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JACOBI POLYNOMIALS AS 
GENERALIZED FABER POLYNOMIALS 

AHMED I. ZA YED 

ABSTRACT, Let B be an open bounded subset of the complex z-plane with clo-
sure B whose complement BC is a simply connected domain on the Riemann 
sphere, Let z == ",(w) map the domain Iwl > p (p > 0) one-to-one confor-
mally onto the domain BC such that "'(00) == 00, Let R(w) == 2::0 cnw- n , 
Co of 0 be analytic in the domain Iwl > p with R(w) of 0, Let F(z) == 2::0 bnzn , bn of 0, F * (z) == 2::0 tzn be analytic in Izl < I and ana-
lytically continuable to any point outsid; Izl < I along any path not passing 
through the points z == 0, I, 00, 

The generalized Faber polynomials {Pn (z)}:o of B are defined by 

t""(t~R(t)F (_Z_) == fp (z)~ 
",(t) ",(t) n=O n tn' 

It I > p, 

The aim of this paper is to show that 

(I) if the Jacobi polynomials {P~'" P) (z)}:o are generalized Faber poly-
nomials of any region B, then it must be the elliptic region {z: I z + II + I z - II < 
p+~, p>I}; 

(2) the only Jacobi polynomials that can be classified as generalized Faber 
polynomials are the Tchebycheff polynomials of the first kind, some normal-
ized Gegenbauer polynomials, some normalized Jacobi polynomials of type 
{p~",et+I)(z)}:O' {p~P+I ,P)(z)}:o and there are no others, no matter how 
one normalizes them; 

(3) the Hermite and Laguerre polynomials cannot be generalized Faber 
polynomials of any region. 

1. INTRODUCTION 

Faber polynomials, which were introduced by Faber in 1903 [2] and later 
developed by several Russian mathematicians (see [7 and 9] for references), 
play an important role in the theory of functions of a complex variable and in 
approximation theory. 

One of their most important properties is that the Faber polynomials 
{Pn (z) }:o of a domain B play in B the role that {zn}:o play in the unit 
disc, i.e., any analytic function I(z) in B can be expanded in a series of Faber 
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364 A.1. ZAYED 

polynomials f(z) = E:'oanPn(z), where the series converges uniformly to 
f(z) on compact subsets of B. 

Although not necessarily orthogonal, they have been used in the theory of 
orthogonal polynomials and special functions by several people including Y. 
Geronimus [3], V. Smirnov and N. Lebedev [7], P. Suetin [10], G. Szego [12] in 
connection with polynomials orthogonal on intervals, curves and by P. Suetin 
[11] in connection with polynomials orthogonal on domains. 

To introduce the Faber polynomials, let us assume that B is an open bounded 
subset of the complex z-plane with closure B whose complement If is a sim-
ply connected domain on the Riemann sphere Q. Let z = ",(w) map the 
domain Iwl > p(p > 0) one-to-one conformally onto the domain If such 
that "'(00) = 00. We denote the inverse function of z = ",(w) by w = ¢(z). 
Let L, be the image of aD, = {w: Iwl = r}, when mapped by the function 
z = ",(w) and B, be the bounded domain with boundary L,. The boundary 
of B will be denoted by L. Let 

00 

(1.1 ) R(w) = I>nw-n , 
n=O 

be analytic in the domain Iwl > p with R(w) =f 0 therein. The Faber polyno-
mials {Pn (z) }:,O of the domain B are defined by 

t ",' (t) 00 1 
( ) R(t) = L Pn(z)n, 

'" t - z n=O t 
( 1.2) It I > p. 

It can be shown [7] that, when the generating function ~'rt;~)zR(t) is expanded as 
a Laurent series in some neighbourhood of t = 00, Pn (z) is indeed a polynomial 
in z of exact degree n. 

One of the aims of this paper is to study the relationship between Faber poly-
nomials and some of the classical orthogonal polynomials. Unfortunately, the 
class of Faber polynomials defined by (1.2) is so limited that the only classical 
system of orthogonal polynomials it contains is the Tchebycheff polynomials 
of the first kind. A larger class of Faber polynomials, known as the general-
ized Faber polynomials, was introduced by V. Smirnov and N. Lebedev [7] as 
follows: 

Let 
00 

( 1.3) F(z) = L bnzn , 
,n=O 

be analytic in Izl < 1 and assume that F(z) can be continued analytically 
to any point outside the unit disc by any path not passing through the points 
z = 0, 1 , 00. If the same is true for the function 

( 1.4) 
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JACOBI POLYNOMIALS AS GENERALIZED FABER POLYNOMIALS 365 

we say that F (z) and F. (z) are adjoint. In this case it is easy to see that the 
point z = 1 is a singular point for both F(z) and F.(z). 

Let the B be as before. Furthermore, let us assume that the point z = 0 
belongs to B and that F(z), FJz) are adjoint. Then, the generalized Faber 
polynomials {Pn (z)}:o of B are defined by 

tV/ (t) ( Z) 00 1 
(1.5) /fI(t)R(t)F /fI(t) =~Pn(z)tn' It I > p. 

Again, it can be shown that Pn(z) is a polynomial in z of exact degree n. 
Moreover, if J(z) is analytic in the domain Br and has a singular point on 
L r , then 

00 

( 1.6) J(z) = LanPn(z), 
n=O 

where 

(1. 7) an = -21 . r J(~)qn(~) d~, 
1ll J L 

p < rl < r, 
" 

and 

( 1.8) -. nFaJ 1 hm lanl =-, 
n-+oo r p<r<oo, 

and 

( 1.9) ~E~. 

Clearly, (1.2) is a special case of (1.5) when F(u) = (I~U) • 

In a recent paper [13], the authors showed that an analytic function J(z) in 
B given by (1.6) has a singular point at z = z I if and only if 

00 

(1.1 0) g(w) = Lanwn 
n=O 

has one at w = WI' where WI = ¢(Zl)' i.e., Zl = /fI(w l ) and deduced an old 
result by R. Gilbert [5] that a series of Gegenbauer polynomials 

~ A -yfa:! 1 (l.lI) J(z) = ~anCn(z), lim n la 1=-, 
n-+oo n p 

n=O 
p>l, 2>-4, A:f: O, 

has a singular point z = Zl if and only if g(w) has one at w = WI where 

(1.12) Zl = ~ (WI + ~J . 
A key point in their proof is to show that the Gegenbauer polynomials are 

generalized Faber polynomials of the elliptic region 

sf = {z: Iz + 11 + Iz - 11 < p + ~}. 
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A proof of this fact will be given in the following section. It should be mentioned 
that Gilbert's result is, in fact, a generalization of an earlier result by Z. Nehari 
[6] who showed that a series of Legendre polynomials 

p> 1, 

has a singular point at Z = ZI if and only if g(w) has one at w = WI where 
ZI and WI are related as in (1.12). For A. = !, Gilbert's result yields Nehari's. 

Although a similar result concerning the location of the singularities of series 
of Jacobi polynomials 

00 L anP~a,p)(z), Q:,P>-I, 
n=O 

was proved by R. Gilbert [4], the authors in [13] were unable to deduce it 
from their general theorem concerning the location of the singularities of series 
of generalized Faber polynomials since it was not known whether the Jacobi 
polynomials were generalized Faber polynomials of any region D. It was also 
conjectured that the Jacobi polynomials might be generalized Faber polynomials 
of some domain D(a, P) that depends on Q:, P and which reduces to the elliptic 
region .9J' when Q: = P . 

The aim of this paper is to show that: 
(1) the above conjecture is false, i.e., if the Jacobi polynomials are gener-

alized Faber polynomials of any region, then it must essentially be the 
elliptic region .9J' . 

(2) the only Jacobi polynomials that can be classified as generalized Faber 
polynomials are the Tchebycheffpolynomials of the first kind, some nor-
malized Gegenbauer polynomials, some normalized Jacobi polynomials 
of type 

{ p(a,a+I)( )}oo 
n Z n=O' 

and there are no others, no matter how one normalizes them. 
(3) the Hermite and Laguerre polynomials cannot be generalized Faber 

polynomials of any region. 

2. PRELIMINARIES 

For any complex number a and nonnegative integer n, let 

(2.1 ) 1(a + n) 
(a)o=l, (a)n=a(a+l)···(a+n-l)= 1(a) , 

(2.2) ( a) 1(a+l) 
n - 1(n + l)1(a - n + 1)" 
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For any complex numbers a, band c with c"# 0, -1, -2, ... , the hyperge-
ometric function F(a, b; c; z) =2 FI (a, b; c; z) is defined by 

(2.3) ( b . . ) _ ~ (a)n(b)n n 
Fa, ,c,z-~ () ,z, 

n=O C nn. 
Izl < 1. 

The Jacobi polynomials P~Ct, p) (x), n = 0, 1, 2, ... , 0:, P > -1 , are defined 
by 

(2.4) p~Ct,p)(x)= (n:0:)F(-n,n+0:+ p +1;0:+1; l;X), 

hence 

(2.5) 

P~Ct, p) (x) is a polynomial solution of the differential equation 
2 /I I (2.6) (l-x)y +[(P-0:)-(0:+P+2)x]y +n(n+0:+p+1)y=0. 

They form a complete orthogonal system in L2((_1, 1), dW(Ct,P)(x)} where 

(2.7) dW(Ct,P)(x) = (1 - x)"'(l + x/ dx. 

The orthogonality relation reads 

(2.8) [II p~Ct,P)(x)P~Ct,P)(x)(l - x)"'(l + x/ dx = hnonm 

where 

(2.9) h = 2Ct+P+l r(n + 0: + l)r(n + P + 1) . 
n (2n + 0: + P + l)r(n + l)r(n + 0: + P + 1) 

The following special cases of the Jacobi polynomials are of some importance 
to us: 

(1) The Gegenbauer polynomials C;(x) , also known as the ultraspherical 
polynomials, are defined by 

(2.10) d'( ) = r (.A. + !-) r(n + 2A) p(l-I/2,l-I/2)(X) 
nX r(2.A.)nn+.A.+!-) n ' 

(2) The Legendre polynomials Pn(x) are Pn(x) = C~/2(X) = p~O,O)(x). 
(3) The Tchebycheff polynomials of the first and second kinds are given 

respectively by 

(2.12) 
p(-1/2, -1/2) (x) 

Tn(x) = p1- 1/ 2 ,-1/2)(1) = cosnO, x = cosO, 
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368 A.1. ZAYED 

and 

(2.13) 

Finally, let p > 1 and c be a nonzero real number. Then, the exterior of the 
circle It I = p is mapped one-to-one under the conformal mapping 

z =! (ct+~) 2 ct 
onto the exterior of the ellipse 8.9f (c) whose foci are at ± 1 with semi-axis 

provided that we take the branch of the inverse map t = z + ~ which 
. becomes infinite at z = 00. We denote the elliptic region bounded by 8.9f(c) 
by .9f (c). In particular, 

.9f = .9f(I) = {z: Iz - 11 + Iz + 11 < p + ~}. 

3. THE MAIN RESULTS 

This section contains the main results which are formulated in three theorems 
and a corollary. 

Theorem 1. The following sets of Jacobi polynomials are generalized Faber poly-
nomials of the elliptic region .9f . 

(a) {To(x) , 2Tn(x)}:::1 ' 

(b) {C; (x)} :::0' A;6 ° , 
(c) {(n1A)C;(x)}:::0' A;6 0, 
(d) {(20'+2)np(O',O'+I)( )}oo 

(0'+1). n x n=O' 
(e) {(2P+2). p(P+I, P)(x)}oo 

(P+l). n n=O . 

Proof. (a) Since Tn (cos 0) = cosnO, it follows from Poisson's sum 

(3.1 ) 
00 2 
'" n l-r 1+2L...,,(cosnO)r = 2' 
n=O 1 - 2rcosO + r 

Irl < 1, 

that 

(3.2) T () ~2T ( ) 1 _ (t2 - 1) [1 X ]-1 
o X + ~ " n X tn - (t2 + 1) -!(t + 1ft) 

which is in the form given by (1.5) with Ij/(t) = !(t + 1ft), 

(3.3a) R(t) = 1 

and 
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1 
F(u) = (1 - u)" 

(b) From the generating function [1, p. 21 J 

00 '- 1 t2'-
L:Cn(X)tn = (2 2 1)'-' n=O t - xt + 

It I > 1, A 1= 0, (3.4) 

one obtains 

(3.5) ~ C'-(x)~ - t2'- [1 _ x ]-'-
~ n tn - (t2 + 1)'- !(t + lit) 

which yields (1.5) for 'I'(t) = !(t + lit) 

(3.6a) 

and 

(3.6b) '-F(u) = 1/(1 - u) . 

(c) Similarly, from the generating function [1, p. 71J 

(3.7) ~ (n + A) C'-( )~ = t2'-(t2 - 1) It I > 1, A 1= 0, 
~ A n x tn (t2 _ 2xt + 1)'-+1 ' 

we obtain 

(3.8) ~ (n + A) C'-(x)~ = t2'-(t2 - 1) [ X ]-('-+1) 
~ A n tn (t2 + 1)'-+1 1 - !(t + lit) 

which yields (1.5) for 'I'(t) = !(t + lit) 

(3.9a) R(t) = t2'-I(t2 + 1)" 

and 

(3.9b) F(u) = (1 _ U)-('-+I). 

(d) Upon setting p = 0:+ 1 and replacing t by lit in the generating function 
[1, p. 21J 

(3.10) ~ (0: + P + l)n p(o,P)(x)tn 
~ (0: + l)n n 

= 1 F(O:+P+l 0:+P+2.0:+ 1. 2t(X-l)) 
(1 - t t+ P + 1 2' 2 ' '( 1 - t) 2 
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we obtain 

(3.11) 

A.!, ZAYED 

~ (2a + 2)n p(a,a+l)(X)~ 
~ (a+ 1) n tn 
n=O n 

= F a+1 a+-·a+1·--'---.:........,. t2a+2 ( 3 2(x-1) ) 
(t - 1)2a+2 '2" (0 - 1/0)2 

_ t (t - 1) 1 _ x 2a+2 [ ]-(a+3/2) 

- (t2 + 1t+3/2 t(t + lit) , 

since F(a, b; a; z) = (1 - z)-b. 
Equation (3.11) yields (1.5) with If/(t) = t(t + lit) 

(3.12a) 
t2a+2 

R(t) = and 
(t2 + 1t+1/2(t + 1) 

(3.12b) F(u) = (1 _ u)-(a+3/2). 

(c) Upon using the generating function [8, p. 112] 

(3.13) f (a(;!;) l)n p~a'P(x)rn 
n=O n 

_ 1 F (a + P + 1 a + P + 2. P 1. 2r(x + 1)) 
- (1 + r)a+P+l 2' 2 ,+, (1 + r)2 

with a = P + 1 and r = lit we obtain as in part (b) 

~ (2P + 2)n p(P+l ,P)(x)~ 
~ (P + 1) n tn 
n=O n 

(3.14) 

_ t (t + 1) 1- x 2P+2 [ ]-(P+3/2) 

- (t2 + 1)P+3/2 t(t + lit) 

which gives (1.5) with If/(t) = t(t + lit) 

t2P+2 
R(t) - and 

- (t2 + I)P+l/2(t - 1) 
(3.15a) 

(3.15b) F(u) = (1 - u) -(P+3/2). 

Q.E.D. 
It should be noted that although the polynomials {(2n~I)T2n-l(X)}:1 have 

a generating function of the form (1.5), namely 

~ 2 TIl {I + 2x(t + 1It)-1 } 
(3.16) ~(2n-l) 2n-l(X)tn = n 1-2x(t+llt)-1 
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(see [12, p. 83]) with 'II(t) = 1(t + lit), 
2 

(3.17a) R(t)=t2 +1, 

and 

(3.17b) 

t - 1 

F(u) = In { 1 + u} 
l-u 

they are not generalized Faber polynomials of the elliptic region .W' since they 
consist only of odd polynomials. 
Theorem 2. Let {en}:o be any sequence oj complex numbers such that the series 
L:oenP~a,p)(x)~ convergesJor x E [-1,1] and It I > 1. Then, if the normal-
ized Jacobi polynomials {enP~a,p)(x)}:o are generalized Faber polynomials oj 
any region, then it must be the elliptic region .W' (c) . 
Proof. Assume that {enP~a,p\x)}:o are generalized Faber polynomials of 
some domain B determined by the conformal mapping z = 'II(t). Therefore, 
there exist R(t) and F(u) as described in §1 such that 

(3.18) ~ e p(a,P)(x)~ = t'll'(t) R(t)F (~) = G(t)F (~) 
L, n n tn 'II(t) 'II(t) 'II(t) n=O 

where 

(3.19) 

Let 
(3.20) 
and 

(3.21 ) 

G(t) = t'll' (t) R(t). 
'II (t) 

2q = a + P + 1 

d2 d ~(a,p) = (1 - X 2)-2 + [(P - a) - (a + P + 2)x]-d . 
dx x 

From (2.6), we have 
(3.22) ~(a,p) p~a,p)(x) = (i- (n + q)2)p~a,p)(x) 

and thus by operating with ~(a,p) on both sides of (3.18), we obtain 

~ e [i- (n + q)2]p(a,p)(x)~ = y(a'P)G(t)F (~) 
L, n n tn x 'II(t) 
n=O 

= G(t)y(a,p) F (~) 
x 'II(t) 

or equivalently 

(3.23) - fen(n+q)2p~a'P)(X)t~ 
n=O 

= G(t)~(a,p) F ('II~t)) -iG(t)F ('II~t)) . 
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From (2.6) and (3.18), it is easy to see that 

~ 2 (a,p) 1 q+1 d d (1 ( x )) (3.24) ~ 8n(n + q) Pn (x) tn = t dt t dt tq G(t)F I/f(t) . 

Thus, by combining (3.23) and (3.24) we obtain 

(3.25) G(t).:?(a,p) F (~) + tq+1 !!""t!!"" (~G(t)F (~)) 
x I/f(t) dt dt tq I/f(t) 

- q2G(t)F (I/f~t») = 0 

which, after somewhat involved computations, reduces to 

(3.26) 

where 

2 U 1 (1 - A(t)u )F (u) + [(p - a)I/f(t) - B(t)I/f(t)u]F (u) 

+ C(t)1/f2(t)F(u) = 0 

x 
u = I/f(t) , 

A(t) = 1/f2(t) - t2[1/f' (t)]2 , 

1 2 1 G' (t) 
B(t) = (2q + 1)I/f(t) - (2q - l)tl/f (t) + 2t I/f (t) G(t) 

1 2 
+ t2I/fu(t) _ 2t2[1/f (t)] 

I/f(t) , 

G' (t) 2 GU (t) 
C(t) = (1 - 2q)t G(t) + t G(t)' 

But since G(t) = t~;g)R(t), then 

G'(t) 1 I/fu(t) R'(t) I/f'(t) 
(3.27) G(t) = t + I/f'(t) + R(t) - I/f(t) 

and consequently 

(3.28) A(t) = (1/f2(t) - t2[1/f' (t)]2) , 

(3.29) 1 2 U 
B(t) = (2q + 1)I/f(t) + (3 - 2q)tl/f (t) + 3t I/f (t) 

1 2 1 

_ 4t2 [I/f (t)] + 2t21/f' (t) R (t) 
I/f(t) R(t) , 

( 3.30) ( G/(t») 2 (G1(t»)2 2 d (G/(t») C(t) = (1 - 2q)t G(t) + t G(t) + t dt G(t) 

where ~Ni is given explicitly in terms of R(t) by (3.27). 
From (3.26), it follows that for F(u) to have a singularity at u = 1, A(t) 

must be 1. Therefore, 

(3.31) 
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which upon solving yields 

(3.32) 

and this completes the proof. Q.E.D. 

In the next theorem we show that the only Jacobi polynomials that can be 
classified as generalized Faber polynomials are exactly those given in Theorem 
1 and there are no others. 

Theorem 5. The only Jacobi polynomials that can be classified as generalized 
Faber polynomials are exactly those given in Theorem 1 and there are no others. 
Proof. From Theorem 2 we need only to consider the Jacobi polynomials which 
can be classified as generalized Faber polynomials of the elliptic region ~ (c) . 
Without loss of generality, we may take c = 1. For 1fI(t) = 1(t + lit), the 
differential equation (3.26) now takes the form 

(3.33) (1 - i)F"(u) + [(ft - a)IfI(t) - B(t)IfI(t)u]F'(u) 

+ C(t)1fI2(t)F(u) = 0 

where 

(3.34) 1fI(t)B(t) = ~ + (q + 4) + ~t (t2 - t12) (~g1) , 
and 

C(t)1fI2(t) = -41 (t2 + 1)2 {-8(q + l)t2 ; (1 ~ q)][t2 - 1] 
(t - 1) 

1 (R' (t)) 8t (R' (t)) + (1 - 2q)t R(t) + (t4 _ 1) R(t) 

+ ( ~gi)' + :, (~gn } . 
Case (i). C(t) = O. From (3.30), one obtains 

(1 - 2q)o' (t) + to" (t) = 0 

which upon solving gives 

(3.36) G(t) = [cot2Q + c1 i: q :f:. 0, 
Co In t + c1 If q = 0, 

where Co and c1 are constants. In view of (3.19) and (3.36), one has 

(3.37) 
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Equation (3.33) now gives 

(3.38) F" (u) _ 
F'(u) -

[(fJ - a)lfI(t) - B(t)IfI(t)U] 
(1 - u2 ) 

For F(u) to be independent of t, fJ must be equal to a and 
( 3.39) B(t)IfI(t) = a (constant). 
By combining (3.34) and (3.39) one obtains, after solving the resulting differ-
ential equation in R(t), 

t 2q (t2 _ 1) (a-2q-4)/2 
(3 40) R(t) - C -'-::---.,----,~-

• - 2 (t2 + 1 )(a-4)/2 

for some constant c2 • By comparing (3.37) and (3.40), one deduces that the 
only possible solution is 

(3.41 ) 
2 

R(t) = c (t + 1) 
o (t2 _ 1) 

when a = 2, q = o. Equation (3.38) now becomes 
F"(u) 2u 
F'(u) l-u 2 

( 3.42) 

which gives 

(3.43) I {1+U} F (u) = '2 In 1 _ u . 

Although R(t) and F(u) have been calculated explicitly, no generalized Faber 
polynomials exist in this case since R(t), F(u) are the same as those given in 
(3.17a) and (3.17b). 

Case (ii). C(t) '10 and fJ 'I a. By taking the partial derivative of (3.33) with 
respect to t, we obtain 

(3.44) F'(u) 
F(u) (fJ - a/lfI(t) - (~B(t)IfI(t)) u· 

at at 
For F(u) to be independent of t, we must have 

(3.45) ~(B(t)lfI(t)) = '1 a lfI(t) or B(t)lfI(t) = '11f1(t) + a 
at at 

and 

(3.46) 

for some constants '1, a, d, and e. By combining (33.4), (3.45) for 1fI(t) = 
1(t + lit) and solving for R(t), we have 

t 2q (t2 _ 1)(a-2q-4)/2(t _ 1)'1/2 
(3.4 7) R( t) - c -~---'--,--~-----'-~-

- 0 (t 2 + 1)(a-4)/2(t + 1)'1/2 
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In view of (3.35) and (3.46), we have 
(3.48) 
~(t2 + 1)2 {-8[(q + l)t4 - 2t2 + (1 - q)] 
4 ([4_1)2 

+(1-2q)~y+ 8t Y+l+y'}=~(t+~)+:'. 
t (t4 - 1) 4 t 4 

where Y = ~N; . Taking the logarithmic derivative of (3.47) yields 

( 3.49) 17t3 + 2(a - q - 4)t2 + 17t - 2q Y - """'---------'---=--,-----'.-----'.-~ 

- t(t4 - 1) , 

which, upon substituting in (3.48) and simplifying, gives 

(3.50) [17 + 2q17 + d][t6 + 1] + [-4/ + (4a - 12)q _172 + e + 4a - 8][t5 + t] 

+ [617q + (11 - 4a)17 - d][t4 + t2] 

+ [-8/ + (8a - 24)q - 2172 - 2e - 4i + 16a- 16]t3 = 0. 

Therefore, 

(3.51) 17+2q17+d=0, 
2 2 -4q +(4a-12)q-17 +e+4a-8=0, 
2 2 2 - 4q + (4a - 12)q - 17 - e - 2a + 8a - 8 = 0, 

617q + (11 - 4a)17 - d = ° 
solving these equations gives the following solutions: 

17=0,±1, d=-17(1+2q), e=-a(a-2) and a=2q+3unless17=0. 

First, let us assume that 17 =I- 0. Then, 
(a) if 17 = 1, d = - (1 + 2q), a = 2q + 3, e = - (2q + 3) (2q + 1) 

and 
(b) if 17 = -1, d = (1 + 2q), a = 2q + 3, e = -(2q + 3)(2q + 1). 
Equation (3.44) can now be written in the form 

F' (u) d 1 
F(u) - 217 (P - a)/17 - u· 

(3.52) 

Thus, 

(3.53) F(u) = [(P - a)/17 - U]d/2ry • 

Since F(u) has a singularity at u = 1, then 17 = P - a. Therefore, in case (a), 
P = a + 1, 2q = 2a + 2, and from (3.47), (3.53) we obtain 

(2a+2 
R(t) =CO(t2+ 1)"+1/2(t+ 1) (cf. (3.12a)), 

F(u) = [1 - ur(cx+3/2) (cf. (3.12b)). 
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Thus, we have a generating function for generalized Faber polynomials of the 
form 

(3.54) (t - l)t 1 x 20<+2 [ ]-(0<+3/2) 

C0 (t2+ 1)(<>+3/2) - !(t+1/t) (cf. (3.11)). 

From Theorem 1 (d), we conclude that the generalized Faber polynomials in this 
case are 

{ (20:+2)np~O<'O<+1)(X)}OO . 
(0: + l)n n=O 

In case (b), 0: = P + 1, 2q = 2P + 2, and (3.47), (3.53) now give 

t2P+2 

R(t)=C0 (t2+l)P+l/2(t_1) (cf. (3.15a)), 

F(u) = [1 - U]-(P+3/2) (cf. (3.15b)). 

Thus, we have a generating function for generalized Faber polynomials of the 
form 

(3.55) t (t+l) 1 x 2P+2 [ ]-(P+3/2) 

Co (t2 + l)P+3/2 -!(t + l/t) (cf. (3.14)). 

Again, from Theorem l(c), we conclude that the generalized Faber polynomials 
in this case are 

{ (2P + 2)n p(P+l, P)( )}OO 
(P 1) n x . 

+ n n=O 
Now we consider the case 1'/ = O. In this case (3.44) becomes 

~(C(t)1{I2(t)) F'(u) 
= F(u) (P - O:){)I{I(t)/{)t 

and for F(u) to be independent of t and have a singularity at u = 1, 
ft(C(t)1{I2(t)) must be zero and p must be equal to 0: with contradicts our 
assumption. 

Case (iii). If C(t)1{I2(t) =J o and p = 0:. In this case equation (3.44) becomes 
{) 2 

F' (u) at (C(t) I{I (t)) 

F(u) = :t (B(t)I{I(t))u 

and for F(u) to be independent of t and have a singularity at u = 1, we must 
have 

B(t)I{I(t) = a and C(t)1{I2(t) = e/4. 

To solve these two equations simultaneously, we note that they are equivalent 
to (3.45), (3.46) with 1'/ = 0 and d = 0 respectively. Therefore, it is easy to 
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see that in this case we obtain a system of equations similar to (3.51) but with 
11 = ° = d. Upon solving this new system of equations, we have 

a __ { 2(q + 1), e = -a(a - 2), 
2(q + 2), 

and hence by (3.47) 

{ 
CO(t2+1)/~)(t2_1) if a = 2(q + 1) (cf. (3.6a)), 

R(t) = 2 

Co (t(I)q if a = 2(q + 2) (cf. (3.9a)). 

Equation (3.33) now becomes 
2 " I (1 - u )F (u) - 2(q + 1)uF (u) - q(q + 1)F(u) = 0, if a = 2(q + 1) 

and 

2 " I (1 - u )F (u) - 2(q + 2)uF (u) - (q + 1)(q + 2)F(u) = 0, if a = 2(q + 2). 

Thus, 

{
(I - u)-q if a = 2(q + 1) (cf. (3.6b)), 

F(u) = (1 _ U)-(q+l) if a = 2(q + 2) (cf. (3.9b)), 

and consequently there are two generating functions for two sets of generalized 
Faber polynomials 

t q x 2 [ ]-q 
(t2 + 1)q 1 - t(t + l/t) if a = 2(q + 1) (cf. (3.5)) 

and 

(t - 1 )t 1 _ X l·f a = 2( + 2) (f (3 8)) 
2 2q [ ]-(q+l) 

(t2 + l)q+1 t(t + l/t) q c... 

Since 2q = a + P + 1 = 2a + 1 and for the Gegenbauer polynomials a = A - t ' 
hence q = A, we conclude from Theorem I-b, c that the generalized Faber 
polynomials in this case are 

{C;(xn:,o if a = 2(q + 1) and {(n ;A) C;(X)}:o if a = 2(q + 2). 

Q.E.D. 
Finally, let us remark that the generalized Faber polynomials have also been 

defined for unbounded and multiply-connected domains as well [7, p. 145]. 
Although some normalized Hermite polynomials are limits of generalized 

Faber polynomials, since [12, p. 197] 

Hn(,X) = lim [A-n/2C;(A-I/2x)] , 
n. .1.-+00 

they are not themselves generalized Faber polynomials for any region, no matter 
how we normalize them. 
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Corollary 1. For any normalization whatsoever, the Laguerre and Hermite poly-
nomials are not generalized Faber polynomials for any region B. 
Proof. In the cases where B is simply connected, whether bounded or not, one 
uses the same arguments given in Theorems 2, 3 together with the Laguerre and 
Hermite differential equations to show that there exists no function F(u) for 
which (1.5) holds. The case where B is multiply-connected can be considered 
as a combination of the above two. 
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