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Abstract

The paper describes a method to compute a basis of mutually orthogonal polynomials with
respect to an arbitrary Jacobi weight on the simplex. This construction takes place entirely
in terms of the coefficients with respect to the so—called Bernsté&@neBform of a poly-
nomial.
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1 Introduction

This paper describes a construction of orthogonal polynomials with respect to arbi-
trary Jacobi weights ord—dimensional simplices, extending the approach from [1]
for Legendre polynomial§ he computations will take place entirely with respect to
the so—calledBernstein—Bzier basiswvhich is in several respects the most natural
way to represent polynomials on the simplex, making it very popular in the area
of Computer Aided Geometric Design (CAGD). Besides their appealing geometric
properties, some of which we will present and exploit in this paper, the Bernstein—
Bézier basis is also known to be the numerically most stable basis on simplices, cf.
[2,3]. On the other hand, the condition number of any basis conversion is always
worse than the gain of stability obtained by using the BernstedaieB basis, so

that algorithms that determine polynomials in the monomial form, say, and then
convert them into the BernsteinéBier basis are useless from a numerical point of
view. Moreover, the application of the classical Gram—Schmidt orthogonalization
procedure is also not advisable in terms of the BernstedzieB basis, as the com-
putational effort of degree raising becomes overwhelming, see [3] where the same
effect is pointed out in the context of polynomial interpolation.

Because of these reasons, it is reasonable to look for methods that work with poly-
nomials entirely in terms of the BernsteineéBer basis, and this is what we will do
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here for the construction of orthogonal polynomials with arbitrary Jacobi weights.
It will turn out that, in contrast to th&odriguez formulavhich can be already
found in [4] for the triangle case, this approach even determines an orthogonal ba-
sis, that is, the basis elements of degrege not only orthogonal to all polynomials

of degreen — 1, they are even mutually orthogonal.

2 Notation

We begin by setting up some terminologyVif C R? is a nondegenerate simplex
with verticesuy, . . ., v4 € R?, then any point € VV can be uniquely represented as
the convex combination

d d
v=>2 uv, w20, > u=1
j=0 j=0

The vectoru = (uy,...,uq) is called thebarycentric coordinatesf the pointv

with respect to the simplek. Being an affine invariant “local” coordinate system
with respect to a given simplex, barycentric coordinates have become an important
tool in CAGD, for example in the context of multivariate spline surfaces, cf. [5], as
they allow to work entirely on thbarycentric standard simplex

d
Sq = {u: (o, - -, uq) € R 2wy > 0,1 = Jul ::Zu]}. (1)

J=0

We will also use a different way of writing the standard simplex, namely as

SZ::{x:(xl,...,xd)ERd : |x]§1}, (2)

and identifyz € S} with u € S, by the straightforward relationship= (1 — |z|, x).
Integration ovef§, is now defined as



yielding the normalizatiorfs du = % Derivatives in barycentric calculus ade
rectional derivatives

where the side condition on tHearycentric directionv stems from the fact that
v is interpreted as the differenee— «' of two pointsu, v’ € S; and thus all its
components must sum to zero.

A basis of the spach,, of all polynomials of total degree at mostre theBernstein—
Bézier basioor B-Basigpolynomials

|
Bol) = (@) V= gl

according to @omogenized multiindex e T := {7 eN |y = n} of order
n. Here,|vy| := v +- - - +14is called thdengthof ~. Like with factorialss!, we also
interpret all other quantities involving vectoRs™+! as products of the individual
values, in particular for thE—function, where we set

I'(v) = ]‘[ I (v), v € R

Jj=0

The Bernstein—Bzier representationor B—-Formfor short, cf. [6], of a polynomial
p € 11, is simply given as

p= > psBs (3

Bery,

Though the elements of the B—basis are indeed very special B—splines, they should
not be confused with the latter as a spline @ecewisgolynomial while here we

deal with polynomials only. A drawback of the B—basis is #ilathe basis elements

of the polynomial spacH,, depend on the degreg in contrast, for example, to the
monomial basis. Hence, the problem of writing the polynomibm (3) in terms

of Bs, 3 € 'Y, ,, is a nontrivial one. Nevertheless, it is not difficult to see, cf. [6],
that

d /6j
= Rp), B Rp), =

p Z(p)g B (p)ﬁ Zn—i—l

0 i
Ber?) j=0

pﬁ—ﬁja (4)

where thedegree raisingoperatork computes the new coefficients for the degree
n + 1 representation in a very stable wayasvex combinationsf the old coeffi-



cients.

Finally, we will denote byl",, = {”Ay eNd . |7 < n} the non—homogeneousul-
tiindices of order< n. Obviously, the two sets of multiindices are related by

3 Jacobi polynomials and differential operators

Fora = (ag,...,aq) € R a; > —1,5 = 0,...,d, Jacobi polynomialsre
orthogonal polynomials with respect to the inner product

(f.9)" = [ F(w) glw)u” du. ©)

Jacobi polynomials on the triangle have already been studied in [4], where, for ex-
ample, a Rodriguez formula has been given. Like usually in multivariate orthogonal
polynomials, we define the spagg C II,, of Jacobi polynomials of degreeby

(P, 11,,_1)* =0, ie., p,)* =0, peP, qell, ;.

Closely related to the Jacobi polynomials is the second order differential operator
A% written as either

@ : —ao T 9 a0+l o+l 0
A :;(1—\$|) z; 87:]-(1_@‘) T oz,
J_
]_ d —Q;  — a a o;+1 +1 a a
- —Qj o |~ Y Xj ag S 6
+2 jgz:l xj Tk (89[:3 8xk> l'] T 8xj Ga:k ( )
or in the more symmetric barycentric form
1 & L [0 0 ajtl apt1 [ O 0
6] — J o T J [0} T 7
A 2 MZO U Uk <8uj 8uk> Y b Ou;  Ouy (7)

In [7] the differential operators have been given in the slightly different but clearly
equivalent form

R A )
A — oY 2 <8uj 8uk> HUyrt <8uj 8uk>' (8)

0<j<k<n



For special cases af, these operators have been given earlier, see, for example,
[8,9] for « = 0 and [10] for the degenerate case= —¢, ¢ = (1, ..., 1). Also note
that thesecond order parof .A“ takes the form

vy (1—21) —z29 ... —X11y 0

117 8 o —Tox1  wo(l—x9) ... —zoxy a_xl
Lo o) @) | o

9

| T —ZqZy ... g (1 —z49) | 04

and isindependenbf «.. Moreover, this purely second order operator from (9) cor-
responds to the cagse= —e and is closely related to the classi@&#drnstein poly-
nomialsas is pointed out in [10]. Some basic facts.drare given in the following
theorem due to Braess and Schwab [7], a proof of which we briefly sketch for the
sake of completeness.

Theorem 1 The operator4®

(1) is elliptic onS,; and strictly elliptic on the interior of,.
(2) is self—adjoint with respect to the inner product (22):

(A%f,9)" = (f, A%g)".

(3) has the Jacobi polynomials as eigenfunctions whose associated eigenvalue
depends only on the total degree:

A%p = —n(n+ |a| +d) p, pE P, (10)

PROOF. The ellipticity follows immediately from (9) as shown, for example in
[11], but clearly the smallest eigenvalue becomes zerg if= 0 for somel <

j < dand also foz| = 1. Self-adjointness, on the other hand, follows by partial
integration, while for (10) one first computes fore= (v, ...,7v4) € T, that

d

Ax” = =yl (W] +lal +d) 27+ 35 (v + az) 2779 (11)

Jj=1

from which we conclude thatd — 1) I1,, C I1,,_;. The unique monic Jacobi poly-
nomialp%, ~ eT,, of the formpg(x) =27 + p(x), p € 11,4, satisfies

(Arg,q)" = (15, 4g)" =0, g&lliy,



and therefore we have thatp% € P,. Butby (11) this is again a monic polynomial

with leading termz” and thus is a multiple oﬁa Comparing leading coefficients
in (11) then immediately yields (10}

4 Bernstein—Durrmeyer operators

A main tool in the construction of the Jacobi polynomials will be, like in [1], the
Bernstein—Durrmeyer operatassociated to the Jacobi weighft, most conve-
niently written as

V() = (£ 15 Cou))® = [ () K (,0) 0™ do, (12)
Sq

with the symmetric kernel

K (u,0) = ) B[ziu)Béo(év) (13)

n

Note that thex—dependency of the kernel results only from the normalization co-
efficient for3 € T

Fsl+1) T'(a+pB+e) _Tla+eol(f[+1) (a+e)s
L(B+e) T'(la+8+e€) L (|3+a+e) 61

(1, Bg)" = (14)

which ensures thalt;*1 = 1 for all n € Ny. Here(a + €) , denotes the product
Pochhammer symbols, cf. [12, p. 256]

d
OH"E HO‘J+1 (o + 8;) -
7=0

Next, we give some crucial facts on the Bernstein—Durrmeyer operators.

Theorem 2 The Bernstein—Durrmeyer operatovg', n € Ny, have the following
properties:

(1) Fory € N¢*! the monomiatn., (u) = u” satisfies

Vem, - I(la+6+e¢|) 22() n! I%a+7+@u¢aa

! P(la+8+y+e) 7z \n) (n=mD!' T (a+n+e)

In particular, V211, C 11, k € Np.



(2) They commute with the differential operatdt:
VIAY = A"V (16)

(3) The Jacobi polynomials are eigenfunctions: for any P,,, m < n, we have
that

n! [ (Ja+ € +m)

Vep =
n P (n—m)! T (Ja+¢ +m+n)

PROOF. To prove (15), we assume thgt| < n, as otherwise the statement is
trivially true, and first note that fof € I'° we have

(my,Bg)* T (la+B+¢)

MW By)~ Tlatdtyra @A+

hence,
o T(a+B+e)
V"m”_r(loz+6+v+e\)%:ngrﬁH)”Bﬁ' (19)

On the other hand, the (formal) identity

al”/l 8'

gl
+a to
g (471 (oo ua)) = GT 32 B
_az<>av +ﬁ+7:Z(a+ﬁ+e)735
Bero u Bero

together with the (formal) Leibniz expansion

7Q@ O (g ) = vy n! F(oz—l—v—f—e)w
( (uo + -+ + d))—2<>(

our =) (n=n)!' T (a+n+e)

immediately yields (15). Now, settingy = 0, then alsop, = 0 for all n < 4
and thus the monomiaf” is mapped to a linear combination of the monomiéls

n <.

Equation (16) is a consequence of the symmetry of the kekifeland the self
adjointness of4°.



To prove (17), we again use the monic Jacobi polynor‘rpﬁjsy\ = m, and con-
clude from (15) that

n! I'(|la+ €l +m)
Vepe — pO‘A 19
" (n=m)! T (la+ €l +m+n) e (19)

for someq € II,_;. Expandingg in terms Ofp%, |7l < n, and using the com-
muting property (16) together with (19) to compare the expansion coefficients in
AaVapA = VO‘AO‘pA a simple inductive argument shows thahust be zero, pro-
viding us with (17) O

Based on the properties listed in Theorem 2, one could also study approximation
properties of the de la Vake—Poussin like summation procedure given by the pos-
itive linear operatoit/, just like in [9,10]. Since we are interested in the construc-
tion of orthogonal polynomials, however, we will not pursue this line any further
here.

5 The discrete inner product and a characterization of orthogonal polyno-
mials

For a given degree € N, and polynomialsp, ¢ € II, with respective Bzier
coefficientsy; andgg, 5 € T, we define thaliscrete inner producdf ordern

Q=) pegpw(B),  w(B):= “ +|€)ﬁ (20)
Bery, A

and observe that for = 0 the identity(¢) , = (! yieldsw® = 1 and thus the inner
product becomes the one from [1] in this situatiorp ¥ 11, andqg € 11,,, m < n,
then we use the degree raising operator to extend the product as

(p.a)y = (R""p.q) ;

therefore, the inner product depends only on the polynomials, not on their specific
representation of a certain degree. With respect to the inner prddugt, the
degree raising operatdt has an adjoint which can be computed to be

(R'p,q)" =(p,Ra)s = Y ps (Ra), Z > pa*qﬁ o w(B)

Ber? Jj=0ger?



B+ 1 N
DB+e; qugw (B +¢)

d
-3
=03

ero

n—1

_ Z (ZBJ+1CYJ+6J+1pﬂ+GJ) qﬁwa(ﬁ>7

/3€F9L_1 =0 n ﬁj -+ 1

yielding the explicit formula for the degree reduction operdtbras

:ifw+@+1

(Bp), e ppee,  BEDL (21)

J=0

Though this operator is based on convex combinations if and ofalytife| = 1, for
example whem = —ﬁdle, we still note that all coefficients appearing in (21) are at
leastpositivesincea; > —1, 7 = 0,...,d. Now we are in position to characterize

Jacobi polynomials in terms of the adjoint degree raising operator.

Theorem 3 A polynomialp € II,, belongs taP,, if and only if RTp = 0.

PROOF. Theorem 3 is direct consequence of the case n in Proposition 4 that
follows immediately. Indeed, if € P,, andq € I1,,_,, then (22) implies that

«

0= (p, Rg)y = (R"p,q) .

n

and this holds true foanyq < I1,,_, if and only if RTp = 0. O

The next proposition is not only a useful tool for the proof of Theorem 3, it also
shows how the inner product between a polynomial frBm, m # n, and an
arbitrary polynomial of degree can be computed in terms of the discrete inner
product.

Proposition 4 Form < nletp € P,, andq € II,,. Then

(n+ |a+€)
I'(a+e)n!

(p,q)" = An,mr (0, a)n (22)

PROOF. We first notice that

. - - Bgy)”
Rm n B, = _ )\ 1 Va _ )\ 1 <p7 B aB
B§9L< p>6 ol man o b - ﬁ;g <1>Bﬁ> o

so that comparison of coefficients and (14) give



(p, Bs)" = A (R" D) 5 (1, Bg)"

= )‘n,m (Rm_np)ﬁ w® (ﬁ)

(B4 a+e¢)
F(a+e)T (|8 +1)

Consequently,

0. 0)"=>_ 4 (p.B)"

Bery,
['(n+|a+e€)
I'(a+e€) n!

- )\n,m

> (rRmp) 5 8w (6)

BETY,

which is (22).0

We next give a slightly uncommon way to parameterize the Jacobi polynomials,
namely by their restriction on a face ®f. The that end, we denote by

Gde = {UESd CUy :0}

the j—faceof S,;. Any such face is isomorphic t§,_; and their union forms the
boundaryoS, of S,;. Analogously, we also define

oIy ={Bery : g;=0}.

One appealing geometric property of representing polynomials in B—form is that
the restriction of a polynomiab € II, to 9,;S, depends only on the coefficients
ps, B € 0;TY, and therefore, ¢ € II,, coincide ond;S, if and only if ps = g,

pe oy,

Theorem 5 For givenj € {0,...,d} andq € II, there exists a unique polynomial
p € P, such that

Plo,se = 4lo,8.; e,  pu) =qu), ueIS,.

PROOF. Writing ¢ in its B—form of degree:, we get coefficientgs, 5 € TY.
Settingps = ¢ for B € 9;TY, we immediately obtain coincidence of the two

polynomials ord;S,. For anys € 9;,T%_,, the requiremen(RTp)B = 0 can then
be rewritten as

ap + B +1
pﬁ+6j:_z

————— DBters e, €O k£ 5, 23

10



which defines the coefficients;, 3 € I, 3, = 1. Repeating this argument, we
also define the coefficiens;, 3, = 2,3,...,n, and end up with the coefficients
for a polynomialp such that?”p = 0. By Theorem 3p belongs taP,,. O

Theorem 5 tells us that we can normalize the Jacobi polynomigl3, iby pre-
scribing polynomials of degree at maston one fixed face oF,. This is in full
coincidence with the univariate case where usually the orthogonal polynomials are
fixed by their behavior on some zero dimensional face of the interval, i.e., by their
behavior in one of its endpoints.

6 Construction and orthogonality

The basic idea of the construction of a basis™ n > 0, is suggested by The-
orem 5: we fixj, take a basis of orthogonal polynomials of degree: in d — 1
variables, obtained by a recursive application of the method, and extend any of
these polynomials to an element Bf, by means of (23). This way, we obtain a
basis

{pa[ﬁ] € P Ae Fn} C II,, n € Ny,

of orthogonal polynomials. Using := (b1, ..., Ba—1) for the “truncated” multiin-
dex, the Ezier coefficients of = p“[] are defined recursively by

pw:<Rn_’B,‘Pa[B/]) L Y €O, (24)
'yJ
ap + 7+ 1

€ = — B — e — €19 26,6207,77/_1 25

p7+J ,;oszrvj—Irlka 7] ( )

However, this construction even gives us more: the orthogonal polynomials are not
only orthogonal to those of lower degree, they are evernually orthogonal. In
other words, we have the following result.

Theorem 6 The polynomialgoa[ﬁ], B e I',, n € Ny, are an orthogonal basis of
the spacdl of all polynomials.

PROOF. For 3,7 € I',, we have to show that

-~ «

0=(p"1Bl,p"[)) = (.a)",  B#A, (26)

11



where, for brevity, we set = p9i andq = P The identity (26) follows directly

from Theorem 3 i 6’ # 7. OtherW|se we use a different interpretation of (25) in
terms of the coefficient vectors

~

P8 = bk s ne ] =Bl - =k,  k=0...n,

which we consider to be coefficient vectors associated to polynomials of degree
n — k defined ond;S,;. Then the recursion (24) and (25) can then be rewritten in
vector form as

P8 = R1Plpe(3),  p[B) = — RTpMA), (27)

_n=rF
Oéj+k+1

) ! ko= |3
V= (n—k)!n<aj+1>k (77 m P, (28)

where the operatorB” and R have to be understood as actingdin- 1 variables.

By Lemma 8, which will be stated and proven next, this impliesifor n — |3’
that
o ——————— L (29)
(n—k)(a; +1), |5/ sn=5 |k

and sincqf‘m [3] is a multiple of the coefficient vector of the orthogonal poly-
nomialp®[J'] it follows that

A =0, k> B (30)

Now we are in position to complete the proof of (26). WheneVet 5 and‘B‘ =
|7| =: n it follows that 3’ 7' and without loss of generality we can also assume

that|3'| > |¥’|. Using (29) and (28) we then get that
I | - a N o
o (ﬁ,jjd) AR = (7Bl o)

i <pk >a (a; +1),
Pt &kl
n—|p 2

(o R YR A
— k) oy + 1), ) TIB k| P R g

X
k=

o

12



x <Rn_‘b\,|_kpa[6j]7Rn_|§/|_kpa[f/}7j]> — 0,

n—k
due to Proposition 4. This finally verifies (26).
Remark 7 The vector recursion (27) fails to defipéif o = —e, reflecting the fact
that in this case the behavior of the orthogonal polynomials on the boundary and

inside the simplex are completely decoupled due to the singularity of the weight
function, see [10].

To complete the proof of Theorem 6, we finally need the following technical result
that says thaft” is essentially a left inverse dt.

Lemma 8 For p € P,, we have that

(BT R'p= oy B9p,  0<j<k, (31)

where

(n+k)! Tnt+k—J+|a+e) Mtejn
n+k—7)! Tn+k+lat+e])  Ngrn

/’L’fl,j,k = (

PROOF. For anyq € 11,,,n < m < n + k — j, we note that Proposition 4 gives

o «

_ <Rn+kfmq’ Rkp>n+k

<Rn+kjmq’ (RT>j Rkp>
n+k—j
- Fla+e)T'(n+k+1)

S N )

(q,p)"

as well as

e o \a _ Fa+e)'(n+k—7+1)
Rn+k j—m Rk 7 Y 1 ) a
< ¢ p>n+kfj R D (i k— 4 a4 €]) (. p)

yielding that

«

<Rn+k’—j—mq’ (RT>j Rk’p — ik Rk—jp> = O7

n+k—j

and varyingg overIl,,_; allows us conclude that (31) holds true.

13



7 Examples

In this section, we give finally give some examples what the results of the construc-
tion methods above look like.

Let us begin with the univariate case and the Jacobi polynomials, k£ € Ny,

a = (ap,a1) normalized byp®[k|(1) = 1. This implies thatp,) = 1 and by
means of (25) we are lead to the explicit B—form

(_1)n+k (041 +n — k + 1)k

M=

*In| = B
p [ ] =~ (a0+1)k (k,;n—k)
= (—1)H 0t g 32
2D T, 1), D (32)

this expression, that can also be easily derived from the Rodriguez formula, has
been given in [1] for the case) = a; = 0.

In two variables, this already becomes more complicated. The two extremal cases
of degreen occur when the restriction @,S,, where for convenience we sgt= 0

from now on, is either the constant polynomi&l0] = 1 or the univariate Jacobi
polynomial of degree, that is,p®[n]. We first observe in the case of the boundary
polynomialp®[0] that for anyk € N, the vectorR*p*[0] has all coefficients equal

to 1 and so (29) yields that

n!
(n—70)! (a0 + 1),

pa[(o’ n)]'y = H’O,’yoma 7 € Fga

leading to a polynomial that depends only@an

n!

10 = 3

10,40, Bn—k.k) (Uo) -
Pt (n — ’YO)! (Oéo I 1)% 0 ( )

The opposite extreme is the case®f(n, 0)] that restricts tg*[n] on the boundary.
SinceRTp[n] = 0, we thus get that

(a2 +1)
(_1 mm & ) Yo = 07
p*[(n, 0)], = (a1 +1),, (a2 +1),,
07 Yo 7é 07

from which it follows that

14



P [(0,0)] ()
=(—w)" Y (-1

~EGTY

(ag +1), B ( Uz >
(Oél + 1)71 (042 + 1)72 n72) 1-— Uo ’

This formula admits a geometric interpretation on the extension of “boundary poly-
nomials” to the simplex: a point € S, is connected to the vertey and the value

of p*[(n,0)] (u) is determined by the value of the intersection of this line with
the faced,S, multiplied by the “distance” ternfl — u,)". It also shows that for
increasing: these polynomials “live” essentially on the boundary.
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