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where P M (x) is Szegd’s notation [6, p. 68] for the Jacobi polynomial of
order «, § and degree n in x.

Recently, Varma [7, p. 306] gave the generating relation

(2) (C—'b)” P,(,a, B—n) (x) i
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where F, denotes the second type of Appell’s hypergeometric functions of two

variables defined by [3, p. 14]
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The series iteration technique used in [7] to derive (2) seems to be
unnecessarily long and involved. As a matter of fact, the generating relation (2)
is an immediate consequence of the definitions (1) and (3), and the familiar
Gaussian hypergeometric transformation (cf., e.g., [3], p. 3)

6] JFila, by ¢; z]=(1—2)¢"%b,F [c—a, c—b; ¢; z], |z|<l.

If we rewrite (1) as

(5) P:a,ﬂ*k)(x)z(n'}‘a) (L‘*‘__X) 2F‘1 - R, ___B; a+1; _.x___l .
n 2 x+1
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and apply (4) to the second member of (5), we shall readily obtain

®  PEe=(" G

2
SEle+n+v+l, a4+B8+v+1; at+l; (x—D/(x+ D],

n+v

for every integer v=0.
Next we rewrite (3) in the form

) F, [, B, B,; Ys Y,; X, y]= io(_:)'L(g%)!L

which in conjunction with (6) would lead at once to a generalization of (2)
given by

®) ;éo (":V)%ipiﬁ?—w(x) tn=(v~:a) (L;_x)—a—a—v-.l

cFla+v+1, a+B+v+1, 45 a+l, u; (x—1D/(x+1), £],

Filatn, By oy; x]y%

where v=0, 1,2, ... .
Evidently (2) would follow from (8) in the special case v=0.

2. In view of the hypergeometric transformation [3, p. 32]

’ ’ — ? . 7. x
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the generating function in (8), with P replaced by $-v, can be written in
the form

(10) 20(”:"> %pﬁﬁ&‘"””(x),n:(\*ja) (1_;:5)»-&

-Fz[oc+v+1, —By A; a+1, ps %j—, szli], v=0,1,2,... ,

which is what our formula (9), p. 62 in [5] should read.

For v=0, the generating relation (10) was given earlier by Al-Salam
[2, p. 138, Eq. (6.12)]. Thus Varma’s result (2), which evidently is equivalent
to (10) with v=0, would indeed follow fairly easily from the aforementioned
formula of Al-Salam [loc. cit.].

On the other hand, it is well known that [3, p. 35 and p. 30]

1—x
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where F, is the Appell function of the first kind defined by [op. cit., p. 14]

(12) File, B B85 v; x, y]= E: (@in B B x™ "
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Therefore, Varma’s result (2) is also equivalent to
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On replacing b by a—a+b+1, and ¢ by a+b+ 1, this last formula (13) yields

14 5 —Dn  pebsmiym
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which is the main result (3.1), p. 2 in another paper by Varma [8]. This
evidently shows that the generating functions in (2) and (14) are equivalent;
in fact, these are trivial variations of what is already contained in Al-Salam’s
work [2, p. 138, Eq. (6.12)].

Thus it would seem fairly obvious that the main results in Varma’s
papers [7] and [8] are substantially the same special case of the generating
relation (8), or its equivalent form (10), each of which has been shown to
follow as a rather immediate consequence of the definitions (1) and (3).

We remark in passing that, by means of the known relationships [6, p. 59]

(15) PE® ()= (— 1y P®® (—x)

and [op. cit., p. 64]

(16) P'(l“: 8) (x):(l:‘ﬁ)"P,(,—a-B—zn—l’ ) (ﬂ) ’
2 x—1

formulas (8) and (10), as also their special cases considered here, can be
transformed fairly simply into generating relations for the Jacobi polynomials

PP (%) or pe 8 (%),

3. Now we turn to the classical Laguerre polynomials defined by [6, p. 101]

17 @ _ n ot (—x)".
(17 L (x) kgo(nﬁk)—-k!

Making use of the known relationship [op. cit., p. 103]

(18) LY (x) = im P®® (1 —2x/B), n=0,1,2,...,
B0



152 H. M. Srivastava

in our generating relation (10), it is easily verified that, for every non-nega-
tive integer v,

(19) i("“)@Lﬁﬁ!v<x)z"=(“+°‘)ex‘1f1[a+v+1, A w okl —xl,
n=0 n Q"‘)n v

where ¥, is a (Humbeit’s) confluent hypergeometric function of two variables

defined by [3, p. 126]
S CY NN ()

20) Wi B v, Y5 x yl= .
¢ ‘ e (Ony)s ml i

For v=0, (19) yields the generating function
(21) S %))—?Lff)(x)t”:e"‘l"i[aJrl, A ow atl; f, —x],
n=0 (‘L n

which, for A=c-—-b, w=c, and t=y, would provide us with the corrected
version of Varma’s formula (4.2), p. 308 in {7]. Notice, as an obvious limiting
case of (11), the transformation

2) Yl B v oo X, y]=<1-—x)-ﬁey<bl[ﬁ, y—as v —, —"y—]
x—1 1—x

where @, is another (Humbert’s) confluent hypergeometric function of two
variables defined by {3, p. 126]

-] o - e xm n
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By virtue of (22), the generating function in (21), and hence also the correc-
ted version of Varma’s formula (4.2), p. 308 in [7], can be rewritten in their
equivalent form

24) ii—)\))—"Lﬁ“)(x)t”z(l—t)*ld)l[k, p—a—1; p; ——, -f’_]

n=0 p‘n

which is essentially the same as the generating relation (4.3), p. 5 in Varma’s
paper [8). In view of our remark in the preceding section, concerning the
main results of Varma’s papers [7] and [8], this equivalence was well anticipated.
Another interesting special case of (19) would occur when A=p; indeed
we have
Wile+v+1, A5 A a+l; £, —x]

_ i (a4+v+ 1), . " (—Xx)
m,n=0 m!n!(a'{‘l)n

_ 3 (e+v+ 1), (—x)y & (m+n+v+oc)tm

70 nl(x+1), w20
=(1—g) %1 Fla+v+1l; a+l; x/(z—1)]
=(1—p)—2vle¥t-D F [—v; a+1; x/(1—1)],

m
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by Kummer’s first theorem, and using the definition (17) once again, from (19)
we thus arrive at the elegant generating relation

25) § (n+v>Lfﬁ2v(x) th={(1—¢) o y-1egxti(t=D) LS:*)( X ),
n==0 n 1—z

which is fairly well known (cf., e.g., [4], p. 757, Eq. (10)).
Finally, we record a new generating function, analogous to (19), in the form

@ 3("" ?)) LD (e

n=0

"

=(v+a>(l+t)°‘e—x‘®1[p—7\, —v, —a, w; t(1+1), xt, —x(1+1)},
v

where @] denotes a generalization of the ®, function given by (23). Indeed
we have

@n il B % xpde 5 Dmer@ ey X
m, n, p==0 (8)m+n m! n! p'
whence
(28) O, 0, v, 85 x, 9, 21 =D, [, v; & X, y]
Z(DI [OC, ‘39 Y 8; X, Vs O],
and
(29) @i[0, B, v, 8; x, », 2]=F,[B; 1—vy; —7]

=(I)‘l‘[a3 B) Ys 8; 09 09 Z]‘

Formula (26) can be derived, for instance, as a limiting case of the generating
relation (8) or (10), since (15) and (18), together, would imply at once that
(30) (=" LP (x) = lim P> P (gf—

A=—>00

1), n=0,1,2, ...
o

Two special cases of the generating relation (26) are worthy of note.
If we set A=8—v, u=3, and v=0, and apply the reduction formula (28),
we get
2 B=Vhn ;-\ S s
3D zﬂ—(s) Ly @ en=1+0)e ™ d [y, —a; §; t/(1+1), xt],
n=0 n

which appears slightly erroneously as formula (4.11), p. 57 in reference [1]. On
the other hand, by an appeal to (29) a special case of (26) when A=p would
readily give us

32) S (":”) LD () 1 =("t°‘) (A +1) e LP (x(1+1)),

n=0

which is also a known generating relation (cf., e.g., [4], p. 757, Eq. (13)).
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It would seem worthwhile to remark that a generating relation, analogous
to (25) and (32), does indeed hold also for the Jacobi polynomials. This
formula would obviously follow from (8) or (10) with A=, and we thus have

=(1—t)ﬁ{1—-;—(1+x)z}_°‘"ﬁ‘”"1 @0 ).

where, for convenience,

-1
(34) £= x—i(1+x)t l—i(l—%x)t .
2 2
Equivalently, one has the relatively more elegant result
(35) i (n + v) Pr(z(::vn’ B—n) (x)tn
n=0 n

B 1 @ B IPTERTON Loy 1,
—{1+2(x+1)t}{1+2(x l)t} v <x+2(x l)t),

which follows fairly rapidly if we replace x,¢ and « on both sides of (33)
by (x+3)/(x—1), (1—x)¢/2, and —a—B—2v—1, respectively, and apply the
relationship (16) twice.

Incidentally, both (33) and (35) were deduced in reference [4, p. 759] as
special cases of certain bilinear generating relations for the Jacobi polynomials.
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