ldots, D_k^{\#(2)}(n)$. That is,

$$\begin{split} N_k^{\#(1)}(n) &:= \left(\frac{n-r}{2^{k+1}}\right) \left(3(n-r)-2^k\right) + 3qr \\ N_k^{\#(2)}(n) &:= \left(\frac{n-r}{2^{k+1}}\right) \left(3(n-r)-2^k\right) + 3qr + (r-J_{k-1}) \\ N_k^{\#(3)}(n) &:= \left(\frac{n-r}{2^{k+1}}\right) \left(3(n-r)-2^k\right) + (3q+2)r - 2^k \\ D_k^{\#(1)}(n) &:= \left(\frac{n-r}{2^{k+1}}\right) \left(3(n+r)-2^k\right) \\ D_k^{\#(2)}(n) &:= \left(\frac{n-(2^k-r)}{2^{k+1}}\right) \left(3(n-r)+2^{k+1}\right) \end{split}$$

For a given value of n, $N_k^\#(n)$ will equal $N_k^{\#(i)}(n)$ for some $i \in \{1,2,3\}$ and $D_k^\#(n)$ will be $D_k^{\#(j)}(n)$ for some $j \in \{1,2\}$ depending on the value of r. Note that not all combinations of i and j are possible (for example, there is no value of n such that i=1 and j=2). In Lemmas 5.1 through 5.4 we show that $N_k^{\#(i)}(n) \geq D_k^{\#(j)}(n)$ for all possible combinations of i and j (that correspond to some integer n) which implies that $N_k^\#(n) \geq D_k^\#(n)$ for all positive integers n.

Lemma 5.1. For all integers n and k, $N_k^{\#(1)}(n) = D_k^{\#(1)}(n)$.

Proof. We first note that, in the notation of Theorem 3.4, $\frac{n-r}{2^{k+1}} = \frac{2^k q}{2^{k+1}} = \frac{q}{2}$. Then

$$N_k^{\#(1)}(n) = \left(\frac{n-r}{2^{k+1}}\right) (3(n-r)-2^k) + 3qr$$

$$= \left(\frac{n-r}{2^{k+1}}\right) \left(3(n-r) - 2^k + 3qr\left(\frac{2}{q}\right)\right) \text{ since } \frac{n-r}{2^{k+1}} = \frac{q}{2}$$

$$= \left(\frac{n-r}{2^{k+1}}\right) (3n+3r-2^k)$$

$$= D_k^{\#(1)}(n).$$

Lemma 5.2. For all integers k and all integers n such that $r > J_{k-1}$ (in the notation of Theorem 3.4),

$$N_k^{\#(2)}(n) > D_k^{\#(1)}(n).$$

Proof.

$$N_k^{\#(2)}(n) = \left(\frac{n-r}{2^{k+1}}\right) (3(n-r)-2^k) + 3qr + (r-J_{k-1})$$

$$> \left(\frac{n-r}{2^{k+1}}\right) (3(n-r)-2^k) + 3qr \text{ since } r > J_{k-1}$$

$$= N_k^{\#(1)}(n)$$

$$= D_k^{\#(1)}(n) \text{ by Lemma 5.1.}$$

This proves our result.

Lemma 5.3. For all integers k and all integers n such that $r \leq J_k$ (in the notation of Theorem 3.4),

$$N_k^{\#(2)}(n) \ge D_k^{\#(2)}(n).$$

Proof. We see that $r \leq J_k = 2^k - J_{k-1}$ by Lemma 3.2. Thus, $2^k q + r \leq 2^k (q+1) - J_{k-1}$. This implies $n \leq 2^k (q+1) - J_{k-1}$, so $2n - 2^k (q+1) \leq n - J_{k-1}$. Hence,

$$\begin{split} N_k^{\#(2)}(n) &= \left(\frac{n-r}{2^{k+1}}\right) (3(n-r)-2^k) + 3qr + (r-J_{k-1}) \\ &= \frac{q}{2}(3(2^kq)-2^k) + 3q(n-2^kq) + n - 2^kq - J_{k-1} \\ &= q^2(-3(2^{k-1})) + q(-3(2^{k-1}) + 3n) + n - J_{k-1} \\ &\geq q^2(-3(2^{k-1})) + q(-3(2^{k-1}) + 3n) + 2n - 2^k(q+1) \text{ by the above argument} \\ &= \frac{2n-2^k-2^kq}{2^{k+1}} (3(2^kq)+2^{k+1}) \\ &= D_k^{\#(2)}(n). \end{split}$$

Lemma 5.4. For all positive integers n and k, $N_k^{\#(3)}(n) = D_k^{\#(2)}(n)$.

Proof.

$$\begin{split} N_k^{\#(3)}(n) &= \left(\frac{n-r}{2^{k+1}}\right) (3(n-r)-2^k) + (3q+2)r - 2^k \\ &= \left(\frac{q}{2}\right) (3(2^kq)-2^k) + 3q(n-2^kq) + 2(n-2^kq) - 2^k \\ &= \frac{n-2^k+n-2^kq}{2^k+1} (3(2^kq)+2^{k+1}) \\ &= D_k^{\#(2)}(n). \end{split}$$

Remark 5.5. To summarize, Lemmas 5.1 through 5.4 tell us that for any positive integer n,

$$N_k^{\#}(n) \ge D_k^{\#}(n).$$

For Propositions 5.6 through 5.9 we make the assumption that $J_{\ell} < n < J_{\ell+1}$ for some positive integer ℓ .

Proposition 5.6. For ℓ and n, as given above, $N_{\ell+1}^{\#}(n) = n - J_{\ell}$.

Proof. By Lemma 3.1,

$$\sum_{i=0}^{n-1} \left\lfloor \frac{3i+1}{2^{\ell+1}} \right\rfloor = 0 \times (J_{\ell}) + 1 \times ((n-1) - (J_{\ell} - 1))$$
$$= n - J_{\ell}.$$

Proposition 5.7. $D_k^{\#}(n) = 0$ if $n < 2^{k-1}$. In particular, $D_{\ell+1}^{\#}(n) = 0$ if $n < 2^{\ell}$.

Proof. If $n < 2^k$ then, in the notation of Theorem 3.5, n = r and q = 0, so by Theorem 3.5, $D_k^{\#}(n) = 0$.

Proposition 5.8. $D_{\ell+1}^{\#}(n) = 2(n-2^{\ell})$ if $2^{\ell} \le n < J_{\ell+1}$.

Proof. If $2^{\ell} \le n < J_{\ell+1}$ then, in the notation of Theorem 3.5, q = 0 and r = n. Since $n \ge 2^{\ell}$, we are in the second case of Theorem 3.5 so

$$D_{\ell+1}^{\#}(n) = \frac{n - 2^{\ell+1} + n}{2^{\ell+2}} (0 + 2^{\ell+2}) = 2(n - 2^{\ell}).$$

Proposition 5.9. For n and ℓ as given above, $2(n-2^{\ell}) < n - J_{\ell}$.

Proof. We begin by showing that $J_{\ell+1} - 2^{\ell} = 2^{\ell} - J_{\ell}$. We have

$$J_{\ell+1} - 2^{\ell} = \frac{2^{\ell+2} + (-1)^{\ell+1}}{3} - 2^{\ell}$$
$$= 2^{\ell} - \frac{2^{\ell+1} + (-1)^{\ell}}{3}$$
$$= 2^{\ell} - J_{\ell},$$

and hence

$$\begin{array}{rcl} 2(n-2^\ell) & = & n-2^\ell+n-2^\ell \\ & < & n-2^\ell+J_{\ell+1}-2^\ell \\ & = & n-2^\ell+2^\ell-J_\ell \ \text{ from the above argument} \\ & = & n-J_\ell \end{array}$$

so we have our result.

We are now ready to prove our theorem.

Theorem 5.10. A(n) is even if n is not a Jacobsthal number.

Proof. Our goal is to show that there is some k such that $N_k^{\#}(n)$ is strictly greater than $D_k^{\#}(n)$ since, by Remark 5.5, we have shown that $N_k^{\#}(n) \geq D_k^{\#}(n)$ for all positive integers k and n.

Given n, not a Jacobsthal number, there exists a positive integer ℓ such that $J_{\ell} < n < J_{\ell+1}$. Then $N_{\ell+1}^{\#}(n) = n - J_{\ell}$ by Proposition 5.6, and since $n > J_{\ell}$, $N_{\ell+1}^{\#}(n) > 0$. On the other hand, by Proposition 5.7, if $n < 2^{\ell}$, then $D_{\ell+1}^{\#}(n) = 0$. If $2^{\ell} \le n < J_{\ell+1}$, then by Proposition 5.8, $D_{\ell+1}^{\#}(n) = 2(n-2^{\ell})$ which is strictly less than $n - J_{\ell} = N_{\ell+1}^{\#}(n)$ by Proposition 5.9. Hence, in every case, $N_{\ell+1}^{\#}(n)$ is strictly greater than $D_{\ell+1}^{\#}(n)$ so there is at least one factor of two in A(n) and we have our result.

6 A Closing Remark

We close by noting that we can prove a stronger result than Theorem 5.10. If $J_{\ell} < n < J_{\ell+1}$, then

$$N_{\ell+1}^{\#}(n) - D_{\ell+1}^{\#}(n) = \begin{cases} n - J_{\ell} & \text{if} \quad J_{\ell} < n \le 2^{\ell} \\ J_{\ell+1} - n & \text{if} \quad 2^{\ell} \le n < J_{\ell+1} \end{cases}$$

by Propositions 5.6, 5.7, 5.8 and Lemma 3.2.

Let $ord_2(n)$ be the highest power of 2 that divides n. By Remark 5.5, $N_k^{\#}(n) - D_k^{\#}(n) \ge 0$ for all n and for all k, so that

$$ord_2(A(n)) \ge \begin{cases} n - J_{\ell} & \text{if } J_{\ell} < n \le 2^{\ell} \\ J_{\ell+1} - n & \text{if } 2^{\ell} \le n < J_{\ell+1} \end{cases}$$

which strengthens Theorem 5.10.

Finally, we see that $ord_2(A(2^{\ell})) = J_{\ell-1}$ since, for all $k < \ell + 1, N_k^{\#}(2^{\ell}) = N_k^{\#(1)}(2^{\ell}) = D_k^{\#(1)}(2^{\ell}) = D_k^{\#}(2^{\ell})$, and $2^{\ell} - J_{\ell} = J_{\ell+1} - 2^{\ell} = J_{\ell-1}$. So, for example, we know that $A(2^{10})$ is divisible by 2^{J_9} , which equals 2^{341} , and that $A(2^{10})$ is not divisible by 2^{342} .

7 Acknowledgements

The authors gratefully acknowledge the excellent technical help of Robert Schumacher in the preparation of this document.

References

[1] D. M. Bressoud, "Proofs and Confirmations: The story of the alternating sign matrix conjecture", Cambridge University Press, 1999.

- [2] D. M. Bressoud and J. Propp, How the Alternating Sign Matrix Conjecture Was Solved, *Notices of the American Mathematical Society*, **46** (6) (1999), 637-646.
- [3] A. F. Horadam, Jacobsthal Representation Numbers, Fibonacci Quarterly, 34 (1) (1996), 40-53.
- [4] A. F. Horadam, Jacobsthal Representation Polynomials, Fibonacci Quarterly, 35 (2) (1997), 137-148.
- [5] A. F. Horadam, Rodriques' Formulas for Jacobsthal-Type Polynomials, *Fibonacci Quarterly*, **35** (4) (1997), 361-370.
- [6] A. F. Horadam and P. Filipponi, Derivative Sequences of Jacobsthal and Jacobsthal-Lucas Polynomials, *Fibonacci Quarterly*, **35** (4) (1997), 352-357.
- [7] C. T. Long, "Elementary Introduction to Number Theory", 3rd edition, Waveland Press, Inc., Prospect Heights, IL, 1995.
- [8] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. Published electronically at http://www.research.att.com/~njas/sequences/.
- [9] A. Tucker, "Applied Combinatorics", 3rd edition, John Wiley & Sons, 1995.

(Concerned with sequences A001045, A001859 and A005130.)

Received Jan. 13, 2000; published in Journal of Integer Sequences June 1, 2000.

Return to Journal of Integer Sequences home page.