
GENERATING FUNCTIONS OF JACOBI POLYNOMIALS

IZUMI KUBO*

Abstract. Multiplicative renormalization method (MRM) for deriving gen-
erating functions of orthogonal polynomials is introduced by Asai–Kubo–
Kuo. They and Namli gave complete lists of MRM-applicable measures
for MRM-factors h(x) = ex and (1 − x)−κ. In this paper, MRM-factors
h(x) for which the beta distribution B(p, q) over [0, 1] is MRM-applicable
are determined. In other words, all generating functions of Boas-Buck type
of Jacobi polynomials over [0, 1] are obtained. There are only two types

2F1

„
p + q

2
,
p + q ± 1

2
; p; 4x

«
up to scaling. For the proofs, a general frame-

work will be given together with an example.

1. Multiplicative Renormalization Method

A probability measure µ on R with density fµ(x) is said to be applicable to
the multiplicative renormalization method for h(x) (or simply, MRM-applicable),
if there exists a suitable analytic function ρ(t) around t = 0 with ρ(0) = 0, r1 =
ρ′(0) 6= 0 such that

ψ(t, x) =
h(ρ(t)x)
θ(ρ(t))

with θ(t) =
∫
h(tx) dµ(x) (1.1)

is a generating function of the orthogonal polynomials {Pn(x)} in L2(µ) with
leading coefficient of one. Then there exist Jacobi-Szegö parameters {αn, ωn}
satisfying the recursive relation

Pn+1(x) = (x− αn)Pn(x)− ωnPn−1(x) (1.2)

with ω0 = 1, P−1(x) = 0.
Let us suppose that an MRM-factor h(x) is expanded as

h(x) =
∞∑

n=0

hnx
n, h0 = 1, hn 6= 0, n ≥ 1.

Then we have the expansion

ψ(t, x) =
∞∑

n=0

rn
1 hnPn(x)tn. (1.3)
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Proposition 1.1. ([3]) ψ(t, x) =
h(ρ(t)x)
ϕ(t)

with ϕ(t) = θ(ρ(t)) is a generating

function of orthogonal polynomials if and only if

Θρ(t, s) =
θ̃(ρ(t), ρ(s))
ϕ(t)ϕ(s)

is a function J(ts) depending only on ts, where

θ̃(t, s) =
∫
h(tx)h(sx) dµ(x).

In the previous papers, we have given complete lists of MRM-applicable mea-

sures for MRM-factors h(x) = ex and h(x) =
1

(1− x)κ
(see [9] [11] [12] [13])

by using the proposition. Typical MRM-applicable measures for h(x) = ex are
Gaussian, Poisson, gamma, beta, negative binomial and Meixner distributions. In

the second case h(x) =
1

(1− x)κ
, we can show that κ > −1

2
and κ 6= 0 must hold.

The case κ = 1 is extremal as seen [11]. Possible ρ and ϕ-functions are

ρ(t) =
2t

α+ 2βt+ γt2
, ϕ(t) =

α+ 2βt+ γt2

α+ 2(β − a)t+ (γ − 2b)t2
. (1.4)

By affine transform, the density fµ of MRM-applicable measure µ for h(x) =
(1− x)−1 can be represented as

fµ(x) =
b
√

1− x2

π(a2 + b2 − 2a(1− b)x+ (1− 2a)x2)
(|a| ≤ 1− b). (1.5)

Then ρ and ϕ are standardized as ρ(t) =
2t

1 + t2
and ϕ(t) =

1 + t2

1− 2at+ (1− 2b)t2
.

For κ > −1
2
, κ 6= 1, κ’s are classified in two groups. For

1
2
≥ κ > −1

2
, there is

only one typical MRM-applicable measure. For κ >
1
2
, κ 6= 1, there are only three

typical MRM-applicable measures. (see [6] [13]).

Typical MRM-applicable measures for h(x) =
1

(1− x)κ
, κ 6= 0, 1

µ ρ(t) ϕ(t) ψ(t, x)

(i) B̃(κ+ 1
2 , κ+ 1

2 )
κ > − 1

2

2t
1 + t2

(1 + t2)κ 1
(1− 2tx+ t2)κ

(ii) B̃(κ− 1
2 , κ− 1

2 )
κ > 1

2

2t
1 + t2

(1 + t2)κ

1− t2
1− t2

(1− 2tx+ t2)κ

(iii) B̃(κ+ 1
2 , κ− 1

2 )
κ > 1

2

2t
1 + t2

(1 + t2)κ

1− t

1− t

(1− 2tx+ t2)κ
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Here B̃(p, q) is the beta distribution over [−1, 1] with the density

f̃p,q(x) =
Γ(p+ q)

2p+q−1Γ(p)Γ(q)
(1 + x)p−1(1− x)q−1.

Their orthogonal polynomials are given by Gegenbauer polynomials respectively:

(i)
n!Γ(κ)

2nΓ(n+ κ)
Cκ

n(x),

(ii)
n!Γ(κ− 1)

2nΓ(n+ κ− 1)
Cκ−1

n (x),

(iii)
n!Γ(κ)

2nΓ(n+ κ)
(
Cκ

n(x)− Cκ
n−1(x)

)
.

They can also be expressed by using Jacobi polynomials as follows: (see Eq. (4)
in §132 of [15]):

P (α,β)(x) =
n!(α+ β + 1)n

(α+ β + 1)2n

n∑

k=0

(−1)n−k(α+ β + 1)n+k

k!(n− k)!(α+ β + 1)k

(
x+ 1

2

)k

.

In the footnote of [5], Boas and Buck wrote “Jacobi polynomials P (α,β)(x) have
a generating relation of the form (1.1) only α − β = −1, 0 or 1 (Smith [18]),
but P (α,β)(x + 1) do have a generating relation (1.1) (Erdélyi [8] III, p. 264).”
However, on p. 264 of Erdélyi [8] III, only the formula

(9) (1− t)−1−α−β
2F1

(
1 + α+ β

2
,
2 + α+ β

2
; 1 + α; 2t(x− 1)(1− t)−2

)

is shown without any comment. Here hypergeometric functions are defined by

pFq(a1, a2, . . . , ap; b1, b2, . . . , bq;x) =
∞∑

n=0

(a1)n(a2)n · · · (ap)n

(b1)n(b2)n · · · (bq)nn!
xn,

where

(a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1) =
Γ(a+ n)

Γ(a)
.

Let us observe the affine transform x 7→ 1 + x

2
. Then we have the following

table corresponding to B(p, q), also. Here B(p, q) for p, q > 0 means the beta
distribution over [0, 1] with the density

fp,q(x) =
Γ(p+ q)
Γ(p)Γ(q)

xp−1(1− x)q−1 for 0 ≤ x ≤ 1. (1.6)
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MRM-applicable beta distributions B(p, q) over [0, 1]

for h(x) = (1− x)−κ

µ κ ρ(t) ϕ(t)

B(p, p)
p > 0

p− 1
2

4t
(1 + t)2

(1 + t)2p−1

B(p, p)
p > 0

p+
1
2

4t
(1 + t)2

(1 + t)2p+1

1− t2

B(p, p− 1)
p > 1

p− 1
2

4t
(1 + t)2

(1 + t)2p−1

1− t

B(p, p+ 1)
p > 0

p+
1
2

4t
(1 + t)2

(1 + t)2p+1

1− t

Here ψ(t, x) is given by
1− t

(1 + 2(1− 2x)t+ t2)κ
. Orthogonal polynomials of B(p, q)

are given by

P p,q
n (x) =

n!(p)n

(p+ q − 1)2n

n∑

k=0

(−1)n−k(p+ q − 1)n+k

k!(n− k)!(p)k
xk

=
(p)nn!

(p+ q − 1)2n
P (q−1,p−1)

n (2x− 1).

(1.7)

Bateman’s generating function is given by

0F1(−; p; tx) 0F1(−; q; t(1− x)) =
∞∑

n=0

(p+ q − 1 + n)n

n!(p)n(q)n
P p,q

n (x)tn (1.8)

(see §133 of [15]). A generating function of the type of Eq. (1.1) can be given by
Boas and Buck’s footnote mentioned above. It is remarkable that Proposition 1.1
is applicable to show the orthogonality for the case.

Theorem 1.2. The beta distribution µp,q over [0, 1] is MRM-applicable for

hp,q(x) = 2F1

(
p+ q

2
,
p+ q − 1

2
; p; 4x

)
(1.9)

with ρ(t) =
t

(1 + t)2
and ϕp,q(t) = (1 + t)p+q−1 for p + q > 1. Moreover, the

generating function is given by

ψp,q(t, x) =
1

(1 + t)p+q−1 2F1

(
p+ q

2
,
p+ q − 1

2
; p;

4t
(1 + t)2

x

)

=
∞∑

n=0

(p+ q − 1)2n

(p)nn!
P p,q

n (x)tn.
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2. Another Generating Function for Beta Distribution

As seen in Section 1, the set of orthogonal polynomials for the beta distribution
B(p, p) over [0, 1] has only two generating functions of type (1.1) with the same

ρ(t) =
4t

(1 + t)2
. This fact shows the possibility of another generating function for

B(p, q) different from Eq. (1.9). We first calculate Jacobi-Szegö parameters.

Proposition 2.1. Jacobi-Szegö parameters {αn, ωn} of the orthogonal polynomials
{P p,q

n (x)} of Eq. (1.7) are given by

αn =
2n2 + 2(p+ q − 1)n+ p(p+ q − 2)

(p+ q + 2n− 2)(p+ q + 2n)
for n ≥ 0, (2.1)

ωn =
n(p+ n− 1)(q + n− 1)(p+ q + n− 2)

(p+ q + 2n− 3)(p+ q + 2n− 2)2(p+ q + 2n− 1)
for n ≥ 1 (2.2)

and ω0 = 1.

Proof. By Eq. (1.9), ρ(t) =
t

(1 + t)2
and B(t) =

1
ϕp,q(t)

=
1

(1 + t)p+q−1
in Theo-

rem 1.2, we have

hn =

(
p+q
2

)
n

(
p+q−1

2

)
n

n!(p)n
,

b1 = B′(0) = −p− q + 1, b2 =
1
2
B′′(0) =

1
2
(p+ q − 1)(p+ q),

r2 =
1
2
ρ′′(0) = −2, r3 =

1
6
ρ′′′(0) = 3.

Obviously, we see that
hn

hn+1
=

(n+ 1)(p+ n)
(p+ q + 2n− 1)(p+ q + 2n)

,

hn−1

hn
=

n(p+ n− 1)
(p+ q + 2n− 3)(p+ q + 2n− 2)

,

hn−1

hn+1
=

n(n+ 1)(p+ n)(p+ n− 1)
(p+ q + 2n− 3)(p+ q + 2n− 2)(p+ q + 2n− 1)(p+ q + 2n)

,

hn−2

hn
=

n(n− 1)(p+ n− 2)(p+ n− 1)
(p+ q + 2n− 5)(p+ q + 2n− 4)(p+ q + 2n− 3)(p+ q + 2n− 2)

.

Applying Lemma 3.4, we have Eq. (2.1) for n ≥ 1 and Eq. (2.2) for n ≥ 2. It is
easily seen that α0 and ω1 satisfy Eq. (2.1) and Eq. (2.2), respectively. Thus we
have the assertion. ¤
Theorem 2.2. The beta distribution B(p, q) over [0, 1] is MRM-applicable for

hp,q
+ (x) = 2F1

(
p+ q

2
,
p+ q + 1

2
; p; 4x

)
(2.3)

with ρ(t) =
t

(1 + t)2
and ϕp,q

+ (t) =
(1 + t)p+q

1− t
. Moreover, we have the generating

function

ψp,q
+ (t, x) =

1− t

(1 + t)p+q 2F1

(
p+ q

2
,
p+ q + 1

2
; p;

4t
(1 + t)2

x

)
.
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Proof. By Theorem 1.2, ψp,q
+ (t, x) can be rewritten as

ψp,q
+ (t, x) =

1− t

(1 + t)p+q 2F1

(
p+ q

2
,
p+ q + 1

2
; p;

4t
(1 + t)2

x

)

= (1− t)ψp,q+1(t, x)

= (1− t)
∞∑

n=0

(p+ q)2n

(p)nn!
P p,q+1

n (x)tn

= 1 +
∞∑

n=1

(
(p+ q)2n

(p)nn!
P p,q+1

n (x)− (p+ q)2n−2

(p)n−1(n− 1)!
P p,q+1

n−1 (x)
)
tn

= 1 +
∞∑

n=1

(p+ q)2n−2

(p)nn!

(
(p+ q + 2n− 2)(p+ q + 2n− 1)P p,q+1

n (x)

−n(p+ n− 1)P p,q+1
n−1 (x)

)
tn.

Here we see by Eq. (1.7)

(p+ q + 2n− 2)(p+ q + 2n− 1)P p,q+1
n (x)− n(p+ n− 1)P p,q+1

n−1 (x)

=
n!(p)n

(p+ q)2n−2

n∑

k=0

(−1)n−k(p+ q)n+k

k!(n− k)!(p)k
xk

− n!(p)n

(p+ q)2n−2

n−1∑

k=0

(−1)n−k−1(p+ q)n+k−1

k!(n− k − 1)!(p)k
xk

= (p+ q + 2n− 2)(p+ q + 2n− 1)xn

+
n!(p)n

(p+ q)2n−2

n−1∑

k=0

(−1)n−k(p+ q)n+k−1

k!(n− k)!(p)k
(p+ q + 2n− 1)xk

= (p+ q + 2n− 2)(p+ q + 2n− 1)P p,q
n (x).

Thus ψp,q
+ (t, x) is a generating function of {P p,q

n (x)} as

ψp,q
+ (t, x) =

∞∑
n=0

(p+ q)2n

(p)nn!
P p,q

n (x)tn.

¤

Theorem 2.3. For the beta distribution B(p, q) over [0, 1], there are only two
MRM-factors up to scaling given by

hp,q(x) = 2F1

(
p+ q

2
,
p+ q − 1

2
; p; 4x

)
, ϕp,q(t) = (1 + t)p+q−1

and

hp,q
+ (x) = 2F1

(
p+ q

2
,
p+ q + 1

2
; p; 4x

)
, ϕp,q

+ (t) =
(1 + t)p+q

1− t

with the common ρ-function ρ(t) =
t

(1 + t)2
.
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Proof. We will apply a general framework to be proved in Section 3 later. Suppose
that µp,q is the measure of the beta distribution B(p, q) over [0, 1] and that

h(x) =
∞∑

n=0

hnx
n, ρ(t) =

∞∑
n=0

rnt
n and B(t) =

∞∑
n=0

bnt
n. (2.4)

We may normalize as h(0) = h0 = 1, B(0) = b0 = 1 and ρ(0) = r0 = 0, ρ′(0) =
r1 = 1 as seen in Remark 3.5 (ii). Suppose that ψ(t, x) = B(t)h(ρ(t)x) is a generat-
ing function of {Pn} with Jacobi-Szegö parameters {αn, ωn} given by Proposition
2.1.

Define {Wn(x)} and {Wn,m;n − 1 ≥ m ≥ 0} by Eq. (3.9) and Eq. (3.10),
respectively. Since {αn, ωn} are given by Proposition 2.1, recursion formulas in
Lemma 3.3 become

h1 = − (p+ q)b1
p

,

hn+1 =
(b1 + r2n)(p+ q + 2n− 2)(p+ q + 2n)h2

n

−(
2n2 + 2(p+ q − 1)n+ p(p+ q − 2)

)
hn

+ (b1 + r2(n− 1))(p+ q + 2n− 2)(p+ q + 2n)hn−1

(2.5)

bn+1 = −
(
2n2 + 2(p+ q − 1)n+ p(p+ q − 2)

)
hn+1

(p+ q + 2n− 2)(p+ q + 2n)hn
bn

− n(p+ n− 1)(q + n− 1)(p+ q + n− 2)hn+1

(p+ q + 2n− 3)(p+ q + 2n− 2)2(p+ q + 2n− 1)hn−1
bn−1,

(2.6)

rn+1 =
bnhn+1

h1hn
−

n∑
m=1

bn+1−mrm

−2n2 + 2(p+ q − 1)n+ p(p+ q − 2)
(p+ q + 2n− 2)(p+ q + 2n)

hn+1

hn

n∑
m=1

bn−mrm

− n(p+ n− 1)(q + n− 1)(p+ q + n− 2)
(p+ q + 2n− 3)(p+ q + 2n− 2)2(p+ q + 2n− 1)

×hn+1

hn−1

n−1∑
m=1

bn−1−mrm.

(2.7)

Put n = 1, n = 2, and n = 3 to get

h2 =
b1(b1 + r2)(p+ q)(p+ q + 2)

2p(p+ 1)
, b2 =

b1(b1 + r2)(p+ q)
2(p+ q + 1)

,

h3 = −b1(b1 + r2)(b1 + 2r2)(p+ q)(p+ q + 2)(p+ q + 4)
6p(p+ 1)(p+ 2)

,

b3 =
b1(b1 + r2)(b1 + 2r2)(p+ q)

6(p+ q + 3)
,

r3 =
b21 − (p+ q)b1r2 + (p+ q + 1)(p+ q + 2)r22

(p+ q + 1)(p+ q + 3)
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and

h4 =
b1(b1 + r2)(b1 + 2r2)(b1 + 3r2)(p+ q)(p+ q + 2)(p+ q + 4)(p+ q + 6)

24p(p+ 1)(p+ 2)(p+ 3)
,

b4 =
b1(b1 + r2)(b1 + 2r2)(b1 + 3r2)(p+ q)(p+ q + 2)

24(p+ q + 3)(p+ q + 5)
,

r4 =

(− b1 + (p+ q + 2)r2
)

×(
4b21 − 2(p+ q − 1)b1r2 + (p+ q + 1)(p+ q + 3)r22

)

(p+ q + 1)(p+ q + 3)(p+ q + 5)
.

Then W4,2 becomes

W4,2 = −12(2b1 − r2(p+ q − 1))(2b1 − r2(p+ q + 1))(p+ 2)(p+ 3)
(b1 + 2r2)(b1 + 3r2)(p+ q + 1)6

.

Solving W4,3 = 0 in r2, we have

r2 =
2b1

p+ q − 1
or r2 =

2b1
p+ q + 1

.

By Eqs. (2.5), (2.6), (2.7) and Remark 3.5, {hn, rn, bn} are uniquely determined
up to scaling for a given value of b1/r2. Thus we have only two triples {h(x), ρ(t),
B(t)}’s. From Theorem 1.2 and Proposition 2.1, we know these two triples. In
both cases, r2 = ρ′′(0)/2 = −2. Since (ϕp,q)′(0) = p+q−1 and (ϕp,q

+ )′(0) = p+q+1

hold, r2 satisfies r2 =
2b1

p+ q − 1
for the case of Theorem 1.2 and r2 =

2b1
p+ q + 1

for the case of Theorem 2.2. Thus we conclude the assertion. In the following, we
will prove more directly using lemmas in Section 3.

(i) The case of r2 =
2b1

p+ q − 1
:

We see that

h2 =
b21(p+ q)3

2(p+ q − 1)(p)2
, b2 =

b21(p+ q)1
2(p+ q − 1)

, r2 =
2b1

p+ q − 1
,

h3 = − b31(p+ q)5
6(p+ q − 1)2(p)3

, b3 =
b31(p+ q)2

6(p+ q − 1)2
, r3 =

3b21
(p+ q − 1)2

,

h4 =
b41(p+ q)7

24(p+ q − 1)3(p)4
, b4 =

b41(p+ q)3
24(p+ q − 1)3

, r4 =
4b31

(p+ q − 1)3

by Lemma 3.3. Up to scaling, we may assume that

b1 = −(p+ q − 1).

Therefore,

h2 =
(p+ q − 1)4

2!(p)2
, b2 =

1
2!

(p+ q − 1)2, r2 = −2,

h3 =
(p+ q − 1)6

3!(p)3
, b3 = − 1

3!
(p+ q − 1)3, r3 = 3,

h4 =
(p+ q − 1)8

4!(p)4
, b4 =

1
4!

(p+ q − 1)4, r4 = −4.
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Recursively, we can obtain (hn+1, bn+1, rn+1) uniquely by Lemma 3.3. Suppose
that

hk =
(p+ q − 1)2k

k!(p)k
, bk =

(−1)k(p+ q − 1)k

k!
, rk = −(−1)kk (2.8)

hold for n ≥ k ≥ 1. The first recursion formula in Lemma 3.3 can be rewritten as

hn+1 =
(p+ q + 2n− 1)hn

(p+ q + 2n− 3)
hn−1

hn
+ αn

. (2.9)

Therefore,

hn+1 =
(p+ q + 2n− 1)hn

n(p+ n− 1)
p+ q + 2n− 2

+
2n2 + 2(p+ q − 1)n+ p(p+ q − 2)

(p+ q + 2n− 2)(p+ q + 2n)

=
(p+ q + 2n− 1)(p+ q + 2n)

(n+ 1)(p+ n)
(p+ q − 1)2n

n!(p)n
=

(p+ q − 1)2n+2

(n+ 1)!(p)n+1
.

The second formula in Lemma 3.3 is rewritten as

bn+1 = −hn+1

hn

(
αn + ωn

bn−1

bn

hn

hn−1

)
bn. (2.10)

Since

αn + ωn
bn−1

bn

hn

hn−1
= αn − ωn

(p+ q + 2n− 3)(p+ q + 2n− 2)
(p+ n− 1)(p+ q + n− 2)

=
(

2n2 + 2(p+ q − 1)n+ p(p+ q − 2)
(p+ q + 2n− 2)(p+ q + 2n)

− n(q + n− 1)
(p+ q + 2n− 2)(p+ q + 2n− 1)

)

=
(p+ n)(p+ q + n− 1)

(p+ q + 2n− 1)(p+ q + 2n)
,

we have

bn+1 = − (p+ q + 2n− 1)(p+ q + 2n)
(n+ 1)(p+ n)

(p+ n)(p+ q + n− 1)
(p+ q + 2n− 1)(p+ q + 2n)

bn

= −(−1)n (p+ q + n− 1)
n+ 1

(p+ q − 1)n

n!
= (−1)n+1 (p+ q − 1)n+1

(n+ 1)!

by Eq. (2.10). Since the equations in (2.8) hold for n ≥ k ≥ 0, we have
m∑

k=0

bm−krk = −(−1)m
m∑

k=0

k
(p+ q − 1)m−k

(m− k)!
= (−1)m−1 (p+ q + 1)m−1

(m− 1)!

for n ≥ m ≥ 1 by the formula
m∑

k=0

(a)k

k!
=

(a+ 1)m

m!
. By the same reason,

n∑

k=0

bn+1−krk = (−1)n

(
(p+ q + 1)n

n!
− (n+ 1)

)
.

Since
hn+1

hn
=

(p+ q + 2n− 1)(p+ q + 2n)
(n+ 1)(p+ n)

,
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hn+1

hn−1
=

(p+ q + 2n− 3)(p+ q + 2n− 2)(p+ q + 2n− 1)(p+ q + 2n)
n(n+ 1)(p+ n− 1)(p+ n)

,

we have

rn+1 =
hn+1bn
hnh1

− (−1)n

(
(p+ q + 1)n

n!
− (n+ 1)

)

−(−1)n−1αn
hn+1

hn

(p+ q + 1)n−1

(n− 1)!
− (−1)n−2ωn

hn+1

hn−1

(p+ q + 1)n−2

(n− 2)!

= −(−1)n+1(n+ 1) + (−1)n (p+ q + 1)n−2

(n+ 1)!(p+ n)(p+ q + 2n− 2)
×

(
p(p+ q + 2n− 2)(p+ q + 2n− 1)(p+ q + 2n)
−(n+ 1)(p+ n)(p+ q + n− 1)(p+ q + n)(p+ q + 2n− 2)
+n(p+ q + n− 1)(p+ q + 2n− 1)

(
2n2 + p(p+ q − 2) + 2n(p+ q − 1)

)

−n(n− 1)(q + n− 1)(p+ q + n− 2)(p+ q + 2n)
)

= −(−1)n+1(n+ 1).

By induction, we conclude that equalities in (2.8) hold for any n. Thus we have

h(x) =
∞∑

n=0

(p+ q − 1)2n

(p)nn!
xn = 2F1

(
p+ q − 1

2
,
p+ q

2
; p; 4x

)
,

r(t) =
∞∑

n=0

(−1)n+1ntn =
t

(1 + t)2
,

B(t) =
∞∑

n=0

(−1)k(p+ q − 1)nt
n =

1
(1 + t)p+q−1

.

Hence ψ(t, x) =
1

(1 + t)p+q−1 2F1

(
p+ q − 1

2
,
p+ q

2
; p;

4t
(1 + t)2

x

)
and it is a gen-

erating function of the beta distribution B(p, q).

(ii) The case of r2 =
2b1

p+ q + 1
:

Similar to the case (i), we may assume that

b1 = −(p+ q + 1).

Then

h2 =
(p+ q)4
2!(p)2

, b2 =
1
2!

(p+ q)(p+ q + 3), r2 = −2,

h3 =
(p+ q)6
3!(p)3

, b3 = − 1
3!

(p+ q)2(p+ q + 5), r3 = 3,

h4 =
(p+ q)8
4!(p)4

, b4 =
1
4!

(p+ q)3(p+ q + 7), r4 = −4.

Suppose that

hk =
(p+ q)2k

k!(p)k
, bk =

(−1)k(p+ q)k−1(p+ q + 2k − 1)
k!

, rk = −(−1)kk (2.11)
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hold for n ≥ k ≥ 1. Then by Eqs.(2.1) and (2.5),

hn+1 =
(p+ q + 2n+ 1)hn

(p+ q + 2n− 1)
hn−1

hn
+ αn

=
(p+ q + 2n− 1)(p+ q + 2n)

(n+ 1)(p+ n)
hn =

(p+ q)2n+2

(n+ 1)!(p)n+1
.

By Eqs.(2.1), (2.2), (2.6) and (2.10),

bn+1 = − (p+ q + 2n)(p+ q + 2n+ 1)bn
(n+ 1)(p+ n)

(p+ n)(p+ q + n− 1)
(p+ q + 2n− 1)(p+ q + 2n)

= − (p+ q + n− 1)(p+ q + 2n+ 1)
(n+ 1)(p+ q + 2n− 1)

bn

=
(−1)n+1(p+ q)n(p+ q + 2n+ 1)

(n+ 1)!
.

By Eq. (2.11) and bk = (−1)k
(
(p+ q)k + k(p+ q)k−1

)
, we have

m∑

k=1

bm−krk = −(−1)m
m∑

k=1

k(p+ q)m−k

(m− k)!
− (−1)m

m−1∑

k=1

k(p+ q)m−k−1

(m− k − 1)!

=
(−1)m−1(p+ q + 2m− 1)(p+ q + 2)m−2

(m− 1)!

for n ≥ m ≥ 1 and
n∑

k=1

bn+1−krk = (−1)n+1(n+ 1) +
(−1)n(p+ q + 2n+ 1)(p+ q + 2)n−1

n!
.

By Eqs.(2.1), (2.2) and (2.7),

rn+1 = (−1)n(n+ 1)− (−1)n(p+ q + 2n+ 1)(p+ q + 2)n−1

n!

+
hn+1bn
h1hn

+ (−1)nαnhn+1

hn

(p+ q + 2n− 1)(p+ q + 2)n−2

(n− 1)!

−(−1)nωnhn+1

hn−1

(p+ q + 2n− 3)(p+ q + 2)n−3

(n− 2)!
= −(−1)n+1(n+ 1).

By induction, we can conclude that the equalities in Eq. (2.11) hold for any n.
Then we see that

h(x) =
∞∑

n=0

(p+ q)2n

(p)nn!
xn = 2F1

(
p+ q

2
,
p+ q + 1

2
; p; 4x

)
,

r(t) =
∞∑

n=0

(−1)n+1ntn =
t

(1 + t)2
,

B(t) =
∞∑

n=0

(−1)n(p+ q)n−1(p+ q + 2n− 1)tn =
1− t

(1 + t)p+q
.
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It follows that ψ(t, x) =
1− t

(1 + t)p+q 2F1

(
p+ q

2
,
p+ q + 1

2
; p;

4t
(1 + t)2

x

)
, which is

a generating function of the beta distribution B(p, q) in Theorem 2.2. ¤

3. A General Framework

By Shohat’s theorem [16], a set of polynomials {Pn} with leading coefficient 1
satisfies the recursion relation (1.2) with Jcobi-Szegö parameters {αn, ωn} satis-
fying P−1(x) = 0, α−1 = 0, ω0 = 1, if and only if they are orthogonal polynomials
with respect to a singed measure µ of bounded variation.

We now assume that µ(R) = 1 and that

h(x) =
∞∑

n=0

hnx
n, ρ(t) =

∞∑
n=0

rnt
n and B(t) =

∞∑
n=0

bnt
n. (3.1)

We may normalize as h(0) = h0 = 1, B(0) = b0 = 1 and ρ(0) = r0 = 0, ρ′(0) =
r1 = 1. For convenience, we put b−1 = 0. Suppose that ψ(t, x) = B(t)h(ρ(t)x) is
a generating function of {Pn};

ψ(t, x) = B(t)h(ρ(t)x) =
∞∑

n=0

hnPn(x)tn. (3.2)

Then

B(t) =
1
ϕ(t)

, θ(t) =
∫

R
h(tx) dµ(x) and ϕ(t) = θ(ρ(t)). (3.3)

Some terms of Eq. (3.2) (equivalently of Eq. (1.3) with r1 = 1) are

ψ(t, x) =
5∑

n=0

hnPn(x)tn +O(t6)

with

P0(x) = 1, P1(x) = x+
b1
h1
, P2(x) = x2 +

h1(b1 + r2)
h2

x+
b2
h2
,

P3(x) = x3 +
h2(b1 + 2r2)

h3
x2 +

h1(b2 + b1r2 + r3)
h3

x+
b3
h3
,

P4(x) = x4 +
h3(b1 + 3r2)

h4
x3 +

h2

(
b2 + 2b1r2 + r22 + 2r3

)

h4
x2

+
h1(b3 + b2r2 + b1r3 + r4)

h4
x+

b4
h4
,

P5(x) = x5 +
h4(b1 + 4r2)

h5
x4 +

h3

(
b2 + 3b1r2 + 3r22 + 3r3

)

h5
x3

+
h2

(
b3 + 2b2r2 + b1r

2
2 + 2b1r3 + 2r2r3 + 2r4

)

h5
x2

+
h1(b4 + b3r2 + b2r3 + b1r4 + r5)

h5
x+

b5
h5
.
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Lemma 3.1. Let Pn(x) =
n∑

m=0

cn,mx
m and B(t)ρm(t) =

∞∑
n=m

Bm,nt
n, m ≥ 0.

Then

Pn(x) =
bn
hn

+
n∑

m=1

hm

hn
Bm,nx

m (3.5)

with

Bm,n =
n∑

k=m

bn−k

∑

k1+···+km=k

rk1 · · · rkm (3.6)

and

cn,m =





bn
hn

for m = 0,

hm

hn
Bm,n for m ≥ 1.

(3.7)

In particular,

cn,0 =
bn
hn
, cn,1 =

h1

hn

n∑

k=1

bn−krk, cn,n−1 =
hn−1

hn
(b1 + (n− 1)r2) ,

cn,n−2 =
hn−2

2hn

(
2b2 + (n− 2)

(
2b1r2 + 2r3 + (n− 3)r22

))
.

Proof. It is easily seen that

ρ(t)m =
∞∑

k=m

rm,kt
k, rm,k =

∑

k1+···+km=k

rk1 · · · rkm for k ≥ m,

Bm,n =
n∑

k=m

bn−krm,k =
n∑

k=m

bn−k

∑

k1+···+km=k

rk1 · · · rkm . (3.8)

By convention, let Bm,n = 0 (m > n) and rm,k = 0 (m > k). Then

h(ρ(t)x) =
∞∑

m=0

hmρ(t)mxm =
∞∑

m=0

∞∑

k=m

hmrm,kt
kxm

=
∞∑

k=0

(
k∑

m=0

hmrm,kx
m

)
tk

and

B(t)h(ρ(t)x) =
∞∑

n=0

n∑

k=0

bn−k

(
k∑

m=0

hmrm,kx
m

)
tn

=
∞∑

n=0

(
n∑

m=0

n∑

k=m

bn−khmrm,kx
m

)
tn

=
∞∑

n=0

(
n∑

m=0

hm

(
n∑

k=m

bn−krm,k

)
xm

)
tn

=
∞∑

n=0

(
n∑

m=0

hmBm,nx
m

)
tn.
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Since hmBm,n = hn holds for m = n, we have

Pn(x) =
n∑

m=0

(
n∑

k=m

hm

hn
bn−krm,k

)
xm.

Thus we have Eq. (3.5) and Eq. (3.6). Therefore,

cn,0 = bn,

cn,1 =
h1

hn

n∑

k=1

bn−krk,

cn,m =
hm

hn
Bm,n (n− 2 ≥ m ≥ 2),

cn,n−1 =
hn−1

hn

n∑

k=n−1

bn−k

∑

k1+···+kn−1=k

rk1 · · · rkn−1

=
hn−1

hn
(b1 + (n− 1)r2) ,

cn,n−2 =
hn−2

hn

n∑

k=n−2

bn−k

∑

k1+···+kn−2=k

rk1 · · · rkm

=
hn−2

hn

(
b2

∑

k1+···+kn−2=n−2

rk1 · · · rkn−2

+b1
∑

k1+···+kn−2=n−1

rk1 · · · rkn−1 +
∑

k1+···+kn−2=n

rk1 · · · rkn

)

=
hn−2

hn

(
b2 + b1(n− 2)r2 +

(
(n− 2)r3 +

(n− 2)(n− 3)r22
2

) )

=
hn−2

2hn

(
2b2 + 2(n− 2)(r2b1 + r3) + (n− 2)(n− 3)r22

)
.

¤
Define

Wn(x) = Pn(x)− (x− αn−1)Pn−1(x) + ωn−1Pn−2(x) (3.9)
and let Wn,m be the m-th coefficient of Wn(x) for n > m ≥ 0. Then

Wn+1,m = cn+1,m − cn,m−1 + αncn,m + ωncn−1,m (3.10)

for n ≥ m ≥ 0. Since Wn(x) = 0 must hold by the recursive relation (1.2), all
Wn,m must vanish. Thus by Lemma 3.1, we have the next lemma.

Lemma 3.2.

Wn+1,0 =
bn+1

hn+1
+ αn

bn
hn

+ ωn
bn−1

hn−1
,

Wn+1,1 =
h1

hn+1
rn+1 +

h1

hn+1

n∑

k=1

bn+1−krk − bn
hn

+αn
h1

hn

n∑

k=1

bn−krk + ωn
h1

hn−1

n−1∑

k=1

bn−1−krk,
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Wn+1,m =
hm

hn+1
Bm,n+1 − hm−1

hn
Bm−1,n−1 + αn

hm

hn
Bm,n−1 + ωn

hm

hn−1
Bm,n−2,

Wn+1,n−1 =
hn−1

2hn+1
(2b2 + 2(n− 1)(b1r2 + r3) + (n− 1)(n− 2)r22)

−hn−2

2hn

(
2b2 + 2(n− 2)(b1r2 + r3) + (n− 2)(n− 3)r22

)

+
hn−1

hn
(b1 + (n− 1)r2)αn + ωn,

Wn+1,n =
hn

hn+1
(b1 + nr2)− hn−1

hn
(b1 + (n− 1)r2) + αn.

If µ is MRM-applicable for h(x), then Wn,m = 0 for n− 1 ≥ m ≥ 0.

Lemma 3.2 yields the following lemma for given Jacobi-Szegö parameters.

Lemma 3.3. For given {αn, ωn} and {b1, r2, r3}, we have the recursion formulas:

hn+1 =
h2

n(b1 + nr2)
hn−1

(
b1 + (n− 1)r2

)− hnαn

,

bn+1 = −hn+1

hn
αnbn − hn+1

hn−1
ωnbn−1,

rn+1 =
bnhn+1

h1hn
−

n∑
m=1

bn+1−mrm − hn+1

hn
αn

n∑
m=1

bn−mrm

−hn+1

hn−1
ωn

n−1∑
m=1

bn−1−mrm,

for n ≥ 1 if hn−1

(
b1 + (n− 1)r2

)− hnαn 6= 0. h1 = − b1
α0

, if α0 6= 0.

In this paper, we have discussed the problem of determining all possible MRM-
factors for which given special measures are MRM-applicable. For this purpose,
we apply Lemma 3.3 for given Jacobi-Szegö parameters. In the previous papers
([9] [13]), we have determined MRM-applicable measures for given MRM-factors
h(x) = ex and (1− x)−κ. For such a problem, the following lemma is very useful
and will be used in a forthcoming paper. Actually, we will see that Jacobi-Szegö
parameters {αn, ωn} are determined from h(x) and fixed constants {b1, b2, r2, r3}.
Furthermore, bn and rn are obtained recursively by the next lemma.

Lemma 3.4. For given h(x) and fixed constants {b1, b2, r2, r3}, Jacobi-Szegö pa-
rameters are uniquely determined by

αn = − hn

hn+1
(b1 + nr2) +

hn−1

hn
(b1 + (n− 1)r2) for n ≥ 1,

ωn =
hn−1

2hn+1

(
2(b21 − b2 + b1r2) + 2(n− 1)(b1r2 − r3) + (n− 1)(n+ 2)r22

)

+
hn−2

2hn

(
2b2 + 2(n− 2)(b1r2 + r3) + (n− 2)(n− 3)r22

)

−
(
hn−1

hn
(b1 + (n− 1)r2)

)2

for n ≥ 2,
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α0 = − b1
h1
, ω0 = 1, ω1 =

b21 − b2 + b1r2
h2

− b21
h2

1

. Furthermore, recursion formulas

are given as

bn+1 = −hn+1

hn
αnbn − hn+1

hn−1
ωnbn−1 for n ≥ 2,

rn+1 =
bnhn+1

h1hn
−

n−1∑
m=1

bn−mrm − hn+1

hn
αn

n∑
m=1

bn−mrm

−hn+1

hn−1
ωn

n−1∑
m=1

bn−1−mrm for n ≥ 3.

Proof. Let Wn+1,m be as in Lemma 3.2. Solving Wn+1,0 = 0 in h+1 and Wn+1,1 =
0 in r+1, we obtain the last two formulas. Solving Wn+1,n = 0 and Wn+1,n−1 = 0
in (αn, ωn), we get the first two formulas. ¤

Lemma 3.3 (or Lemma 3.4) does not mean the existence of (h(x), B(t), ρ(t))
(or (B(t), ρ(t), {αn, ωn}, respectively,) satisfying Eq. (1.2) and Eq. (3.2) for all
{b1, r2, r3} (or {b1, b2, r1, r3}, respectively). Classification of possible parameters
are our problem.

Remark 3.5. (i) We have normalized the quantities so that

h0 = 1, b0 = 1, r1 = 1. (3.11)

This does not give any essential restriction. Since θ(0) = h(0), we have B(0)h(0) =
b0h0 = 1. Suppose that ψ(t, x) = B(t)h(ρ(t)x) is a generating function of orthog-

onal polynomials. If h0 6= 1, put ĥ(x) =
h(x)
h(0)

and B̂(t) = h(0)B(t). Then

ψ̂(t, x) = B̂(t)ĥ(ρ(t)x) = ψ(t, x) is a generating function satisfying Eq. (3.11).

If r1 6= 1, then put ρ̂(t) = ρ(
t

r1
) and b̂(t) = B(

t

r1
). Then ψ̂(t, x) = B̂(t)h(ρ̂(t)x)

is a generating function satisfying Eq. (3.11).

(ii) Suppose that ψ(t, x) = B(t)h(ρ(t)x) is a generating function of {Pn}. For
given h̃1, r̃1 6= 0, scale transforms

h̃(x) = h
( h̃1

h1
x
)
, ρ̃(t) =

h1

h̃1

ρ
( h̃1r̃1
h1r1

t
)

and B̃(t) = B
( h̃1r̃1
h1r1

t
)

(3.12)

give a modified generating function

ψ̃(t, x) = B̃(t)h̃(ρ̃(t)x) = ψ
( h̃1r̃1
h1r1

t, x
)

satisfying h̃′(0) = h̃1, r̃
′(0) = r̃1.

4. An Application

In this section, we apply Lemma 3.4 to an example in order to better understand
the lemma. We first make the following remark.
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Remark 4.1. For given h(x), we can discuss as follows in generic cases. By Lemma
3.4, we can obtain {αn, ωn : n ≥ 0}, {bn : n ≥ 3} and {rn : n ≥ 4}, recursively.
From the condition W5,2 = 0, we get r3. Thus we determine all parameters except
for b1, b2 and r2. Those parameters satisfy

Wn,m = 0 for 5 ≥ n ≥ m ≥ 0, W6,m = 0 for m = 0, 1, 2, 4, 5,

Wn,m = 0 for m = 0, 1, n− 2, n− 1.
The parameters must satisfy the over determining equations Wn,m = 0 for any
n > m ≥ 0. It is not simple to determine b1, b2 and r2, because we must solve
non-linear equations.

The case h(x) = (1 − x)−1 is extremal and is not included by Remark 4.1.
However, it is a very nice example for determining Jacobi-Szegö parameters, ρ(t)
and B(t) by Lemmas 3.2 and 3.4. Since

h(x) =
1

1− x
=

∞∑
n=0

xn,

we see that hn = 1. By Lemma 3.4, we see that α0 = −b1, ω0 = 1 and

αn = −(b1 + nr2) + (b1 + (n− 1)r2) = −r2 (n ≥ 1),

ωn =
1
2
(
2(b21 − b2 + b1r2) + 2(n− 1)(b1r2 − r3) + (n− 1)(n+ 2)r22

)

+
(
2b2 + 2(n− 2)(b1r2 + r3) + (n− 2)(n− 3)r22

)− (
b1 + (n− 1)r2

)2

= r22 − r3 (n ≥ 1).

By Lemma 3.2,

Wn,m = Bm,n −Bm−1,n−1 − r2Bm,n−1 + (r22 − r3)Bm,n−2

vanish for n ≥ 2 and so

B0,0 = 1, B0,1 = b1, B0,2 = b2,
B1,0 = 0, B1,1 = 1, B1,2 = b1 + r2,
B2,0 = 0, B2,1 = 0, B2,2 = 1.

Therefore,

∞∑
n=3

Bm,n

n!
tn =





B(t)ρm(t)− (
1 + b1t+ b2t

2
)

if m = 0,
B(t)ρm(t)− t− (b1 + r2)t2 if m = 1,
B(t)ρm(t)− t2 if m = 2,
B(t)ρm(t) if m ≥ 3.

Since
∞∑

n=3

Wn,mt
n =

∞∑
n=3

Bm,nt
n −

∞∑
n=3

Bm−1,n−1t
n − r2

∞∑
n=3

Bm,n−1t
n

+(r22 − r3)
∞∑

n=3

Bm,n−2t
n

=
∞∑

n=3

Bm,nt
n − t

∞∑
n=2

Bm−1,nt
n − r2t

∞∑
n=2

Bm,nt
n
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+(r22 − r3)t2
∞∑

n=1

Bm,nt
n = 0,

we must have

B(t)− r2tB(t) + (r22 − r3)t2B(t)
= (1 + b1t+ b2t

2)− r2t(1 + b1t) + (r22 − r3)t2.

Hence

B(t) =
1 + (b1 − r2)t+ (b2 − b1r2 + r22 − r3)t2

1− r2t+ (r22 − r3)t2
. (4.1)

For m ≥ 3, we have

B(t)ρ(t)m − r2tB(t)ρ(t)m + (r22 − r3)t2B(t)ρ(t)m = tB(t)ρ(t)m−1.

This implies that

ρ(t) =
t

1− r2t+ (r22 − r3)t2
. (4.2)

For these B(t) and ρ(t) with m = 1 and m = 2, we get

B(t)ρ(t)− tB(t)− r2tB(t)ρ(t) + (r22 − 2r3)t2B(t)ρ(t)
= t+ (b1 + r2)t2 − t(1 + b1t)− r2t

2 = 0

and

B(t)ρ(t)2 − tB(t)ρ(t)− r2tB(t)ρ(t)2 + (r22 − r3)t2B(t)ρ(t)2 = t2 − t2 = 0.

The results in Eq. (4.1) and Eq. (4.2) are the same as that in Eq. (1.4). However,
it is not easy to determine all corresponding probability measures. We need hard
calculus to obtain the explicit forms (1.5) of the corresponding densities as in [11].
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