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Abstract

The paper describes a method to compute a basis of mutually orthogonal polynomials with
respect to an arbitrary Jacobi weight on the simplex. This construction takes place entirely
in terms of the coefficients with respect to the so–called Bernstein–Bézier form of a poly-
nomial.
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1 Introduction

This paper describes a construction of orthogonal polynomials with respect to arbi-
trary Jacobi weights ond–dimensional simplices, extending the approach from [1]
for Legendre polynomials. The computations will take place entirely with respect to
the so–calledBernstein–B́ezier basiswhich is in several respects the most natural
way to represent polynomials on the simplex, making it very popular in the area
of Computer Aided Geometric Design (CAGD). Besides their appealing geometric
properties, some of which we will present and exploit in this paper, the Bernstein–
Bézier basis is also known to be the numerically most stable basis on simplices, cf.
[2,3]. On the other hand, the condition number of any basis conversion is always
worse than the gain of stability obtained by using the Bernstein–Bézier basis, so
that algorithms that determine polynomials in the monomial form, say, and then
convert them into the Bernstein–Bézier basis are useless from a numerical point of
view. Moreover, the application of the classical Gram–Schmidt orthogonalization
procedure is also not advisable in terms of the Bernstein–Bézier basis, as the com-
putational effort of degree raising becomes overwhelming, see [3] where the same
effect is pointed out in the context of polynomial interpolation.

Because of these reasons, it is reasonable to look for methods that work with poly-
nomials entirely in terms of the Bernstein–Bézier basis, and this is what we will do
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here for the construction of orthogonal polynomials with arbitrary Jacobi weights.
It will turn out that, in contrast to theRodriguez formulawhich can be already
found in [4] for the triangle case, this approach even determines an orthogonal ba-
sis, that is, the basis elements of degreen are not only orthogonal to all polynomials
of degreen− 1, they are even mutually orthogonal.

2 Notation

We begin by setting up some terminology. IfV ⊂ Rd is a nondegenerate simplex
with verticesv0, . . . , vd ∈ Rd, then any pointv ∈ V can be uniquely represented as
the convex combination

v =
d∑

j=0

uj vj, uj ≥ 0,
d∑

j=0

uj = 1.

The vectoru = (u0, . . . , ud) is called thebarycentric coordinatesof the pointv
with respect to the simplexV . Being an affine invariant “local” coordinate system
with respect to a given simplex, barycentric coordinates have become an important
tool in CAGD, for example in the context of multivariate spline surfaces, cf. [5], as
they allow to work entirely on thebarycentric standard simplex

Sd :=

u = (u0, . . . , ud) ∈ Rd+1 : uj ≥ 0, 1 = |u| :=
d∑

j=0

uj

 . (1)

We will also use a different way of writing the standard simplex, namely as

S∗
d :=

{
x = (x1, . . . , xd) ∈ Rd : |x| ≤ 1

}
, (2)

and identifyx ∈ S∗
d with u ∈ Sd by the straightforward relationshipu = (1− |x|, x).

Integration overSd is now defined as

∫
Sd

f(u) du =
∫
S∗

d

f (1− |x|, x) dx

=

1∫
0

1−xd∫
0

· · ·
1−x2−···−xd∫

0

f (1− |x|, x1, . . . , xd) dx1 · · · dxd,
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yielding the normalization
∫
Sd

du = 1
d!

. Derivatives in barycentric calculus aredi-
rectional derivatives

Dv =
d∑

j=0

vj
∂

∂uj

,
d∑

j=0

vj = 0,

where the side condition on thebarycentric directionv stems from the fact that
v is interpreted as the differenceu − u′ of two pointsu, u′ ∈ Sd and thus all its
components must sum to zero.

A basis of the spaceΠn of all polynomials of total degree at mostn are theBernstein–
Bézier basisor B–Basispolynomials

Bβ(u) :=

(
|β|
β

)
uβ :=

|β|!
β0! · · · βd!

uβ0
0 · · ·uβd

d ,

according to ahomogenized multiindexβ ∈ Γ0
n :=

{
γ ∈ Nd+1

0 : |γ| = n
}

of order
n. Here,|γ| := γ0+· · ·+γd is called thelengthof γ. Like with factorialsβ!, we also
interpret all other quantities involving vectorsRd+1 as products of the individual
values, in particular for theΓ–function, where we set

Γ(v) =
d∏

j=0

Γ (vj) , v ∈ Rd+1.

TheBernstein–B́ezier representationor B–Formfor short, cf. [6], of a polynomial
p ∈ Πn is simply given as

p =
∑

β∈Γ0
n

pβ Bβ. (3)

Though the elements of the B–basis are indeed very special B–splines, they should
not be confused with the latter as a spline is apiecewisepolynomial while here we
deal with polynomials only. A drawback of the B–basis is thatall the basis elements
of the polynomial spaceΠn depend on the degreen, in contrast, for example, to the
monomial basis. Hence, the problem of writing the polynomialp from (3) in terms
of Bβ, β ∈ Γ0

n+1, is a nontrivial one. Nevertheless, it is not difficult to see, cf. [6],
that

p =
∑

β∈Γ0
n+1

(Rp)β Bβ, (Rp)β =
d∑

j=0

βj

n + 1
pβ−εj

, (4)

where thedegree raisingoperatorR computes the new coefficients for the degree
n + 1 representation in a very stable way asconvex combinationsof the old coeffi-
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cients.

Finally, we will denote byΓn =
{
γ̂ ∈ Nd

0 : |γ̂| ≤ n
}

thenon–homogeneousmul-
tiindices of order≤ n. Obviously, the two sets of multiindices are related by
γ = (n− |γ̂| , γ̂).

3 Jacobi polynomials and differential operators

For α = (α0, . . . , αd) ∈ Rd+1, αj > −1, j = 0, . . . , d, Jacobi polynomialsare
orthogonal polynomials with respect to the inner product

〈f, g〉α :=
∫
Sd

f(u) g(u) uα du. (5)

Jacobi polynomials on the triangle have already been studied in [4], where, for ex-
ample, a Rodriguez formula has been given. Like usually in multivariate orthogonal
polynomials, we define the spacePn ⊂ Πn of Jacobi polynomials of degreen by

〈Pn, Πn−1〉α = 0, i.e., 〈p, q〉α = 0, p ∈ Pn, q ∈ Πn−1.

Closely related to the Jacobi polynomials is the second order differential operator
Aα written as either

Aα =
d∑

j=1

(1− |x|)−α0 x
−αj

j

∂

∂xj

(1− |x|)α0+1 x
αj+1
j

∂

∂xj

+
1

2

d∑
j,k=1

x
−αj

j x−αk
k

(
∂

∂xj

− ∂

∂xk

)
x

αj+1
j xαk+1

k

(
∂

∂xj

− ∂

∂xk

)
(6)

or in the more symmetric barycentric form

Aα =
1

2

d∑
j,k=0

u
−αj

j u−αk
k

(
∂

∂uj

− ∂

∂uk

)
u

αj+1
j uαk+1

k

(
∂

∂uj

− ∂

∂uk

)
. (7)

In [7] the differential operators have been given in the slightly different but clearly
equivalent form

Aα =
1

2
u−α

∑
0≤j<k≤n

(
∂

∂uj

− ∂

∂uk

)
ujuku

α

(
∂

∂uj

− ∂

∂uk

)
. (8)
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For special cases ofα, these operators have been given earlier, see, for example,
[8,9] for α = 0 and [10] for the degenerate caseα = −ε, ε = (1, . . . , 1). Also note
that thesecond order partof Aα takes the form

1

2

[
∂

∂x1

· · · ∂

∂xd

]


x1 (1− x1) −x1x2 . . . −x1xd

−x2x1 x2 (1− x2) . . . −x2xd

...
...

...
...

−xdx1 −xdx2 . . . xd (1− xd)





∂

∂x1
...
∂

∂xd

 (9)

and isindependentof α. Moreover, this purely second order operator from (9) cor-
responds to the caseα = −ε and is closely related to the classicalBernstein poly-
nomialsas is pointed out in [10]. Some basic facts onA are given in the following
theorem due to Braess and Schwab [7], a proof of which we briefly sketch for the
sake of completeness.

Theorem 1 The operatorAα

(1) is elliptic onSd and strictly elliptic on the interior ofSd.
(2) is self–adjoint with respect to the inner product (22):

〈Aαf, g〉α = 〈f,Aαg〉α .

(3) has the Jacobi polynomials as eigenfunctions whose associated eigenvalue
depends only on the total degree:

Aαp = −n (n + |α|+ d) p, p ∈ Pn. (10)

PROOF. The ellipticity follows immediately from (9) as shown, for example in
[11], but clearly the smallest eigenvalue becomes zero ifxj = 0 for some1 ≤
j ≤ d and also for|x| = 1. Self–adjointness, on the other hand, follows by partial
integration, while for (10) one first computes forγ = (γ1, . . . , γd) ∈ Γn that

Axγ = −|γ| (|γ|+ |α|+ d) xγ +
d∑

j=1

γj (γj + αj) xγ−εj (11)

from which we conclude that(A− I) Πn ⊆ Πn−1. The unique monic Jacobi poly-
nomialpα

γ̂
, γ̂ ∈ Γn, of the formpα

γ̂
(x) = xγ̂ + p(x), p ∈ Πn−1, satisfies

〈
A pα

γ̂ , q
〉α

=
〈
pα

γ̂ ,A q
〉α

= 0, q ∈ Πn−1,
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and therefore we have thatA pα
γ̂
∈ Pn. But by (11) this is again a monic polynomial

with leading termxγ̂ and thus is a multiple ofpα
γ̂
. Comparing leading coefficients

in (11) then immediately yields (10).2

4 Bernstein–Durrmeyer operators

A main tool in the construction of the Jacobi polynomials will be, like in [1], the
Bernstein–Durrmeyer operatorassociated to the Jacobi weightuα, most conve-
niently written as

V α
n f(u) = 〈f, Kα

n (·, u)〉α =
∫
Sd

f(u) Kα
n (u, v) vα dv, (12)

with the symmetric kernel

Kα
n (u, v) =

∑
β∈Γ0

n

Bβ(u)Bβ(v)

〈1, Bβ〉α
. (13)

Note that theα–dependency of the kernel results only from the normalization co-
efficient forβ ∈ Γ0

n

〈1, Bβ〉α =
Γ (|β|+ 1)

Γ(β + ε)

Γ (α + β + ε)

Γ (|α + β + ε|)
=

Γ (α + ε) Γ (|β|+ 1)

Γ (|β + α + ε|)
(α + ε)β

β!
,(14)

which ensures thatV α
n 1 = 1 for all n ∈ N0. Here(α + ε)β denotes the product

Pochhammer symbols, cf. [12, p. 256]

(α + ε)β =
d∏

j=0

(αj + 1) · · · (αj + βj) .

Next, we give some crucial facts on the Bernstein–Durrmeyer operators.

Theorem 2 The Bernstein–Durrmeyer operatorsV α
n , n ∈ N0, have the following

properties:

(1) For γ ∈ Nd+1
0 the monomialmγ(u) = uγ satisfies

V α
n mγ =

Γ (|α + β + ε|)
Γ (|α + β + γ + ε|)

∑
η≤γ

(
γ

η

)
n!

(n− |η|)!
Γ (α + γ + ε)

Γ (α + η + ε)
uη. (15)

In particular, V α
n Πk ⊆ Πk, k ∈ N0.
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(2) They commute with the differential operatorAα:

V α
n Aα = AαV α

n . (16)

(3) The Jacobi polynomials are eigenfunctions: for anyp ∈ Pm, m ≤ n, we have
that

V α
n p =

n!

(n−m)!

Γ (|α + ε|+ m)

Γ (|α + ε|+ m + n)
p =: λn,m p. (17)

PROOF. To prove (15), we assume that|γ| ≤ n, as otherwise the statement is
trivially true, and first note that forβ ∈ Γ0

n we have

〈mγ, Bβ〉α

〈1, Bβ〉α
=

Γ (|α + β + ε|)
Γ (|α + β + γ + ε|)

(α + β + ε)γ ,

hence,

V α
n mγ =

Γ (|α + β + ε|)
Γ (|α + β + γ + ε|)

∑
β∈Γ0

n

(α + β + ε)γ Bβ. (18)

On the other hand, the (formal) identity

u−α ∂|γ|

∂uγ

(
uγ+α (u0 + · · ·+ ud)

n
)

= u−α ∂|γ|

∂uγ

∑
β∈Γ0

n

uγ+αBβ(u)

= u−α
∑

β∈Γ0
n

(
n

β

)
∂|γ|

∂uγ
uα+β+γ =

∑
β∈Γ0

n

(α + β + ε)γ Bβ

together with the (formal) Leibniz expansion

u−α ∂|γ|

∂uγ

(
uγ+α (u0 + · · ·+ ud)

n
)

=
∑
η≤γ

(
γ

η

)
n!

(n− |η|)!
Γ (α + γ + ε)

Γ (α + η + ε)
uη

immediately yields (15). Now, settingγ0 = 0, then alsoη0 = 0 for all η ≤ γ
and thus the monomialxγ̂ is mapped to a linear combination of the monomialsxη̂,
η ≤ γ.

Equation (16) is a consequence of the symmetry of the kernelKα
n and the self

adjointness ofAα.
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To prove (17), we again use the monic Jacobi polynomialspα
γ̂
, |γ̂| = m, and con-

clude from (15) that

V α
n pα

γ̂ =
n!

(n−m)!

Γ (|α + ε|+ m)

Γ (|α + ε|+ m + n)
pα

γ̂ + q (19)

for someq ∈ Πn−1. Expandingq in terms ofpα
η̂
, |η̂| < n, and using the com-

muting property (16) together with (19) to compare the expansion coefficients in
AαV α

n pα
γ̂

= V α
n Aαpα

γ̂
, a simple inductive argument shows thatq must be zero, pro-

viding us with (17).2

Based on the properties listed in Theorem 2, one could also study approximation
properties of the de la Vallée–Poussin like summation procedure given by the pos-
itive linear operatorV α

n , just like in [9,10]. Since we are interested in the construc-
tion of orthogonal polynomials, however, we will not pursue this line any further
here.

5 The discrete inner product and a characterization of orthogonal polyno-
mials

For a given degreen ∈ N0 and polynomialsp, q ∈ Πn with respective B́ezier
coefficientspβ andqβ, β ∈ Γ0

n, we define thediscrete inner productof ordern

〈p, q〉αn :=
∑

β∈Γ0
n

pβ qβ wα(β), wα(β) :=
(α + ε)β

β!
(20)

and observe that forα = 0 the identity(ε)β = β! yieldswα ≡ 1 and thus the inner
product becomes the one from [1] in this situation. Ifp ∈ Πm andq ∈ Πn, m ≤ n,
then we use the degree raising operator to extend the product as

〈p, q〉αn =
〈
Rn−mp, q

〉α

n
;

therefore, the inner product depends only on the polynomials, not on their specific
representation of a certain degree. With respect to the inner product〈·, ·〉αn, the
degree raising operatorR has an adjoint which can be computed to be

〈
RT p, q

〉α

n
= 〈p, Rq〉αn =

∑
β∈Γ0

n

pβ (Rq)β wα(β) =
d∑

j=0

∑
β∈Γ0

n

pβ
βj

n
qβ−εj

wα(β)
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=
d∑

j=0

∑
β∈Γ0

n−1

pβ+εj

βj + 1

n
qβ wα (β + εj)

=
∑

β∈Γ0
n−1

 d∑
j=0

βj + 1

n

αj + βj + 1

βj + 1
pβ+εj

 qβ wα(β),

yielding the explicit formula for the degree reduction operatorRT as

(
RT p

)
β

=
d∑

j=0

αj + βj + 1

n
pβ+εj

, β ∈ Γ0
n−1. (21)

Though this operator is based on convex combinations if and only if|α + ε| = 1, for
example whenα = − d

d+1
ε, we still note that all coefficients appearing in (21) are at

leastpositivesinceαj > −1, j = 0, . . . , d. Now we are in position to characterize
Jacobi polynomials in terms of the adjoint degree raising operator.

Theorem 3 A polynomialp ∈ Πn belongs toPn if and only ifRT p = 0.

PROOF. Theorem 3 is direct consequence of the casem = n in Proposition 4 that
follows immediately. Indeed, ifp ∈ Pn andq ∈ Πn−1, then (22) implies that

0 = 〈p, Rq〉αn =
〈
RT p, q

〉α

n
,

and this holds true foranyq ∈ Πn−1 if and only if RT p = 0. 2

The next proposition is not only a useful tool for the proof of Theorem 3, it also
shows how the inner product between a polynomial fromPm, m 6= n, and an
arbitrary polynomial of degreen can be computed in terms of the discrete inner
product.

Proposition 4 For m ≤ n let p ∈ Pm andq ∈ Πn. Then

〈p, q〉α = λn,m
Γ (n + |α + ε|)

Γ (α + ε) n!
〈p, q〉αn (22)

PROOF. We first notice that

∑
β∈Γ0

n

(
Rm−np

)
β

Bβ = p = λ−1
n,mV α

n p = λ−1
n,m

∑
β∈Γ0

n

〈p, Bβ〉α

〈1, Bβ〉α
Bβ

so that comparison of coefficients and (14) give
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〈p, Bβ〉α = λn,m

(
Rm−np

)
β
〈1, Bβ〉α

= λn,m

(
Rm−np

)
β

wα(β)
Γ (|β + α + ε|)

Γ (α + ε) Γ (|β|+ 1)
.

Consequently,

〈p, q〉α =
∑

β∈Γ0
n

qβ 〈p, Bβ〉α

= λn,m
Γ (n + |α + ε|)
Γ (α + ε) n!

∑
β∈Γ0

n

(
Rn−mp

)
β

qβ wα(β)

which is (22).2

We next give a slightly uncommon way to parameterize the Jacobi polynomials,
namely by their restriction on a face ofSd. The that end, we denote by

∂jSd := {u ∈ Sd : uj = 0}

the j–faceof Sd. Any such face is isomorphic toSd−1 and their union forms the
boundary∂Sd of Sd. Analogously, we also define

∂jΓ
0
n =

{
β ∈ Γ0

n : βj = 0
}

.

One appealing geometric property of representing polynomials in B–form is that
the restriction of a polynomialp ∈ Πn to ∂jSd depends only on the coefficients
pβ, β ∈ ∂jΓ

0
n, and thereforep, q ∈ Πn coincide on∂jSd if and only if pβ = qβ,

β ∈ ∂jΓ
0
n.

Theorem 5 For givenj ∈ {0, . . . , d} andq ∈ Πn there exists a unique polynomial
p ∈ Pn such that

p|∂jSd
= q|∂jSd

, i.e., p(u) = q(u), u ∈ ∂jSd.

PROOF. Writing q in its B–form of degreen, we get coefficientsqβ, β ∈ Γ0
n.

Settingpβ = qβ for β ∈ ∂jΓ
0
n, we immediately obtain coincidence of the two

polynomials on∂jSd. For anyβ ∈ ∂jΓ
0
n−1, the requirement

(
RT p

)
β

= 0 can then

be rewritten as

pβ+εj
= −

∑
k 6=j

αk + βk + 1

αj + βj + 1
pβ+εk

, β + εk ∈ ∂jΓ
0
n, k 6= j, (23)
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which defines the coefficientspβ, β ∈ Γ0
n, βj = 1. Repeating this argument, we

also define the coefficientspβ, βj = 2, 3, . . . , n, and end up with the coefficients
for a polynomialp such thatRT p = 0. By Theorem 3,p belongs toPn. 2

Theorem 5 tells us that we can normalize the Jacobi polynomials inPn by pre-
scribing polynomials of degree at mostn on one fixed face ofSd. This is in full
coincidence with the univariate case where usually the orthogonal polynomials are
fixed by their behavior on some zero dimensional face of the interval, i.e., by their
behavior in one of its endpoints.

6 Construction and orthogonality

The basic idea of the construction of a basis forPn, n ≥ 0, is suggested by The-
orem 5: we fixj, take a basis of orthogonal polynomials of degree≤ n in d − 1
variables, obtained by a recursive application of the method, and extend any of
these polynomials to an element ofPn by means of (23). This way, we obtain a
basis{

pα[β̂] ∈ P|β̂| : β̂ ∈ Γn

}
⊂ Πn, n ∈ N0,

of orthogonal polynomials. Usinĝβ′ := (β1, . . . , βd−1) for the “truncated” multiin-
dex, the B́ezier coefficients ofp = pα[β̂] are defined recursively by

pγ =
(
Rn−|β̂′| pα[β̂′]

)
γj

, γ ∈ ∂jΓ
n
0 , (24)

pγ+εj
=−

∑
k 6=j

αk + γk + 1

αj + γj + 1
pγ+εk

, γj = `, ` = 0, . . . , n− 1. (25)

However, this construction even gives us more: the orthogonal polynomials are not
only orthogonal to those of lower degree, they are evenmutuallyorthogonal. In
other words, we have the following result.

Theorem 6 The polynomialspα[β̂], β̂ ∈ Γn, n ∈ N0, are an orthogonal basis of
the spaceΠ of all polynomials.

PROOF. For β̂, γ̂ ∈ Γn we have to show that

0 =
〈
pα[β̂], pα[γ̂]

〉α
=: 〈p, q〉α , β̂ 6= γ̂, (26)
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where, for brevity, we setp = pα

β̂
andq = pα

γ̂
. The identity (26) follows directly

from Theorem 3 if
∣∣∣β̂∣∣∣ 6= |γ̂|. Otherwise, we use a different interpretation of (25) in

terms of the coefficient vectors

pk[β̂] :=
[
pk

η : η ∈ ∂jΓ
0
n−k

]
:=
[
pα[β̂]γ : γj = k

]
, k = 0, . . . , n,

which we consider to be coefficient vectors associated to polynomials of degree
n − k defined on∂jSd. Then the recursion (24) and (25) can then be rewritten in
vector form as

p0[β̂] = Rn−|β̂′| pα[β̂′], pk+1[β̂] = − n− k

αj + k + 1
RT pk[β̂], (27)

i.e.,

pk[β̂] =
n!

(n− k)! (αj + 1)k

(
RT
)k

Rn−|β̂′| pα[β̂′], (28)

where the operatorsRT andR have to be understood as acting ind − 1 variables.
By Lemma 8, which will be stated and proven next, this implies fork ≤ n −

∣∣∣β̂′
∣∣∣

that

pk[β̂] =
n!

(n− k)! (αj + 1)k

µ|β̂′|,n−|β̂′|,k Rn−|β̂′|−k pα[β̂j] (29)

and sincepn−|β̂′|[β̂] is a multiple of the coefficient vector of the orthogonal poly-
nomialpα[β̂′] it follows that

pk[β̂] = 0, k > β̂j. (30)

Now we are in position to complete the proof of (26). Wheneverβ̂ 6= γ̂ and
∣∣∣β̂∣∣∣ =

|γ̂| =: n it follows that β̂′ 6= γ̂′ and without loss of generality we can also assume
that

∣∣∣β̂′
∣∣∣ ≥ |γ̂′|. Using (29) and (28) we then get that

λ−1
n,n

Γ (α + ε) n!

Γ (n + |α + ε|)
〈
pα[β̂], pα[γ̂]

〉α
=
〈
pα[β̂], pα[γ̂]

〉α

n

=
n∑

k=0

〈
pk[β̂], pk[γ̂]

〉α

n−k

(αj + 1)k

k!

=

n−|β̂′|∑
k=0

(
n!

(n− k)! (αj + 1)k

)2

µ|β̂′|,k,n−|β̂′| µ|γ̂′|,k,n−|γ̂′|
(αj + 1)k

k!
×
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×
〈
Rn−|β̂′|−k pα[β̂j], Rn−|β̂′|−k pα[γ̂j]

〉α

n−k
= 0,

due to Proposition 4. This finally verifies (26).

Remark 7 The vector recursion (27) fails to definep1 if α = −ε, reflecting the fact
that in this case the behavior of the orthogonal polynomials on the boundary and
inside the simplex are completely decoupled due to the singularity of the weight
function, see [10].

To complete the proof of Theorem 6, we finally need the following technical result
that says thatRT is essentially a left inverse ofR.

Lemma 8 For p ∈ Pn we have that

(
RT
)j

Rkp = µn,j,k Rk−jp, 0 ≤ j ≤ k, (31)

where

µn,j,k =
(n + k)!

(n + k − j)!

Γ (n + k − j + |α + ε|)
Γ (n + k + |α + ε|)

λn+k−j,n

λn+k,n

.

PROOF. For anyq ∈ Πm, n ≤ m ≤ n + k − j, we note that Proposition 4 gives

〈
Rn+k−j−mq,

(
RT
)j

Rkp
〉α

n+k−j
=
〈
Rn+k−mq, Rkp

〉α

n+k

= λ−1
n+k,n

Γ (α + ε) Γ (n + k + 1)

Γ (n + k + |α + ε|)
〈q, p〉α

as well as

〈
Rn+k−j−mq, Rk−jp

〉α

n+k−j
= λ−1

n+k−j,n

Γ (α + ε) Γ (n + k − j + 1)

Γ (n + k − j + |α + ε|)
〈q, p〉α

yielding that

〈
Rn+k−j−mq,

(
RT
)j

Rkp− µn,j,k Rk−jp
〉α

n+k−j
= 0,

and varyingq overΠn+k−j allows us conclude that (31) holds true.2
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7 Examples

In this section, we give finally give some examples what the results of the construc-
tion methods above look like.

Let us begin with the univariate case and the Jacobi polynomialspα[k], k ∈ N0,
α = (α0, α1) normalized bypα[k](1) = 1. This implies thatp(0,n) = 1 and by
means of (25) we are lead to the explicit B–form

pα[n] =
n∑

k=0

(−1)n+k (α1 + n− k + 1)k

(α0 + 1)k

B(k,n−k)

=
n∑

k=0

(−1)n+k (α1 + 1)n

(α0 + 1)k (α1 + 1)n−k

B(k,n−k); (32)

this expression, that can also be easily derived from the Rodriguez formula, has
been given in [1] for the caseα0 = α1 = 0.

In two variables, this already becomes more complicated. The two extremal cases
of degreen occur when the restriction to∂jS2, where for convenience we setj = 0
from now on, is either the constant polynomialpα[0] ≡ 1 or the univariate Jacobi
polynomial of degreen, that is,pα[n]. We first observe in the case of the boundary
polynomialpα[0] that for anyk ∈ N0 the vectorRkpα[0] has all coefficients equal
to 1 and so (29) yields that

pα[(0, n)]γ =
n!

(n− γ0)! (α0 + 1)γ0

µ0,γ0,n, γ ∈ Γ0
n,

leading to a polynomial that depends only onu0:

pα[(0, n)](u) =
n∑

k=0

n!

(n− γ0)! (α0 + 1)γ0

µ0,γ0,n B(n−k,k) (u0) .

The opposite extreme is the case ofpα[(n, 0)] that restricts topα[n] on the boundary.
SinceRT pα[n] = 0, we thus get that

pα[(n, 0)]γ =


(−1)n+γ1

(α2 + 1)n

(α1 + 1)γ1
(α2 + 1)γ2

, γ0 = 0,

0, γ0 6= 0,

from which it follows that
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pα [(n, 0)] (u)

= (1− u0)
n

∑
γ∈∂0Γ0

n

(−1)n+γ1
(α2 + 1)n

(α1 + 1)γ1
(α2 + 1)γ2

B(γ1,γ2)

(
u2

1− u0

)
.

This formula admits a geometric interpretation on the extension of “boundary poly-
nomials” to the simplex: a pointu ∈ Sd is connected to the vertexε0 and the value
of pα [(n, 0)] (u) is determined by the value of the intersection of this line with
the face∂0Sd multiplied by the “distance” term(1− u0)

n. It also shows that for
increasingn these polynomials “live” essentially on the boundary.
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