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Abstract

In this paper, we treat three questions related to the d-orthogonality of the Humbert polynomials. The first one consists to
determinate the explicit expression of the d-dimensional functional vector for which the d-orthogonality holds. The second one
is the investigation of the components of Humbert polynomial sequence. That allows us to introduce, as far as we know, new
d-orthogonal polynomials generalizing the classical Jacobi ones. The third one consists to solve a characterization problem related
to a generalized hypergeometric representation of the Humbert polynomials.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The Humbert polynomials defined by the expansion [22]:(
1 − (d + 1)xt + td+1)−ν =

∑
n�0

hν
n,d+1(x)tn, (1.1)

where ν > − 1
2 , ν �= 0 and d is a positive integer, were first studied by Pincherle [30], in the limiting case ν = − 1

2 ,
d = 2, and later extended by Humbert [22] and Devisme [15]. Various works in the literature (see, for instance, [3,
19–21] and references therein) have focused on the analysis of some properties of these polynomials. Some of these
properties are analogous to those of Gegenbauer’s polynomials. But the Humbert polynomials hν

n,d+1(x) with d � 2
fulfil the following recurrence relation:

hν
n+1,d+1(x) = (ν + n)(d + 1)

(n + 1)
xhν

n,d+1(x) −
(

(d + 1)(ν − 1)

(n + 1)
+ 1

)
hν

n−d,d+1(x). (1.2)

That is, they do not satisfy a three-term recurrence relation of the kind which is necessary for the polynomials to be
orthogonal over any interval a � x � b in the way that the Gegenbauer polynomials are (see, for instance, Favard the-
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orem [14]). (d +1)-Order recurrence relations of type (1.2) are related to the notion of d-orthogonality. That concerns
a natural and canonical extension of the ordinary orthogonality. Such notion is connected with the study of vector
Padé approximants, simultaneous Padé approximants, and other problems as vectorial continued fractions, polynomi-
als solutions of higher-order differential equations. The concept of d-orthogonality appears as a particular case of the
general multiple orthogonality [1,4]. It was first introduced by Van Iseghem [33] and completed by Maroni [27]. Later,
some recent works were focused in the analysis of properties of d-orthogonal polynomials generalizing the classical
orthogonal polynomials (see [16,17,27–29]) and many characterization theorems were derived (see [6,8–12,16,17,27,
34]).

To draw up our contribution in this paper, we recall the following notions and results which we need also throughout
this work.

Let P be the vector space of polynomials with coefficients in C and let P ′ be its algebraic dual. We denote by 〈u,f 〉
the effect of the functional u ∈ P ′ on the polynomial f ∈ P . A polynomial sequence {Pn}n�0 is called a polynomial
set (PS, for shorter) if and only if degPn = n for all non-negative integer n.

Definition 1.1. (See Van Iseghem [33] and Maroni [27].) Let d be a positive integer. A PS {Pn}n�0 is called d-
orthogonal (d-OPS, for shorter) with respect to the d-dimensional functional vector Γ = t (Γ0,Γ1, . . . ,Γd−1) if it
satisfies the following orthogonality relations:{ 〈Γk,PrPn〉 = 0, r > nd + k, n ∈ N = {0,1,2, . . .},

〈Γk,PnPnd+k〉 �= 0, n ∈ N,
(1.3)

for each integer k belonging to Nd = {0,1, . . . , d − 1}.

Definition 1.2. (See Maroni [29].) The d-orthogonal PS {Pn}n�0 owns Hahn’s property if the derivative sequence
{(n + 1)−1 d

dx
Pn+1}n�1 is also d-orthogonal.

In this case, we say that the sequence {Pn}n�0 is a d-orthogonal “classical” PS.

Definition 1.3. (See Douak and Maroni [16].) A PS {Pn}n�0 is called d-symmetric if it fulfils

Pn(wd+1x) = wn
d+1Pn(x), n ∈ N, where wd+1 = exp

(
2iπ

d + 1

)
. (1.4)

For d = 1, w2 = −1 and a PS {Pn}n�0 satisfying (1.4) is symmetric, i.e. Pn(−x) = (−1)nPn(x).

Lemma 1.4. (See Maroni [27].) A PS {Pn}n�0 is a d-OPS if and only if it satisfies a (d + 1)-order recurrence relation
of type

xPn(x) =
d+1∑
k=0

αk,d(n)Pn−d+k(x), (1.5)

where αd+1,d (n)α0,d (n) �= 0, n � d , and by convention, P−n = 0, n � 1.

Lemma 1.5. (See Douak and Maroni [16].) A PS {Pn(x)}n�0 is d-symmetric if and only if there exists (d + 1)

polynomial sequence {P μ
n (x)}n�0; μ ∈ Nd+1; such that

P(d+1)n+μ(x) = xμP μ
n

(
xd+1), μ ∈ Nd+1, n ∈ N.

These (d + 1) families are called the components of the d-symmetric PS {Pn(x)}n�0.

Lemma 1.6. (See Douak and Maroni [16]].) Let {Pn(x)}n�0 be a d-symmetric PS and {ur}r�0 be its dual sequence.
If {Pn(x)}n�0 is d-orthogonal, then the associated components {P μ

n (x)}n�0; μ ∈ Nd+1; are also d-orthogonal and
the d-dimensional functional vector Uμ = t (u

μ
0 , u

μ
1 , . . . , u

μ
d−1) for which {P μ

n (x)}n�0 are d-orthogonal is given by

uμ
r = σd+1

[
xμuμ+r(d+1)

]
, r ∈ Nd, μ ∈ Nd+1,
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where σq designates the operator defined by

σq

[
f (x)

]= f
(
xq
); f ∈P,

q being a positive integer greater or equal to two.

We return now to the Humbert polynomials. Ben Cheikh and Douak [8] showed that these polynomials are “clas-
sical,” d-orthogonal and d-symmetric. This result suggested us two questions.

• The first one consists to express explicitly the d-dimensional functional vector for which the d-orthogonality of
the Humbert polynomials holds. The solution, as integral representations, is known for two particular cases corre-
sponding to Gegenbauer polynomials (d = 1) and to Chebyshev type polynomials (d = 2, ν = 1). For the second
case, the solution was obtained separately by Douak and Maroni [18] and by Ben Cheikh and Ben Romdhane [6].
Two different methods were used in these two papers. The first one is based on the fact that the involved poly-
nomials are “classical,” while the second one is based on the obtention of the dual sequence of a given PS via
lowering operators.

• The second question concerns the study of the components of the Humbert polynomials. For general d , Douak
and Maroni [16] showed that the components are d-orthogonal (Lemma 1.6) and the first one is “classical.”
In the case d = 2, for the corresponding components, Douak and Maroni [16] derived the coefficients of the
third-order recurrence relation satisfied by the components, and Baker [2] obtained generalized hypergeometric
representations. The case d = 1 corresponds to the well-known relationship between Gegenbauer polynomials
Cν

n(.) and Jacobi polynomials P
(α,β)
n (.) [25, p. 39]:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Cν

2n(x) = (ν)n

( 1
2 )n

P
(ν− 1

2 ,− 1
2 )

n

(
2x2 − 1

)
, n ∈ N,

Cν
2n+1(x) = (ν)n+1

( 1
2 )n+1

xP
(ν− 1

2 , 1
2 )

n

(
2x2 − 1

)
, n ∈ N,

(1.6)

where (a)p denotes the Pochhammer symbol given by (a)p = �(a+p)
�(a)

.

The aim of this work is to treat these two questions for general d .
Our analysis will be based on the d-orthogonality and the d-symmetry properties of the Humbert polynomials. That

suggested us a characterization problem P which consists to determinate all d-OPSs in a generalized hypergeometric
polynomial class containing Humbert polynomials.

The paper is structured as follows: In Section 2, by means of integral representations, we give the d-dimensional
functional vector related to the Humbert polynomials. The weight functions are expressed in terms of Meijer G-
functions. Some special cases corresponding to d = 1 and d = 2 will be discussed. In Section 3, for the components
of Humbert polynomials, we derive generalized hypergeometric representations, we get the analogous of the rela-
tions (1.6) and we obtain the corresponding d-dimensional functional vector. Then we introduce a class of generalized
hypergeometric polynomials containing the components of the Humbert polynomials and we derive some properties
analogous to the Jacobi ones. That turns out to be a generating function, a (d+1)-order differential equation, a (d + 1)-
order recurrence relation of type (1.5) and the “classical” d-orthogonality. The case d = 2 will be discussed. Finally,
in Section 4, we solve the characterization problem P .

2. Humbert polynomials

2.1. Dual sequence

Definition 2.1. Let {Pn}n�0 be a PS in P . The corresponding dual sequence {un}n�0 in P ′ is defined by

〈un,Pr 〉 = δn,r ; n, r = 0,1,2 . . . .

Next, we express explicitly the dual sequence associated with the Humbert polynomials.
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Remark 2.2. Since {Pn}n�0 is a basis in P , it follows from this definition that〈
ur, x

n
〉= 0, r = 1,2, . . . , r > n. (2.1)

Theorem 2.3. The moments of the dual sequence {ur}r�0 associated with the Humbert PS {hν
n,d+1(x)}n�0 defined

by (1.1) are given by〈
ur, x

n
〉= 0 if n < r, (2.2)

and, if n � r ,

〈
ur, x

n
〉= δi′,i

d
− d

d+1∫
0

ξnϕr,d(ξ) dξ, (2.3)

where{
n = i + (d + 1)k, k ∈ N, i ∈ Nd+1,

r = i′ + (d + 1)k′, k′ ∈ N, i′ ∈ Nd+1,
(2.4)

and ϕr,d(ξ) is the function defined by

ϕr,d(ξ) = r!
(d + 1)r−1(ν)r

∏d
j=1 �(

ν+r+j
d

)∏d+1
j=1 �(

r+j
d+1 )

ξ−(r+1)G
d+1,0
d+1,d+1

(
ddξd+1

∣∣∣∣ ν+r+1
d

, . . . , ν+r+d
d

,1
r+1
d+1 , . . . ,

r+(d+1)
d+1

)
. (2.5)

G
m,n
p,q designates the Meijer’s G-function defined by [26, p. 143]

Gm,n
p,q

(
z

∣∣∣∣ (ap)

(bq)

)
= (2πi)−1

∫
L

zτ

∏m
j=1 �(bj − τ)

∏n
j=1 �(1 − aj + τ)∏q

j=m+1 �(1 − bj + τ)
∏p

j=n+1 �(aj − τ)
dτ,

where (ap) abbreviates the set {a1, a2, . . . , ap}. We refer to [26, p. 144] for the details regarding the type of the
contour L.

Proof. (2.2) follows from (2.1). In order to prove (2.3) we recall that the inversion formula related to the Humbert
polynomial set {hν

n,d+1(x)}n�0 is given by [7]

xn =
[ n
d+1 ]∑
j=0

(ν + n − (d + 1)j)

(ν)n+1−j

n!
(d + 1)nj !h

ν
n−(d+1)j,d+1(x). (2.6)

On the other hand, it is easy to verify that δr,n−(d+1)j = δi,i′δj,k−k′ , where j = 0, . . . , [ n
d+1 ] and i, i′ are two integers

defined by (2.4).
Then, according to (2.4) and (2.6), we have

〈
ur, x

n
〉= [ n

d+1 ]∑
j=0

(ν + n − (d + 1)j)

(ν)n+1−j

n!
(d + 1)nj !

〈
ur,h

ν
n−(d+1)j,d+1(x)

〉

= δi′,i

[ n
d+1 ]∑
j=0

(ν + n − (d + 1)j)

(ν)n+1−j

n!
(d + 1)nj !δj,k−k′

= δi′,i
(ν + r)

(d + 1)r+(d+1)(k−k′)
(1)r+(d+1)(k−k′)

(k − k′)!(ν)r+1+d(k−k′)
.

Putting k′′ = k − k′, we obtain〈
ur, x

n
〉= δi′,i

(ν + r)

r+(d+1)k′′
(1)r+(d+1)k′′
′′ . (2.7)
(d + 1) k !(ν)r+1+dk′′
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The use of the identity (2.7) and the following transformations (see [26], for instance):

(a)i+j = (a)i(a + i)j , i, j ∈ N, (2.8)

(a)ms = mms
m−1∏
j=0

(
a + j

m

)
s

, s ∈ N, (2.9)

leads to

〈
ur, x

n
〉= δi′,i

r!
(d + 1)r (ν)r

1

ddk′′

∏d+1
j=1(

r+j
d+1 )k′′

k′′!∏d
j=1(

ν+r+j
d

)k′′

= r!δi′,i
(d + 1)r (ν)r

∏d
j=1(

ν+r+j
d

)∏d+1
j=1(

r+j
d+1 )

∏d+1
j=1 �(

r+j
d+1 + k′′)

ddk′′
�(1 + k′′)

∏d
j=1 �(

ν+r+j
d

+ k′′)︸ ︷︷ ︸
Ak′′,r (d)

. (2.10)

Setting⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

αj = r + j

d + 1
+ k′′ − 1, 1 � j � d + 1,

βj = ν(d + 1) + r + j

d(d + 1)
, 1 � j � d,

βd+1 = − r

d + 1
,

we obtain

Ak′′,r (d) = 1

ddk′′

d+1∏
j=1

[
�(αj + 1)

�(αj + 1 + βj )

]
. (2.11)

On the other hand, Ben Cheikh and Douak [9] showed that

pFq

(
(ap)

(αq + βq + 1)
;x
)

=
q∏

i=1

(
�(αi + 1 + βi)

�(αi + 1)

) 1∫
0

G
q,0
q,q

(
t

∣∣∣∣ (αq + βq)

(αq)

)
pFq

(
(ap)

(αq + 1)
;xt

)
dt, (2.12)

where
∑d+1

j=1 βj > 0. pFq(z) designates the generalized hypergeometric function with p numerator and q denominator
parameters [26]

pFq

(
(ap)

(bq)
; z
)

=
∞∑

k=0

[ap]k
[bq ]k

zk

k! , (2.13)

where [ar ]p =∏r
i=1(ai)p .

The identity (2.12), for x = 0 and q = d + 1, is reduced to

d+1∏
j=1

[
�(αj + 1)

�(αj + 1 + βj )

]
=

1∫
0

G
d+1,0
d+1,d+1

(
t

∣∣∣∣ (αd+1 + βd+1)

(αd+1)

)
dt. (2.14)

Thus, for ν > −1
2 , the identity (2.11) can be rewritten under the form

Ak′′,r (d) = 1

ddk′′

1∫
0

G
d+1,0
d+1,d+1

(
t

∣∣∣∣ ν+r+1
d

− 1 + k′′, . . . , ν+r+d
d

− 1 + k′′, k′′
r+1
d+1 − 1 + k′′, . . . , r+(d+1)

d+1 − 1 + k′′

)
dt. (2.15)

Then, according to the transformation [32, p. 46]
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zσ Gm,n
p,q

(
z

∣∣∣∣ α1, . . . , αp

β1, . . . , βq

)
= Gm,n

p,q

(
z

∣∣∣∣ α1 + σ, . . . , αp + σ

β1 + σ, . . . , βq + σ

)
, (2.16)

we get

Ak′′,r (d) =
1∫

0

(
t

dd

)k′′

G
d+1,0
d+1,d+1

(
t

∣∣∣∣ ν+r+1
d

− 1, . . . , ν+r+d
d

− 1,0
r+1
d+1 − 1, . . . ,

r+(d+1)
d+1 − 1

)
dt.

That, upon the change of variables t = ddξ (d+1), leads to

Ak′′,r (d) =
d

− d
d+1∫

0

ξk′′(d+1)G
d+1,0
d+1,d+1

(
ddξd+1

∣∣∣∣ ν+r+1
d

− 1, . . . , ν+r+d
d

− 1,0
r+1
d+1 − 1, . . . ,

r+(d+1)
d+1 − 1

)
(d + 1) ddξd dξ. (2.17)

Substituting (2.17) in (2.10), we obtain

〈
ur, x

n
〉= δi′,i

r!
(d + 1)r−1(ν)r

∏d
j=1 �(

ν+r+j
d

)∏d+1
j=1 �(

r+j
d+1 )

d
− d

d+1∫
0

ξ r+k′′(d+1)ξ−(r+1)

× (
ddξd+1)Gd+1,0

d+1,d+1

(
ddξd+1

∣∣∣∣ ν+r+1
d

− 1, . . . , ν+r+d
d

− 1,0
r+1
d+1 − 1, . . . ,

r+(d+1)
d+1 − 1

)
dξ. (2.18)

Replacing in the identity (2.18) k′′ by k − k′, and using the identity (2.16), we deduce

〈
ur, x

n
〉= δi′,i

r!
(d + 1)r−1(ν)r

∏d
j=1 �(

ν+r+j
d

)∏d+1
j=1 �(

r+j
d+1 )

d
− d

d+1∫
0

ξ r+(k−k′)(d+1)

× ξ−(r+1)G
d+1,0
d+1,d+1

(
ddξd+1

∣∣∣∣ ν+r+1
d

− 1, . . . , ν+r+d
d

− 1,0
r+1
d+1 − 1, . . . ,

r+(d+1)
d+1 − 1

)
dξ. (2.19)

On the other hand, from (2.4) with i = i′, it can be readily shown that n = r + (k − k′)(d + 1).
That, by virtue of (2.19), leads to (2.3). �

2.2. d-Dimensional functional vector

Our interest here is to determinate the d-dimensional functional vector for which we have the d-orthogonality of
the Humbert polynomials.

As proved by Maroni [28], a PS {Pn}n�0 is d-orthogonal with respect to a d-dimensional functional vector Γ =
t (Γ0,Γ1, . . . ,Γd−1) if and only if it is also d-orthogonal with respect to the vector U = t (u0, u1, . . . , ud−1), where
the functionals u0, u1, . . . , ud−1 are the d first elements of the dual sequence {un}n�0 associated to the PS {Pn}n�0.
Consequently, for the Humbert polynomials, we consider the d first elements of the corresponding dual sequence as
the d-dimensional functional vector ensuring the d-orthogonality of these polynomials. That leads to the following.

Theorem 2.4. The Humbert PS {hν
n,d+1(x)}n�0 defined by (1.1) is a d-OPS with respect to the d-dimensional func-

tional vector U = t (u0, u1, . . . , ud−1) given by their moments:〈
ur, x

n
〉= 0 if n < r, (2.20)

and, if n � r ,

〈
ur, x

n
〉= δr,i

d
− d

d+1∫
ξnϕr,d(ξ) dξ, (2.21)
0
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where n = i + (d + 1)k, k ∈ N, i ∈ Nd+1, r ∈ Nd and

ϕr,d(ξ) = r!
(d + 1)r−1(ν)r

∏d
j=1 �(

ν+r+j
d

)∏d+1
j=1 �(

r+j
d+1 )

ξ−(r+1)G
d+1,0
d+1,d+1

(
ddξd+1

∣∣∣∣ ν+r+1
d

, . . . , ν+r+d
d

,1
r+1
d+1 , . . . ,

r+(d+1)
d+1

)
. (2.22)

Proof. From Theorem 2.3, it follows that the moments of the d first elements of the dual sequence {un}n�0 associated
to Humbert PS are given by〈

ur, x
n
〉= 0, r > n,

〈
ur, x

n
〉= δi′,i

d
− d

d+1∫
0

ξnϕr,d(ξ) dξ, r � n, (2.23)

where i, i′ are two integers given by (2.4), and ϕr,d(ξ) is the weight function defined by (2.5).
Taking into account the fact that r ∈ Nd , we deduce k′ = 0 and r = i′. That, by virtue of (2.23), leads to the desired

result. �
2.3. Special cases

In this subsection, we consider some particular cases of Humbert polynomials by specializing the parameters d or ν

to show that known and new results concerning the corresponding d-dimensional functional vectors may be deduced
from Theorem 2.4.

2.3.1. Gegenbauer polynomials (d = 1)
By letting d = 1 in (1.1), we meet the generating function of Gegenbauer polynomials {Cν

n(x)}n�0. These polyno-
mials are orthogonal with respect to the well-known weight function [25]

ϕ0,1(ξ) = ν(�(ν))2

π�(2ν)21−2ν

(
1 − ξ2)ν− 1

2 , −1 � ξ � 1. (2.24)

Next, we show that this result may be also deduced from Theorem 2.4. Indeed, from (2.21) with d = 1 and the
transformation [32, p. 46]

Gm,n
p,q

(
z

∣∣∣∣ α1, . . . , αp−1, β1

β1, . . . , βq

)
= G

m−1,n
p−1,q−1

(
z

∣∣∣∣ α1, . . . , αp−1

β2, . . . , βq

)
; m,p,q � 1; (2.25)

we have

ϕ0,1(ξ) = 2�(ν + 1)√
π

ξG
1,0
1,1

(
ξ2
∣∣∣∣ ν− 1

2

)
.

Taking into account the following identity [9]:

G
1,0
1,1

(
x

∣∣∣∣ α + β

α

)
= 1

�(β)
(1 − x)β−1xα, (2.26)

we obtain

ϕ0,1(ξ) = 2�(ν + 1)√
π�(ν + 1

2 )

(
1 − ξ2)ν− 1

2 . (2.27)

Under the Gauss’s multiplication theorem [32, p. 23]

√
π�(2z) = 22z−1�(z)�

(
z + 1

)
, z �= 0,−1

,−1,−3
, . . . . (2.28)
2 2 2



I. Lamiri, A. Ouni / J. Math. Anal. Appl. 341 (2008) 24–51 31
The identity (2.27) becomes

ϕ0,1(ξ) = ν(�(ν))2

π�(2ν)2−2ν

(
1 − ξ2)ν− 1

2 .

Consequently, the Gegenbauer functional is given by its moments

〈
u0, x

n
〉= δ0,i

1∫
0

ξ2k
(
1 − ξ2)ν− 1

2
ν(�(ν))2

π�(2ν)2−2ν
dξ,

where n = i + 2k, k ∈ N and i = 0,1.
Or equivalently

〈
u0, x

n
〉= δ0,i

1∫
−1

ξn
(
1 − ξ2)ν− 1

2
ν(�(ν))2

π�(2ν)21−2ν
dξ. (2.29)

2.3.2. Pincherle type polynomials (d = 2)
Recall that the Pincherle type polynomials are defined by [22]:(

1 − 3xt + t3)−ν =
∑
n�0

P ν
n (x)tn, (2.30)

which for ν = − 1
2 reduce to the Pincherle polynomials [30].

By letting d = 2 in the identity (1.1), we deduce that P ν
n (x) = hν

n,3(x). In this case Theorem 2.4 provides the
following.

Corollary 2.5. The Pincherle type polynomials {P ν
n (x)}n�0 are 2-orthogonal with respect to the 2-dimensional func-

tional vector U = t (u0, u1) given by their moments:

〈
ur, x

n
〉= δr,i

2
−2
3∫

0

ξnϕr,2(ξ) dξ, r = 0,1, n = i + 3k, k ∈ N, (2.31)

where the weight functions ϕr,2(ξ); r = 0,1; are given by

ϕ0,2(ξ) = 3
√

3 2
1
3 −ν�(ν + 1)√

π�(ν + 1
2 )

ξ
(
1 − 4ξ3)ν− 1

2
2F1

(
ν
2 + 2

3 , ν
2 + 1

6

ν + 1
2

;1 − 4ξ3

)
,

ϕ1,2(ξ) = 3
√

3 2
2
3 −ν�(ν + 2)

ν
√

π�(ν + 1
2 )

ξ2(1 − 4ξ3)ν− 1
2

2F1

(
ν
2 + 5

6 , ν
2 + 1

3

ν + 1
2

;1 − 4ξ3

)
.

Proof. From the identity (2.25) and Theorem 2.4, we deduce

〈
ur, x

n
〉= δr,i

2− 2
3∫

0

ξnϕr,2(ξ) dξ, r = 0,1; n = i + 3k, k ∈ N,

where

ϕ0,2(ξ) = 3�(ν+1
2 )�(ν+2

2 )

�( 1
3 )�( 2

3 )
ξ−1G

2,0
2,2

(
4ξ3

∣∣∣∣ ν+1
2 , ν+2

2
1
3 , 2

3

)
,

ϕ1,2(ξ) = �(ν+2
2 )�(ν+3

2 )

ν�( 2 )�( 4 )
ξ−2G

2,0
2,2

(
4ξ3

∣∣∣∣ ν+2
2 , ν+3

2
2 , 4

)
.

3 3 3 3
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Thus, by using the transformations (2.28) and the identity [24, p. 275]

G
2,0
2,2

(
t

∣∣∣∣ γ1 + δ1, γ2 + δ2

γ1, γ2

)
= tγ2(1 − t)δ1+δ2−1

�(δ1 + δ2)
2F1

(
γ2 + δ2 − γ1, δ1

δ1 + δ2
;1 − t

)
, t < 1, (2.32)

we obtain (2.31). �
Remark 2.6. It is worthy to note the non-negativity of the weight functions given by (2.31) for ν > 0.

2.3.3. Chebyshev type d-orthogonal polynomials (ν = 1)
As solution of a characterization problem related to the associated polynomials of a given PS, Douak and Maroni

consider the Chebyshev type d-OPS of the second kind {Un(.;d)}n�0 generated by [18](
1 − xt + btd+1)−1 =

∑
n�0

Un(x;d)tn, b �= 0, (2.33)

which for d = b = 1 reduces to the classical Chebyshev PS of the second kind {Un(.)}n�0. They have stated some of
their properties. For the case d = 2, they derive integral representations of the linear functionals with respect to which
the polynomials are 2-orthogonal using the fact that these polynomials are “classical.” These integral representations
were also given by Ben Cheikh and Ben Romdhane [6] using a different approach based on lowering and transfer
operators relative to the involved polynomials. Next, we use Theorem 2.4 to extend this result to arbitrary positive
integer d . In fact, by letting ν = 1 in the identity (1.1), we obtain

Un(x;d) = b
n

d+1 h1
n,d+1

(
x

(d + 1)b
1

d+1

)
, n � 0. (2.34)

In this case, Theorem 2.4 is reduced to the following.

Corollary 2.7. The Chebyshev type PS {Un(.;d)}n�0 defined by (2.33) is a d-OPS with respect to the d-dimensional
functional vector U = t (u0, u1, . . . , ud−1) given by their moments:〈

ur, x
n
〉= 0 if n < r, (2.35)

and, if n � r ,

〈
ur, x

n
〉= δr,i

(d+1)( b
d
)

1
d+1∫

0

ξnψr,d(ξ) dξ, (2.36)

where n = i + (d + 1)k, k ∈ N, i = 0,1, . . . , d , r = 0,1, . . . , d − 1 and

ψr,d(ξ) = (d + 1)

∏d
j=1 �(

1+r+j
d

)∏d+1
j=1 �(

r+j
d+1 )

ξ−(r+1)G
d+1,0
d+1,d+1

(
ddξd+1

b(d + 1)d+1

∣∣∣∣ r+2
d

, . . . , r+1+d
d

,1
r+1
d+1 , . . . ,

r+(d+1)
d+1

)
.

Two particular cases are worthy to note.
• Case 1: d = b = 1.
This case corresponds to Chebyshev PS of the second kind {Un(

x
2 )}n�0, which is orthogonal with respect to the

well-known weight function ψ0,1(ξ) = 2
π
(1 − ξ2)

1
2 on the interval −1 � ξ � 1 (see, for instance, [25]). This weight

function is also given by (2.36) for d = 1. Indeed, from (2.36) we have

〈
u0, x

n
〉= δ0,i

2√
π

2∫
0

ξ2k−1G
1,0
1,1

((
ξ

2

)2 ∣∣∣∣ 2
1
2

)
dξ, (2.37)

where n = i + 2k, k ∈ N and i = 0,1.
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Under the transformation given by (2.16), the identity (2.37) becomes

〈
u0, x

n
〉= δ0,i

2
√

π

2∫
0

ξ2k+1G
1,0
1,1

((
ξ

2

)2 ∣∣∣∣ 1

− 1
2

)
dξ.

Applying (2.26) and the change of variable t = ξ
2 , we get

〈
u0,

(
x

2

)n〉
= δ0,i

1∫
−1

ξn 2

π

(
1 − ξ2) 1

2 dξ.

• Case 2: d = 2, b = 4
27 .

From Corollary 2.7, we deduce the following.

Corollary 2.8. (See Douak and Maroni [18].) The pair of functionals u0 and u1 for which the Chebyshev type PS
{Un(.,2)}n�0 is 2-orthogonal have the following moments:

〈
ur, x

n
〉= δr,i

1∫
0

ξnψr,2(ξ) dξ, (2.38)

where n = i + 3k, k ∈ N, i = 0,1,2, r = 0,1 and

ψ0,2(ξ) = 9
√

3

4π

[(
1 +

√
1 − ξ3

) 1
3 − (

1 −
√

1 − ξ3
) 1

3
]
,

ψ1,2(ξ) = 27
√

3

8π

[(
1 +

√
1 − ξ3

) 2
3 − (

1 −
√

1 − ξ3
) 2

3
]
. (2.39)

Proof. Put d = 2 and b = 4
27 in (2.36) to obtain (2.38) with

ψ0,2(ξ) = 3
√

3

4
√

π
ξ−1G

2,0
2,2

(
ξ3
∣∣∣∣ 1, 3

2
1
3 , 2

3

)
,

ψ1,2(ξ) = 9
√

3

4
√

π
ξ−2G

2,0
2,2

(
ξ3
∣∣∣∣ 2, 3

2
2
3 , 4

3

)
.

Using the identity (2.32), we deduce

ψ0,2(ξ) = 3
√

3

2π
ξ
(
1 − ξ3) 1

2
2F1

(
7
6 , 2

3
3
2

;1 − ξ3

)
,

ψ1,2(ξ) = 9
√

3

2π
ξ2(1 − ξ3) 1

2
2F1

(
4
3 , 5

6
3
2

;1 − ξ3

)
. (2.40)

On the other hand, from the following identity [31, p. 70]:

2F1

(
a, b

c
; z
)

= �(c)�(c − a − b)

�(c − a)�(c − b)
2F1

(
a, b

a + b + 1 − c
;1 − z

)

+ �(c)�(a + b − c)

�(a)�(b)
(1 − z)c−a−b

2F1

(
c − a, c − b

c − a − b + 1
;1 − z

)
,

we have
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2F1

(
7
6 , 2

3
3
2

;1 − ξ3

)
= − 3

2
4
3

2F1

(
7
6 , 2

3
4
3

; ξ3

)
+ 3

2
2
3

ξ−1
2F1

(
1
3 , 5

6
2
3

; ξ3

)
,

2F1

(
4
3 , 5

6
3
2

;1 − ξ3

)
= − 3

2
8
3

2F1

(
4
3 , 5

6
5
3

; ξ3

)
+ 3

2
4
3

ξ−2
2F1

(
1
6 , 2

3
1
3

; ξ3

)
.

That, under the following transformation [31, p. 70]:

2F1

(
a, a + 1

2

2a
; z
)

= (1 − z)−
1
2 22a−1(1 + √

1 − z )1−2a,

leads to

2F1

(
7
6 , 2

3
3
2

;1 − ξ3

)
= 3

2
ξ−1(1 − ξ3)− 1

2
[(

1 +
√

1 − ξ3
) 1

3 − (
1 −

√
1 − ξ3

) 1
3
]
,

2F1

(
4
3 , 5

6
3
2

;1 − ξ3

)
= 3

4
ξ−2(1 − ξ3)− 1

2
[(

1 +
√

1 − ξ3
) 2

3 − (
1 −

√
1 − ξ3

) 2
3
]
. (2.41)

Substituting (2.41) in (2.40) to obtain (2.39). �
Remark 2.9. Notice that the weight functions given by (2.39) are non-negative.

2.3.4. Legendre type polynomials (ν = 1
2 )

As far as we know there do not exist in the literature works dealing with d-OPS of Legendre type. In this subsection,
we define the d-OPS of Legendre type {Ln(.;d)}n�0 by the Humbert PS {hν

n,d+1(x)}n�0 with ν = 1
2 , i.e. Ln(x;d) =

h
1
2
n,d+1(x). This PS is a natural extension of the Legendre ones [20], since, in the case when d = 1 we meet the

Legendre OPS {Ln(x)}n�0. Also, these polynomials satisfy the following recurrence relation given by (1.2) with
ν = 1

2 :

2(n + 1)Ln+1(x;d) = 2(d + 1)(2n + 1)xLn(x;d) − (2n + 1 − d)Ln−d(x;d),

which is analogous to the Legendre ones [25]:

(n + 1)Ln+1(x) = 2(2n + 1)xLn(x) − nLn−1(x).

The use of Theorem 2.4 with ν = 1
2 , leads to the following:

Corollary 2.10. The PS {Ln(.;d)}n�0 is a d-OPS with respect to the d-dimensional functional vector U =
t (u0, u1, . . . , ud−1) given by their moments:〈

ur, x
n
〉= 0 if n < r, (2.42)

and, if n � r ,

〈
ur, x

n
〉= δr,i

d
− d

d+1∫
0

ξnϕr,d(ξ) dξ, (2.43)

where n = i + (d + 1)k, k ∈ N, i = 0,1, . . . , d , r = 0,1, . . . , d − 1 and

ϕr,d(ξ) = r!
(d + 1)r−1( 1

2 )r

∏d
j=1 �( 1

2d
+ r+j

d
)∏d+1

j=1 �(
r+j
d+1 )

ξ−(r+1)G
d+1,0
d+1,d+1

(
ddξd+1

∣∣∣∣ 1
2d

+ r+1
d

, . . . , 1
2d

+ r+d
d

,1
r+1
d+1 , . . . ,

r+(d+1)
d+1

)
.

(2.44)
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Next, we consider two particular cases.
• Case 1: d = 1.
In this case the identity (2.44) is reduced to (2.24) with ν = 1

2 . That leads to the well-known weight function [25]
ϕ0,1(ξ) = 1; −1 � x � 1; with respect to which the Legendre polynomials Ln(x) are orthogonal.

• Case 2: d = 2.
In this case Corollary 2.10 is reduced to Corollary 2.5 with ν = 1

2 , which may be written as follows.

Corollary 2.11. The moments of the 2-dimensional vector U = t (u0, u1) ensuring the 2-orthogonality of the Legendre
type polynomials {Ln(.;d)}n�0 have the following integral representations:

〈
ur, x

n
〉= δr,i

2
−2
3∫

0

ξnϕr,2(ξ) dξ, r = 0,1, n = i + 3k, k ∈ N, (2.45)

where the weight functions ϕr,2(ξ); r = 0,1; are given by

ϕ0,2(ξ) = 3
√

3

2
7
6

ξ2F1

(
11
12 , 5

12

1
;1 − 4ξ3

)
,

ϕ1,2(ξ) = 9
√

3

2
5
6

ξ2
2F1

(
13
12 , 7

12

1
;1 − 4ξ3

)
. (2.46)

Remark 2.12. It is worthy to note the non-negativity of the weight functions given by (2.46).

Remark 2.13. For ν = 1
d+1 , the Humbert PS {hν

n,d+1(x)}n�0 is reduced to the Kinney ones [20] {Kn(.;d)}n�0.
That include as particular cases, the Legendre polynomials {Ln(x)}n�0 (d = 1), and the Pincherle type polynomials

{P
1
3

n (x)}n�0 (d = 2). These polynomials have some properties analogous to those of Legendre. Consequently, they
can be also viewed as Legendre type d-orthogonal polynomials.

3. Jacobi type polynomials

3.1. Components of Humbert polynomials

Throughout this subsection, we need the following notion.

For any arbitrary positive integer s, we denote by ws = e
2iπ
s the complex sth root of unity.

Let f be a function of the complex variable z holomorphic in Ω a circular neighborhood in the origin, there exists
a unique sequence {f[s,μ]}μ∈Ns

, such that [5]

f =
s−1∑
μ=0

f[s,μ], (3.1)

where

f[s,μ](z) = Π[s,μ]f (z) = 1

s

s−1∑
j=0

w
−μj
s f

(
w

j
s z
)
, μ ∈ Ns . (3.2)

Π[s,μ] being the projection operator.
The identity (3.1) is called the decomposition of the function f with respect to the cyclic group of order s and we

refer to the functions f[s,μ], μ ∈ Ns , as the components with respect to the cyclic group of order s of f . It is clear that
f[s,μ](wsz) = w

μ
s f[s,μ](z). For s = 2, f[2,0] and f[2,1] are respectively the even and odd parts of the function f .

Our interest here is to determinate the components of the Humbert polynomials {hν
n,d+1(x)}n�0 and the corre-

sponding d-dimensional functional vector.
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Theorem 3.1. The components of the Humbert PS {hν
n,d+1(

x
d+1 )}n�0 are the PSs { (ν)μ

μ! P
ν+μ
n (x; (αd,μ))}n�0;

μ ∈ Nd+1; defined by

P ν+μ
n

(
x; (αd,μ)

)= (−1)n(ν + μ)n

n! d+1Fd

(
−n,Δ(d,n + ν + μ)

(αd,μ)
; ddx

(d + 1)d+1

)
, (3.3)

where (αd,μ) designates the set given by{
μ + 1 + j

d + 1
; j = 0, . . . , d and j �= d − μ

}
, (3.4)

and Δ(p,a) abbreviates the array of p parameters a+j−1
p

, j = 1, . . . , p.

Proof. According to Lemma 1.5, we have to show

hν
n(d+1)+μ,d+1(x) = (ν)μ((d + 1)x)μ

μ! P ν+μ
n

((
(d + 1)x

)d+1; (αd,μ)
)
. (3.5)

Recall that the Humbert polynomials hν
n,d+1(x) are d-symmetric and generated by (1.1), which can be written in the

form (
1 + td+1)−ν

1F0

(
ν

−;x (d + 1)t

1 + td+1

)
=
∑
n�0

hν
n,d+1(x)tn. (3.6)

Applying the projection operator Π[d+1,μ];μ ∈ Nd+1; to the two members of the identity (3.6) considered as functions
of the variables x. Using the fact that the Humbert polynomials hν

n,d+1(x) are d-symmetric, the identity (2.9) and the
Osler–Srivastava identity [5]:

Π[s,μ]

(
z 
→ pFq

(
(ap)

(bq)
; z
))

= [ap]μ
[bq ]μ

zμ

μ!

× spFsq+n−1

(
Δ(s, a1 + μ), . . . ,Δ(s, ap + μ)

Δ∗(s,μ + 1),Δ(s, b1 + μ), . . . ,Δ(s, bq + μ)
; zs

s(1−p+q)s

)
,

where Δ∗(s,μ + 1) = {μ+1+j
s

, j ∈ Ns} \ {1}, we obtain

μ!
(ν)μ((d + 1)x)μ

∞∑
n=0

hν
n(d+1)+μ,d+1(x)tn(d+1)+μ

= tμ
(
1 + td+1)−ν−μ

d+1Fd

(
Δ(d + 1,μ + ν)

(αd,μ)
;
(

(d + 1)xt

1 + td+1

)d+1
)

=
∞∑

n,k=0

(−1)n(ν + μ + (d + 1)k)n

n!
∏d

j=0(
ν+μ+j

d+1 )k

[αd,μ]k
((d + 1)x)(d+1)k

k! t (d+1)(n+k)+μ

=
∞∑

n,k=0

(−1)n−k(ν + μ + (d + 1)k)n−k

(n − k)!
∏d

j=0(
ν+μ+j

d+1 )k

[αd,μ]k
((d + 1)x)(d+1)k

k! t (d+1)n+μ

=
∞∑

n=0

(−1)n(ν + μ)n

n!
n∑

k=0

(−n)k
∏d

j=1(
ν+μ+n+j−1

d
)k

[αd,μ]k
(ddxd+1)k

k! t (d+1)n+μ

=
∞∑

n=0

(−1)n(ν + μ)n

n! d+1Fd

(
−n,Δ(d,n + ν + μ)

(αd,μ)
; ddx

(d + 1)d+1

)
t (d+1)n+μ

=
∞∑

n=0

P ν+μ
n

((
(d + 1)x

)d+1; (αd,μ)
)
t (d+1)n+μ.

That, by identification, leads to (3.5). �



I. Lamiri, A. Ouni / J. Math. Anal. Appl. 341 (2008) 24–51 37
Remark 3.2. Notice that for d = 1, the identity (3.5) is reduced to the well-known relationship between Gegenbauer
and Jacobi polynomials given by (1.6).

Next, we study the d-orthogonality of the components of Humbert PS. We state the following.

Theorem 3.3. For ν > −1
2 , μ ∈ Nd+1 and (αd,μ) the set given by (3.4), the PS {P ν+μ

n (x, (αd,μ))}n�0 defined by (3.3)
is a d-OPS with respect to the d-dimensional functional vector Uμ = t (u

μ
0 , u

μ
1 , . . . , u

μ
d−1) given by their moments:〈

ur, x
n
〉= 0 if n < r, (3.7)

and, if n � r ,

〈
uμ

r , xn
〉=

d(1+ 1
d
)d+1∫

0

ξnϕr,d(ξ) dξ, (3.8)

where

ϕr,d(ξ) = ϑr,d(ν,μ)ξ−1G
d+1,0
d+1,d+1

(
ξ

d(1 + 1
d
)d+1

∣∣∣∣ ν+μ+r+1
d

, . . . ,
ν+μ+r+d

d
,1 − r

μ+1
d+1 , . . . ,

μ+(d+1)
d+1

)
,

with

ϑr,d(ν,μ) = (ν + μ + r(d + 1))

(ν + μ)r+1

∏d
j=1 �(

ν+μ+r+j
d

)∏d+1
j=1 �(

μ+j
d+1 )

. (3.9)

Proof. According to Theorem 2.3, the dual sequence {ur}r�0 associated with the Humbert PS {hν
n,d+1(

x
d+1 )}n�0 is

given by〈
ur, x

n
〉= 0, r > n,

〈
ur, x

n
〉= δi′,i

d
− d

d+1∫
0

(
(d + 1)ξ

)n
ϕr,d(ξ) dξ, r � n,

where ϕr,d(ξ) is the weight function given by (2.5), and i, i′ are two integers defined by (2.4).
That, upon the change of variable t = (d + 1)ξ , leads to

〈
ur, x

n
〉= δi′,i

d
− d

d+1 (d+1)∫
0

ξn(d + 1)−1ϕr,d

(
ξ

d + 1

)
dξ. (3.10)

On the other hand, from Lemma 1.6, we deduce that the PS {P ν+μ
n (x, (αd,μ))}n�0 is d-orthogonal with respect to the

d-dimensional functional vector Uμ = t (u
μ
0 , u

μ
1 , . . . , u

μ
d−1) given by〈

uμ
r , xn

〉= (ν)μ

μ!
〈
uμ+r(d+1), x

μ+n(d+1)
〉
. (3.11)

Substituting (3.10) in (3.11) and using the transformation (2.16), we get

〈
uμ

r , xn
〉= (ν)μ

μ!
(μ + r(d + 1))!

(ν)μ+r(d+1)

drd

(d + 1)r(d+1)−1

∏d
j=1 �(

ν+μ+r(d+1)+j
d

)∏d+1
j=1 �(

μ+r(d+1)+j
d+1 )

×
d

− d
d+1 (d+1)∫

0

ξn(d+1)−1G
d+1,0
d+1,d+1

(
ddξd+1

(d + 1)d+1

∣∣∣∣ ν+μ+r+1
d

, . . . ,
ν+μ+r+d

d
,1 − r

μ+1
d+1 , . . . ,

μ+(d+1)
d+1

)
dξ.

Applying the change of variable t = ξd+1 and the transformation (2.9), we obtain the desired result. �
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Two particular cases are worthy to note.
• Case 1: d = 1.
In this case (αd,μ) = {μ + 1

2 , μ = 0,1}, and the PSs {P ν+μ
n (x, (αd,μ))}n�0; μ = 0,1; are reduced to the shifted

Jacobi PSs [32] { (μ+ν)n

(μ+ 1
2 )n

P
(ν− 1

2 ,μ− 1
2 )

n ( x
2 − 1)}n�0; μ = 0,1. Moreover, the identity (3.8) becomes

〈
u0, x

n
〉= �(ν + μ + 1)

�(μ + 1
2 )

4∫
0

ξn−1G
1,0
1,1

(
ξ

4

∣∣∣∣ μ + ν + 1

μ + 1
2

)
dξ.

According to (2.26) we get

〈
u0, x

n
〉= �(ν + μ + 1)

4�(μ + 1
2 )�(ν + 1

2 )

4∫
0

ξn

(
ξ

4

)μ− 1
2
(

1 − ξ

4

)ν− 1
2

dξ.

That, upon the change of variable t = ξ
2 − 1, leads to

〈
u0,

(
x

2

)n〉
= �(ν + μ + 1)

2μ+ν�(μ + 1
2 )�(ν + 1

2 )

1∫
−1

(ξ + 1)n(ξ + 1)μ− 1
2 (1 − ξ)ν− 1

2 dξ.

Consequently

〈
u0,

(
x

2
− 1

)n〉
=

n∑
j=0

(
n

j

)
(−1)n−j

〈
u0,

(
x

2

)j 〉

= �(ν + μ + 1)

2μ+ν�(μ + 1
2 )�(ν + 1

2 )

1∫
−1

ξn(1 − ξ)ν+ 1
2 (ξ + 1)μ− 1

2 dξ. (3.12)

From (3.12), we deduce the well-known weight functions associated to the shifted Jacobi polynomials

{ (μ+ν)n

(μ+ 1
2 )n

P
(ν− 1

2 ,μ− 1
2 )

n ( x
2 − 1)}n�0 given by [32]:

1∫
−1

(1 − ξ)α(1 + ξ)βP (α,β)
m (ξ)P (α,β)

n (ξ) dξ = 2α+β+1�(n + α + 1)�(n + β + 1)

(2n + α + β)n!�(n + α + β + 1)
.

• Case 2: d = 2.
From Theorem 3.1, we deduce that the components of Pincherle PS {P ν

n (x
2 )}n�0 are the PSs { (ν)μ

μ! P
ν+μ
n (x,

(αd,μ))}n�0; μ ∈ N3; given by

P μ+ν
n (x;α1, α2) = (−1)n(ν + μ)n

n! 3F2

(
−n,

n+μ+ν
2 ,

n+μ+ν+1
2

α1, α2
; 4x

27

)
, (3.13)

where {α1, α2} = {μ+1
3 ,

μ+2
3 ,

μ+3
3 } \ {1}.

These components were first obtained by Baker [2], by solving a differential equation satisfied by the Pincherle
polynomials. He found the following relation between the Pincherle polynomials and some generalized hypergeomet-
ric functions:

P ν
n (x) = 1

3

(−1)n�(n + ν)

4
n
3 −1�(ν)�(n+ν )�(n+ν+1 )

[
�(n

6 + ν
2 )�(n

6 + ν+1
2 )

�(n+3 )
2 2 3
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× sin

(
(n − 1)

π

3

)
sin

(
(n − 2)

π

3

)
3F2

(
−n

3 , n
6 + ν

2 , n
6 + ν+1

2
1
3 , 2

3

;4x3

)

+ �(n
6 + ν

2 + 1
3 )�(n

6 + ν+1
2 + 1

3 )

1
3�(n+2

3 )
sin

(
(n − 2)

π

3

)
sin

(
n
π

3

)

× 3F2

(
−n

3 + 1
3 , n

6 + ν
2 + 1

3 , n
6 + ν+1

2 + 1
3

2
3 , 4

3

;4x3

)(
4x3) 1

3

+ �(n
6 + ν

2 + 2
3 )�(n

6 + ν+1
2 + 2

3 )

1
3

2
3�

(
n+1

3

) sin

(
(n − 1)

π

3

)
sin

(
n
π

3

)

× 3F2

(
−n

3 + 2
3 , n

6 + ν
2 + 2

3 , n
6 + ν+1

2 + 2
3

4
3 , 5

3

;4x3

)(
4x3) 2

3

]
.

Replacing in this identity x by x
3 and n by 3n (respectively 3n + 1 and 3n + 2), we obtain the components given by

(3.13) for μ = 0 (respectively μ = 1 and μ = 2).
Notice that, the second-order recurrence relations ensuring the 2-orthogonality of these components were given by

Douak and Maroni [16, pp. 89, 93, 97]. Further results related to the 2-orthogonality of these components may be
deduced from Theorem 3.3 which, in view of the transformation (2.32), leads to

Corollary 3.4. The components of the Humbert polynomials {P ν+μ
n (x, (αd,μ))}n�0; μ = 0,1; defined by (3.13) are

2-orthogonal with respect to the 2-dimensional functional vector U = t (u0, u1) given by their moments:

〈
ur, x

n
〉=

27
4∫

0

ξnϕr,2(ξ) dξ, r = 0,1,

with

ϕ0,2(ξ) = �(
ν+μ+1

2 )�(
ν+μ+2

2 )

�(α1)�(α2)�(μ + ν + 3
2 − (α1 + α2))

(
4

27

)α2

ξα2−1
(

1 − 4ξ

27

)μ+ν+ 1
2 −(α1+α2)

× 2F1

(
μ+ν+2

2 − α1,
μ+ν+1

2 − α1

μ + ν + 3
2 − (α1 + α2)

;1 − 4ξ

27

)
, (3.14)

ϕ1,2(ξ) = (μ + ν + 3)

(μ + ν)2

�(
ν+μ+2

2 )�(
ν+μ+3

2 )

�(α1)�(α2)
ξ−1G

3,0
3,3

(
4ξ

27

∣∣∣∣ μ+ν+2
2 ,

μ+ν+3
2 ,0

1, α1, α2

)
. (3.15)

Remark 3.5. It is worthy to note the non-negativity of the weight function given by (3.14) for some conditions on the
involved parameters.

3.2. An extension of (3.3)

3.2.1. Definition
As an extension of the components of Humbert polynomials, we consider the generalized hypergeometric polyno-

mials defined by

P ν
n

(
x; (αd)

) := P ν
n (x;α1, . . . , αd) = (−1)n(ν)n

n! d+1Fd

(
−n,Δ(d,n + ν)

(αd)
; ddx

(d + 1)d+1

)
, (3.16)

where αj �= 0,−1,−2, . . . , and ν + d(1 − αj ) �= 0,−1,−2, . . . , for j = 1, . . . , d .
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Remark 3.6. If we replace in (3.16) (αd) by (αd,μ) and ν by ν + μ, we meet the components of the Humbert
polynomials given by (3.3).

For d = 1, the PS {P ν
n (x; (αd))}n�0 is reduced to the shifted Jacobi ones [32] { (ν)n

(α1)n
P

(ν−α1,α1−1)
n ( x

2 − 1)}n�0.

Next, we derive for the polynomials defined by (3.16) some properties analogous to those of the Jacobi ones. So
we refer to these polynomials as Jacobi type polynomials.

3.2.2. Generating function

Proposition 3.7. The Jacobi type polynomials defined by (3.16) are generated by

(1 + t)−ν
d+1Fd

(
Δ(d + 1, ν)

(αd)
; xt

(1 + t)d+1

)
=
∑
n�0

P ν
n

(
x; (αd)

)
tn. (3.17)

Proof. Recall that [23, p. 178]

(1 − t)−λ
pFq

(
(a)p

(b)q
;− rrxt

(1 − t)r

)
=
∑
n�0

(λ)n

n! p+rFq+r

(
−n,Δ(r − 1, n + λ), (a)p

Δ(r,λ), (b)q
; (r − 1)r−1x

)
tn. (3.18)

Replacing in the identity (3.18) r by d + 1, λ by ν, (bq) by (αd), (ap) by Δ(d + 1, ν), x by x

(d+1)d+1 and t by −t , we
obtain

(1 + t)−ν
d+1Fd

(
Δ(d + 1, ν)

(αd)
; xt

(1 + t)d+1

)
=
∑
n�0

(−1)n(ν)n

n! d+1Fd

(
−n,Δ(d,n + ν)

(αd)
; ddx

(d + 1)d+1

)
tn.

That, by virtue of the identity (3.16), leads to (3.17). �
Remark 3.8. For d = 1, the identity (3.17) is reduced to the well-known generating function associated with the
shifted Jacobi polynomials [25, p. 39]

(1 + t)−ν
2F1

(
ν
2 , ν+1

2

α1
; xt

(1 + t)2

)
=

∞∑
n=0

(ν)n

(α1)n
P (ν−α1,α1−1)

n

(
x

2
− 1

)
tn.

3.2.3. A (d + 1)-order differential equation

Theorem 3.9. The Jacobi type polynomials defined by (3.16) verify the following differential equation:{
(x − 1)xdDd+1 +

[(
ν + d2 + 2d − 1

2

)
x − d(d − 1)

2
−

d∑
j=1

αj

]
xd−1Dd

+
d−1∑
m=1

(
cd+1,mx − c′

d+1,m

)
xm−1Dm − n(ν + n)d

dd

}
y = 0, (3.19)

where y = P ν
n (

(d+1)d+1

dd x; (αd)), D = d
dx

,

cd+1,m =
d+1−m∑

k=0

(
d + 1 − k

d + 1 − k − m

)
B

(−m)
d+1−k−mSk(ad+1), (3.20)

c′
d+1,m =

d+1−m∑
k=0

(
d + 1 − k

d + 1 − k − m

)
B

(−m)
d+1−k−mSk(bd+1), (3.21)

ad+1 = −n, aj = ν + n + j − 1

d
; j = 1, . . . , d;

bd+1 = 0, bj = αj − 1; j = 1, . . . , d; (3.22)
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B
(a)
n are the Bernoulli numbers [26], S0(ad+1) = 1, and for k > 0, Sk(ad+1) are the symmetric polynomials

Sk(ad+1) =
∑

aikaik−1 · · ·ai1, ai1 < ai2 < · · · < aik , kj = 1,2, . . . , d + 1, j = 1,2, . . . , k. (3.23)

Proof. Let us recall that an hypergeometric function

f (x) = pFq

(
(σp)

(δq)
;x
)

is a solution of the following differential equation [31, p. 75]:[
θ

q∏
j=1

(θ + δj − 1) − x

p∏
j=1

(θ + σj )

]
y = 0, θ = x

d

dx
. (3.24)

Using (3.16) and (3.24), we deduce that the Jacobi type polynomials verify the following differential equation:[
x

d+1∏
j=1

(θ + aj ) −
d+1∏
j=1

(θ + bj )

]
y = 0, (3.25)

where y = P ν
n (

(d+1)d+1

dd x; (αd)), and aj , bj ; j = 1, . . . , d + 1; are the real numbers given by (3.22).
On the other hand, we have [26, p. 25]

p∏
j=1

(θ + σj ) =
p∑

m=0

cp,mxmDm, (3.26)

cp,m =
p−m∑
k=0

(
p − k

p − k − m

)
B

(−m)
p−k−mSk(σp), (3.27)

where Ba
n designate the Bernoulli numbers [26], S0(σp) = 1, and for k > 0, Sk(σp) are the symmetric polynomials

given by (3.23).
Combining (3.25) and (3.26), we obtain[(

cd+1,d+1x − c′
d+1,d+1

)
xd+1Dd+1 + (

cd+1,dx − c′
d+1,d

)
xdDd

+
d−1∑
m=1

(
cd+1,mx − c′

d+1,m

)
xmDm + (

cd+1,0x − c′
d+1,0

)]
y = 0, (3.28)

where cd+1,m and c′
d+1,m; m = 1, . . . , d + 1; are the real numbers given by (3.20) and (3.21), respectively. Further-

more, from (3.27) and (3.22), it can be readily shown that

cd+1,d+1 = c′
d+1,d+1 = 1,

cd+1,0 = −n(ν + n)d

dd
, c′

d+1,0 = 0,

cd+1,d = ν + d2 + 2d − 1

2
, c′

d+1,d = d(d − 1)

2
+

d∑
j=1

αj .

That, by virtue of (3.28), leads to (3.19). �
Remark 3.10. For d = 1, ν = α +β + 1 and α1 = β + 1, the differential equation (3.19) is reduced to the well-known
differential equation satisfied by the Jacobi polynomials P

(α,β)
n (x) [25](

1 − x2)y′′ + [
β − α − (α + β + 2)x

]
y′ − n(α + β + 1 + n)y = 0, y = P (α,β)

n (x). (3.29)
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Indeed, for d = 1, the identity (3.19) provides the following:[
(x − 1)xD2 + [

(ν + 1)x − α1
]
D − n(ν + n)

]
y = 0, y = P (ν−α1,α1−1)

n (2x − 1). (3.30)

By letting ν = α + β + 1, α1 = β + 1, and replacing x by x+1
2 in this identity, we obtain (3.29).

3.2.4. d-Orthogonality and “classical” property

Theorem 3.11. The Jacobi type polynomials defined by (3.16) are “classical” d-orthogonal polynomials.

Proof. In order to derive the d-orthogonality of the Jacobi type polynomials defined by (3.16), we show that the
polynomials Pn(x) = n!

(−1)n(ν)n
P ν

n ((d + 1)d+1x; (αd)) verify a (d + 1)-order recurrence relation of type (1.5) and we
use Lemma 1.4.

According to (3.16), we have

Pn(x) =
n∑

k=0

(−n)k(n + ν)dk

k![αd ]k xk.

Therefore

xPn(x) =
n+1∑
k=1

(−n)k−1(n + ν)d(k−1)

(k − 1)![αd ]k−1
xk

=
n+1∑
k=1

Fd,ν(k)
xk

k![αd ]k , (3.31)

where Fd,ν(k) = (−n)k−1(n + ν)d(k−1)kπ(k − 1); 1 � k � n + 1; with π(x) =∏d
j=1(x + αj ).

Since, for n � d , the polynomial family {(x − n − 1)d+1−r (dx + n − d + ν)r}0�r�d+1 is a basis of the subspace
of polynomials of degree less or equal to d + 1, then there exist (d + 2) complex numbers α′

r,d (n); r = 0, . . . , d + 1;
such that

xπ(x − 1) =
d+1∑
r=0

α′
r,d (n)(x − n − 1)d+1−r (dx + n − d + ν)r , ∀x ∈ C. (3.32)

By letting αr,d(n) = (−n)d (n−d+ν)r
(−n−r+d)r (n−d+ν)d

α′
r,d (n), we deduce that, for k ∈ N,

kπ(k − 1) =
d+1∑
r=0

(−n − r + d)r (n − d + ν)d

(−n)d(n − d + ν)r
αr,d(n)(k − n − 1)d+1−r (dk + n − d + ν)r . (3.33)

For 1 � k � d + 1, multiplying both sides of the equality (3.33) by (n−d+ν)dk

(k−n−1)d+1−k
and using the following identities:

(−n)k−1 = (−n)d

(−n − 1 + k)d+1−k

, (−n + d − r)k = (−n − 1 + k)d+1−r (−n − r + d)r

(−n − 1 + k)d+1−k

,

(n + ν)d(k−1) = (n + ν − d)dk

(n + ν − d)d
, (n − d + r + ν)dk = (n + ν + d(k − 1))r (n − d + ν)kd

(n − d + ν)r
,

we obtain

kπ(k − 1)(−n)k−1(n + ν)d(k−1) =
d+1∑
r=0

αr,d(n)(−n + d − r)k(n − d + r + ν)kd . (3.34)

For d + 1 � k � n + 1, multiplying both sides of the equality (3.33) by (−n + d)k−1−d(n + 1 + ν)d(k−1)−1 and using
the following identities:
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(−n)k−1 = (−n)d(−n + d)k−d−1, (n + ν)d(k−1) = (n + ν)(n + 1 + ν)d(k−1)−1,

(n − d + r + ν)dk = (n − d + r + ν)d+1−r (n + 1 + ν)d(k−1)−1(dk + n − d + ν)r ,

(−n + d − r)k = (−n + d − r)r (−n + d)k−1−d(−n − 1 + k)d+1−r ,

(n − d + ν)d(n + ν) = (n − d + ν)r (n − d + r + ν)d+1−r , (3.35)

we obtain (3.34). Consequently (3.34) is valid for 1 � k � n + 1. That means

Fd,ν(k) =
d+1∑
r=0

αr,d(n)(−n + d − r)k(n − d + r + ν)kd , 1 � k � n + 1. (3.36)

By substituting (3.36) in (3.31), we deduce

xPn(x) =
n+1∑
k=1

[
d+1∑
r=0

αr,d(n)(−n + d − r)k(n − d + r + ν)kd

]
xk

k![αd ]k .

On the other hand, from (3.33), it is easy to verify that
∑d+1

r=0 αr,d(n) = 0. Hence,

xPn(x) =
n+1∑
k=0

[
d+1∑
r=0

αr,d(n)(−n + d − r)k(n − d + r + ν)kd

]
xk

k![αd ]k

=
d+1∑
r=0

αr,d(n)

[
n−d+r∑

k=0

(−n + d − r)k(n − d + r + ν)dk

k![αd ]k xk

]

=
d+1∑
r=0

αr,d(n)Pn−d+r (x). (3.37)

Then the PS {Pn(x)}n�0 verifies a (d + 1)-order recurrence relation. Now, we shall show that α0,d (n)αd+1,d (n) �= 0;
n � d .

Replacing successively in (3.32), x by (n + 1) and (1 − n+ν
d

), we get

αd+1,d (n) = − (n + ν)

((d + 1)n + ν)d+1
π(n), (3.38)

α0,d (n) = − (−n)d

d(n + 1 − d + ν)d−1

π(−n+ν
d

)

(− (d+1)n+ν
d

)d+1
. (3.39)

However π(n) �= 0 and π(−n+ν
d

) �= 0, since αj �= 0,−1,−2, . . . , and ν + d(1 − αj ) �= 0,−1,−2, . . . , for j =
1, . . . , d . Consequently α0,d (n)αd+1,d (n) �= 0.

Then, according to Lemma 1.4, the Jacobi type PS is d-orthogonal. In order to verify that these polynomials are
“classical,” let us recall the identity [31, p. 107]

DpFq

(
(ap)

(bq)
;x
)

=
∏p

j=1 aj∏q

j=1 bj
pFq

(
(ap + 1)

(bq + 1)
;x
)

, (3.40)

where D is the derivative operator d
dx

.
From (3.40) and (3.16), we deduce

DP ν
n+1

(
x; (αd)

)= TnP
ν+d+1
n

(
x, (αd) + 1

)
,

where

Tn = (ν)n+1

(ν + d + 1)n

∏d
j=1(

ν+n+j
αj

)

(d + 1)d+1
and (αd) + 1 = {α1 + 1, . . . , αd + 1}.

So the sequence {DP ν
n+1(x; (αd))}n�0 is also d-orthogonal. The desired result follows from Definition 1.2. �
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Remark 3.12. From Theorem 3.11 and Remark 3.6, we deduce that all the components of Humbert polynomials
given by (3.3) are “classical” d-orthogonal polynomials. The classical property of the first component of the Humbert
polynomials may be also deduced from a general result stated by Douak and Maroni [16, Corollary 5.4].

3.3. Particular case: d = 2

3.3.1. Definition
The Jacobi type 2-orthogonal polynomials are defined by

P ν
n (x;α1, α2) = (−1)n(ν)n

n! 3F2

(
−n, n+ν

2 , n+ν+1
2

α1, α2
; 4x

27

)
. (3.41)

These polynomials have the following properties.

3.3.2. Generating function
Using (3.17), we deduce that the Jacobi type 2-OPS is generated by

(1 + t)−ν
3F2

(
ν
3 , ν+1

3 , ν+2
3

α1, α2
; xt

(1 + t)3

)
=
∑
n�0

P ν
n (x;α1, α2)t

n. (3.42)

3.3.3. A third-order differential equation
For d = 2, Theorem 3.9 is reduced to the following.

Corollary 3.13. The Jacobi type 2-OPS defined by (3.41) satisfies the following differential equation:{
(x − 1)x2D3 +

[(
ν + 7

2

)
x − (α1 + α2 + 1)

]
xD2

+
[(

−3

4
n2 − 1 + 2ν

4
n + ν(ν + 5)

4
+ 3

2

)
x − α1α2

]
D − n(ν + n)(ν + n + 1)

4

}
y = 0, (3.43)

where y = P ν
n ( 27

4 x;α1, α2) and D = d
dx

.

3.3.4. A third-order recurrence relation

Proposition 3.14. The Jacobi type 2-OPS defined by (3.41) verifies the following recurrence relation:

xP ν
n (x;α1, α2) = 27

(ν + n − 2)2

n(n − 1)
α0,2(n)P ν

n−2(x;α1, α2) − 27
(ν + n − 1)

n
α1,2(n)P ν

n−1(x;α1, α2)

+ 27α2,2(n)P ν
n (x;α1, α2) − 27α3,2(n)

n + 1

ν + n
P ν

n+1(x;α1, α2), (3.44)

P ν
0 (x;α1, α2) = 1, P ν

1 (x;α1, α2) = (ν)3

27α1α2
x − ν,

P ν
2 (x;α1, α2) = (ν)6

272(α1)2(α2)2
x2 − (ν)4

27α1α2
x + (ν)2

2
,

where

α0,2(n) = − (−n)2(α1 − n+ν
2 )(α2 − n+ν

2 )

2(n − 1 + ν)(− 3n+ν
2 )3

, (3.45)

α2,2(n) = (n + 1)(α1 + n)(α2 + n)

(3n + ν + 1)2
− n(α1 + n − 1)(α2 + n − 1)

(3n + ν − 2)2
, (3.46)

α3,2(n) = − (n + ν)(α1 + n)(α2 + n)
, (3.47)
(3n + ν)3
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α1,2(n) = n

2

[
(n − 2 + ν)(3n − 3 + ν)(n + ν − 2α1)(n + ν − 2α2)

(n − 1 + ν)(3n + ν)(3n + ν − 2)(3n + ν − 4)
(3.48)

− (n + 1 + ν − 2α1)(n + 1 + ν − 2α2)

(3n + ν − 1)(3n + ν + 1)

]
. (3.49)

Proof. Put Pn(x) = n!
(−1)n(ν)n

P ν
n (27x;α1, α2). From (3.37), it follows

xPn(x) =
3∑

r=0

αr,2(n)Pn−2+r (x),

where α0,2(n) and α3,2(n) are given by (3.38)–(3.39).
Consequently, the Jacobi type polynomials {P ν

n (x;α1, α2)}n�0 satisfy the recurrence relation (3.44).
To determinate α2,2(n), we replace k by n and d by 2 in (3.33). That leads to (3.46).
Using (3.33), it is easy to verify that

∑d+1
r=0 αr,d(n) = 0. Hence, for d = 2, we have α1,2(n) = −[α0,2(n)+α2,2(n)+

α3,2(n)]. �
From Proposition 3.14, we deduce the following.

Corollary 3.15. The monic PS {pn(x)}n�0 defined by

pn(x) = n!(α1)n(α2)n

(ν)3n

P ν
n (27x;α1, α2),

fulfils the recurrence relation⎧⎨
⎩

pn+1(x) = (x − βn)pn(x) − γ 1
n pn−1(x) − γ 0

n−1pn−2(x), n � 2,

p0(x) = 1, p1(x) = x − α1α2

(1 + ν)2
, p2(x) = x2 + 2

(α1 + 1)(α2 + 1)

(4 + ν)2
x + (α1)2(α2)2

(2 + ν)4
,

(3.50)

where

βn = (n + 1)(n + α1)(n + α2)

(3n + ν + 1)2
− n(n − 1 + α1)(n − 1 + α2)

(3n + ν − 2)2
,

γ 0
n−1 = (α1 + n − 2)2(α2 + n − 2)2n(n − 1)(n + ν − 2α1)(n + ν − 2α2)(n − 2 + ν)

(3n − 6 + ν)(3n − 5 + ν)(3n − 4 + ν)2(3n − 3 + ν)(3n − 2 + ν)2(3n − 1 + ν)(3n + ν)
,

γ 1
n = n(n − 1 + α1)(n − 1 + α2)

2(3n + ν − 2)(3n + ν − 1)

[
(n − 1 + ν)(n + 1 + ν − 2α1)(n + 1 + ν − 2α2)

(3n − 3 + ν)(3n − 1 + ν)(3n + 1 + ν)

− (n − 2 + ν)(n + ν − 2α1)(n + ν − 2α2)

(3n + ν)(3n − 2 + ν)(3n − 4 + ν)

]
.

As particular cases of polynomials satisfying the recurrence relation (3.50) we quote the components of Humbert
polynomials defined by (3.13). For these components the recurrence relations given by (3.50) are reduced to the
recurrence relations established by Douak and Maroni [16, pp. 89, 93, 97] if we put θ0

n = 3ν+n+2
3ν+n

, λ = 3
2ν and

μ = 3
2ν − 1

2 .

3.3.5. Example
For α1 = ν+1

3 , α2 = ν+2
3 and ν = 3θ , the Jacobi type PS given by (3.41) is reduced to the PS { (θ)n

n! Bn(x; θ,3,1)}n�0
defined by [13]

(
1 − xt + αt2 + γ t3)−θ =

∑
n�0

(θ)n

n! Bn(x; θ,α, γ )tn. (3.51)

Indeed, by letting α1 = ν+1 , α2 = ν+2 and ν = 3θ , the identity (3.42) becomes
3 3
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(
1 − (x − 3)t + 3t2 + t3)−θ =

∑
n�0

P 3θ
n

(
x; θ + 1

2
, θ + 2

3

)
tn.

Replacing in this identity x by (x − 3), we obtain(
1 − xt + 3t2 + t3)−θ =

∑
n�0

P 3θ
n

(
x + 3; θ + 1

2
, θ + 2

3

)
tn.

That, by virtue of (3.51), leads to

P 3θ
n

(
x + 3; θ + 1

2
, θ + 2

3

)
= (θ)n

n! Bn(x; θ,3,1). (3.52)

The PS {Bn(x; θ,α, γ )}n�0 was first introduced by Boukhemis [13, Eq. (4.2.1)] as a PS satisfying a third-order
recurrence relation and generalizing the solution of a characterization problem which consists to find all polynomials
satisfying a third-order recurrence relation with coefficients independent of n. Later, Maroni [28] showed that these
polynomials Bn(x; θ,α, γ ) are “classical” 2-orthogonal polynomials analogous to Jacobi ones.

Notice that, by letting α1 = ν+1
3 , α2 = ν+2

3 and ν = 3θ , the identities (3.14) and (3.43) are reduced, respectively,
to the recurrence relation and the differential equation given by Boukhemis [13, Theorem 4.3.1 and Corollary 4.2.3]
for the PS {Bn(x; θ,α, γ )}n�0.

4. A characterization theorem

Recall that the Humbert polynomials have the following generalized hypergeometric representation [32]:

hν
n,d+1(x) = (d + 1)n(ν)n

xn

n! d+1Fd

(
Δ(d + 1,−n)

Δ(d,1 − ν − n)
; d

(xd)d+1

)
. (4.1)

Such polynomials are contained in a general class of generalized hypergeometric polynomials of the form

P ν
n

(
x;m,(ap), (bq)

)= (ν)nx
n
m+pFm+q−1

(
Δ(m,−n), (ap)

Δ(m − 1,1 − ν − n), (bq)
; mm

xm(m − 1)m−1

)
, (4.2)

where m � 2,p, q � 0 and ν, a1, . . . , ap, b1, . . . , bq are p + q + 2 complex numbers.
Notice that, a PS having a generalized hypergeometric representation of the form (4.2) is (m − 1)-symmetric.

New d-OPSs may be introduced via a characterization theorem or via a decomposition of a d-symmetric d-OPS (cf.
Lemma 1.5). It is then significant to consider the following problem.

P : Find all d-OPS having generalized hypergeometric representation of type (4.2).

Such a characterization takes into account the fact that PS which are obtainable from one another by a linear change
of variable are assumed equivalent.

A solution of Problem P is given by the following.

Theorem 4.1. The Humbert PS {hν
n,d+1(x)}n�0 given by (4.1) is the only d-OPS having generalized hypergeometric

representation of type (4.2).

To prove this theorem we need the following three lemmas.

Lemma 4.2. Let {Pn}n�0 be an (m − 1)-symmetric PS and let Q be a polynomial of degree s satisfying

Q(wmx) = ws
mQ(x), (4.3)

where wm = exp( 2iπ
m

). Then

Q(x) =
[ s
m

]∑
j=0

βjPs−mj (x).
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Proof. Put Q(x) =∑s
k=0 qkx

k . From the identity (4.3), we deduce

s∑
k=0

qkw
k
mxk = ws

m

s∑
k=0

qkx
k.

That, by identification, leads to qk = 0, for k �= s + mj, j ∈ N. Consequently

Q(x) =
[ s
m

]∑
j=0

qs−mjx
s−mj .

Using the inversion formula related to the PS {Pn}n�0,

xn =
[ s
m

]∑
i=0

ciPn−mi(x),

we obtain

Q(x) =
[ s
m

]∑
i=0

βiPs−mi(x),

where βi =∑i
j=0 ci−j qs−mj , i = 0, . . . , [ s

m
]. �

Lemma 4.3. Let {Pn}n�0 be an (m − 1)-symmetric PS and d-OPS defined by

Pn(x) =
[ n
m

]∑
k=0

γn,m(k)xn−mk, (4.4)

and satisfying the (d + 1)-order recurrence relation

xPn(x) =
d+1∑
k=0

αk,d(n)Pn−d+k(x), (4.5)

where αd+1,d (n)α0,d (n) �= 0, n � d , and by convention, P−n = 0, n � 1.
Then there exists a positive integer i0 such that d = i0m − 1 and

min(k,i0)∑
i=0

α(i0−i)m,d(n)γn+1−im,m(k − i) = γn,m(k); n � i0m; k = 0, . . . ,

[
n

m

]
. (4.6)

Proof. Since {Pn}n�0 is an (m − 1)-symmetric PS, then xPn(x) is a polynomial of degree (n + 1) satisfying the
identity (4.3). That by virtue of Lemma 4.2, leads to

xPn(x) =
[ n+1

m
]∑

k=0

βjPn+1−mj (x).

According to the identity (4.5), we deduce that there exists a positive integer i0 such that d = i0m − 1 and

xPn(x) =
i0∑

i=0

α(i0−i)m,d(n)Pn+1−im(x).

Using the identity (4.4), we obtain

[ n
m

]∑
γn,m(k)xn+1−mk =

i0∑ [ n+1
m

]−i∑
α(i0−i)m,d(n)γn+1−im,m(k)xn+1−(k+i)m
k=0 i=0 k=0



48 I. Lamiri, A. Ouni / J. Math. Anal. Appl. 341 (2008) 24–51
=
i0∑

i=0

[ n+1
m

]∑
k=i

α(i0−i)m,d(n)γn+1−im,m(k − i)xn+1−km

=
[ n+1

m
]∑

k=0

min(k,i0)∑
i=0

α(s−i)m,d(n)γn+1−im,m(k − i)xn+1−km.

Then, by identification, we obtain (4.6). �
It is easy to show the following properties of the Pochhammer symbol.

Lemma 4.4. Let i � i0 � k � [ n
m

], we have

(−n − 1 + im)(k−i)m = (−n − 1 + im)(i0−i)m(−n − 1 + i0m)(k−i0)m, (4.7)

(ν)n+1−i−k(m−1) = (ν)n+1−i0−k(m−1)

(
ν + n + 1 − i0 − k(m − 1)

)
i0−i

, (4.8)

(−n)km = (−n)i0m−1(−n − 1 + i0m)(k−i0)m(−n − 1 + km), (4.9)

(a)k−i = (a)k−i0(a + k − i0)i0−i . (4.10)

Proof of Theorem 4.1. Put Pn(x) = P ν
n (x;m,(ap), (bq)), where {P ν

n (x;m,(ap), (bq))}n�0 is a PS of the form (4.2).
Then we have

Pn(x) =
[ n
m

]∑
k=0

γn,m(k)xn−mk, (4.11)

where

γn,m(k) = (−1)k(m−1)(−n)mk(ν)n−k(m−1)

k!
[ap]k
[bq ]k . (4.12)

To prove Theorem 4.1, it is sufficient to show that: if {Pn(x)}n�0 is d-orthogonal, then d = m − 1 and p = q = 0,
since that corresponds to Humbert polynomials and the converse follows from Ben Cheikh and Douak result [8].

According to Lemma 4.3, we deduce that there exist a positive integer i0 and a sequence {α(i0−i)m,d(n)}0�i�i0�[ n
m

]
such that d = i0m − 1, α0,d (n)αi0m,d(n) �= 0 and

min(k,i0)∑
i=0

α(i0−i)m,d(n)γn+1−im,m(k − i) = γn,m(k); n � i0m; k = 0, . . . ,

[
n

m

]
. (4.13)

Since i0 ∈ {0, . . . , [ n
m

]} and k is an arbitrary integer in {0, . . . , [ n
m

]}, we can assume that k � i0. Substituting (4.12)
in (4.13) and using the identities (4.7)–(4.10), we obtain

(−n)i0m−1(−n − 1 + km)
(
ν + n + 1 − i0 − k(m − 1)

)
i0−1

[ap + k − i0]i0
[bq + k − i0]i0

=
i0∑

i=0

(−1)i(m−1)α(i0−i)m,d(n)(−n − 1 + im)(i0−i)m

× (
ν + n + 1 − i0 − k(m − 1)

)
i0−i

k[i] [ap + k − i0]i0−i

[bq + k − i0]i0−i

, (4.14)

where x[i] denotes the falling factorial polynomials given by

x[0] = 1 and x[i] := i!
(

x

i

)
= x(x − 1) · · · (x − i + 1), i = 1,2, . . . .

Multiplying both sides of the equality (4.14) by [bq + k − i0]i and using (2.9) to obtain
0
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Q(k) = R(k), i0 � k �
[

n

m

]
, (4.15)

where R and Q are the polynomials defined by

Q(x) = (−n)i0m−1(−n − 1 + mx)
(
ν + n + 1 − i0 − (m − 1)x

)
i0−1[ap + x − i0]i0,

R(x) =
i0∑

i=0

α(i0−i)m,d(n)(−n − 1 + im)(i0−i)m

(
ν + n + 1 − i0 − (m − 1)x

)
i0−i

× (−1)i(m−1)[ap + x − i0]i0−i[bq + x − i]ix[i].
Observing that: degQ = i0(p + 1) and

degR � max
0�i�i0

(
i0(p + 1) + i(q − p)

)
� max

(
i0(p + 1), i0(q + 1)

)
.

Then max(degR,degQ) � max(i0(p + 1), i0(q + 1)).
Choosing n such that [ n

m
] − i0 � max(i0(p + 1), i0(q + 1)). According to (4.15), we deduce that Q = R. In

particular, we have

Q

(
ν + n + 1 − i0

m − 1

)
= R

(
ν + n + 1 − i0

m − 1

)
.

That means,

(−1)i0(m−1)α0,d (n)

[
bq − i0 + ν + n + 1 − i0

m − 1

]
i0

= (0)i0−1

(
−n − 1 + m

ν + n + 1 − i0

m − 1

)

× (−n)i0m−1

[
ap − i0 + ν + n + 1 − i0

m − 1

]
i0

. (4.16)

Since, α0,d (n) �= 0; n � i0m; and [bq − i0 + ν+n+1−i0
m−1 ]i0 ∼ ( n

m−1 )qi0 ; n ↑ ∞; then there exists a positive integer n0
such that

(−1)i0(m−1)α0,d (n)

[
bq − i0 + ν + n + 1 − i0

m − 1

]
i0

�= 0, n � n0.

That, by virtue of (4.16), leads to i0 = 1. Hence d = m − 1.
Now, we shall show that p = q = 0.
Replacing k by 0 in (4.13), we get αm,d(n) = 1

ν+n
. Hence, the identity (4.14) becomes∏q

j=1(bj + k − 1)∏p

i=1(ai + k − 1)
=
(

m − 1

ν + n
− m

n + 1

)
(−n − 1)m(−1)m−1

α0,d (n)
.

Taking into account the fact that, the right-hand side of this identity is independent of k, and bj �= ai ; 1 � j � q ,
1 � i � p; we deduce that p = q = 0.

We conclude that, if {Pn}n�0 is a d-OPS, then {Pn}n�0 is the Humbert polynomials with d = m − 1. �
Remark 4.5. The solution of Problem P does not provide us with new d-OPSs and Theorem 4.1 may be viewed as a
characterization theorem for the Humbert polynomials.

Two particular cases are worthy to note.

Corollary 4.6. The only OPS of type (4.2) are the Gegenbauer polynomials.

Corollary 4.7. The only 2-OPS of the form (4.2) are the Pincherle type polynomials given by

P ν
n (x) = xn

3F2

(−n
3 , −n+1

3 , −n+2
3

1−ν−n
2 , 2−ν−n

2

; 1

x3

)
. (4.17)
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5. Concluding remarks

Remark 5.1. In this paper, we extend the definition (3.3) to introduce a class of generalized hypergeometric polyno-
mials containing the components of the Humbert polynomials. Such polynomials have properties analogous to those
of Jacobi. But this class, for d � 2, does not contain the Humbert polynomials as it does for d = 1. The question of
the existence of an extension of (3.3) satisfying in addition this last condition remains open.

Remark 5.2. Douak and Maroni [16, Corollary 5.4] showed that the first component of “classical” d-symmetric d-
OPS is also “classical” d-OPS. The question here is what is about the other components? May be all the components
are “classical” d-orthogonal. This suggestion is based on the following:

• The case d = 1: The components of the Hermite polynomials are Laguerre polynomials and the components of
Gegenbauer polynomials are Jacobi polynomials.

• The Gould–Hopper polynomials: Ben Cheikh and Douak [9] showed that the components of Gould–Hopper
polynomials are the Laguerre type polynomials which are “classical” d-orthogonal.

• The Humbert polynomials: see Remark 3.12.

Remark 5.3. The property of the non-negativity of the obtained weight functions in this paper was mentioned for
some special cases, when d = 2, see Remarks 2.6, 2.9, 2.12 and 3.5. This question for general case, i.e. for weight
functions given by Theorems 2.4 and 3.3, remains unsolved.
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