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1. INTRODUCTION 

q-Ultraspherical polynomials are given by the finite Fourier series 

(1.1) 

cf. Askey and Ismail [4, (3.1)]. They have a limit as ultraspherical poly- 
nomials, 

lim C,(cos 8; 4’1 q) = Ci(cos Q), 
YT’ 

(1.2) 

cf. [4, (2.11)]. This can for instance be proved from (1.1) and 

Cj(cos e) = c ’ (n)k @h-k e”n-‘k’(j 

k=O k! (n-k)! ’ 
(1.3) 

cf. Szegij [24, (4.9.19)]. 
For q = 0 and p-’ E N the q-ultraspherical polynomials ( 1.1) have an 

interpretation as spherical functions on homogeneous trees, such that each 
vertex is adjacent to exactly BP’ + 1 edges. Then n is the variable which 
lives on the homogeneous space: it denotes the graph distance on the tree 
to some fixed point (cf. Cartier [6] and Askey and Ismail [4, Sect. 81). On 
the other hand, the ultraspherical polynomials (1.3) have (for A= id- 4, 
de N) an interpretation as spherical functions on the sphere S”, where 6 
lives on the sphere and denotes the geodesic distance to some fixed point 
(cf. for instance Vilenkin [26, Chap. 91). Hence, in the passage from q = 0 
to q = 1 there has been some interchange of the geometric roles of n and 8. 
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pqt) .= 2 1’2 - “r( 2cr + 1) 
P . IJcc+gqcc+g 

(sh 2t))2’ j’ @“(ch 2t - ch 2s)‘- 1’2 ds, (1.4) 
--f 

cf. Koornwinder [14, 151, Faraut [8], have (for CY= id- 1, de N) an 
interpretation as spherical functions on the hyperboloids SO,(d, l)/SO(d), 
where t is the geometric variable denoting the geodesic distance. The 
purpose of the present note is to derive a limit transition from the 
q-ultraspherical polynomials to the Jacobi functions such that this preser- 
ves the variable with the geometric meaning. 

Our result is easier described in terms of renormalized q-ultraspherical 
polynomials 

(1.5) 

which take the value 1 for ere = /?ii2. Then we will prove 

lim R 41/(log 4-1) 4 
( (1/4)P. 

94 YT1 
a+ ‘12 1 q) = d:“‘(t), tE[O, a), pea=. (1.6) 

For the moment, we will only give a proof for the case ~12 4. This will be 
done in Section 2, while Section 3 contains some speculations about further 
extensions of this result. In Section 2 we need the limit formulas as q 7 1 for 
the q-binomial formula and for the q-gamma function. It seemed useful to 
me to complement the usual formal proofs of these limits with rigorous 
proofs. This is the topic of Appendices A and B. 

I thank W. van Assche for suggesting to me the second part of the proof 
of Theorem B.2 and W. A. Al-Salam for giving me references on the histori- 
cal origin of the q-gamma function, cf. Appendix B. 

By (1.1) and ( 1.5) we have 

2. PROOF OF THE LIMIT FORMULA 

Now fix t E (0, co), p E @, IX> 4 and make in (2.1) the substitutions 

4t 
n=log, 

i0 _ -(l/4) c 
e -4 , 

fi = qr + 112, (2.2) 
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where we choose q such that 4r/(log q-‘) E Z + In this way q can approach 
1 from below while n approaches CO in Z, . Also replace the summation 
variable k in (2.1) by 

s=t-;klogq-‘. (2.3) 

Then the left hand side of (2.1) becomes the expression after the limit sign 
in (1.6), while the right hand side of (2.1) becomes 

ep(2x+‘)r(q; q)4rl(logy-l) 
(4 2a+1s?) ‘w(b3 4 - ’ 1 

x i (q I+ 1’2i 9)2(t-S)/(lCIgq-‘) (qa+ “‘i q)2(t+s)/(lOgK’) eips. 
(2.4) 

s= -r (4; q)2(r-s),(logq- ) 4; 9)2(r+.s),(logq-‘) ’ ( 
Step l/2 log y- ’ 

Now use that 

(4 b+‘; 4) omg 4-l) (e-%7; 4L (1 -91pb 

(4; 4) 4b3 4-l) 
= te--uqb+ 1; 

q), gb+ 1)’ 

where 

~(h+1).=(1-q)-b(q;4)n 
4 (4 b+l;SL ’ 

(2.5) 

(2.6) 

Hence (2.4) can be rewritten as 

2T,(2cr + 1 )( 1 - q) (em4’q2”+‘;qL ,-c2a+ljr 
r,(a+$)T,(ol+$)logq-’ (e-4’q;qL 

We assumed that c( > $. Hence the summand in (2.7) can be majorized by 
elIm Pt “I. We can rewrite the part 

$logq-’ c ... 
s= -I 

of (2.7) as 
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where 

fXo)= (-(- e 2,tes)2’~;~;; 41, W*(‘+%; 4L 
4 ; 41, (e- *(r+s)qa+ l/2; q)m e ips 

if s=t-iklogq-’ (FEZ+) and oE(S-$logq-‘,s+$logq-‘). 
Because of Proposition A.1 there is pointwise convergence: 

limfq(n)=(l -e-2(fpu))eL1/2 (1-e-2(t+u))or-1/2 eiPb. 
YT' 

Hence, by dominated convergence and by (A.4) and (B.2), (2.7) converges 
to 

2q2a + 1) e-(2”+l)t(1 -e-4t)-20r 

X 
s ),(1-e- ) V--s) a--1/* (1 -e -2(r+s) a-l/2 @Is ds 

) 

as q 7 1. This can be rewritten as the left hand side of (1.4). Thus we have 
completed the proof of (1.6). 

3. DISCUSSION OF THE RESULTS 

Remark 1. The q-ultraspherical polynomials are special cases of 
q-Wilson polynomials and can thus be written as 4& q-hypergeometric 
functions, 

Rn(eie; PI d = 443 ’ 

-n, qng*, plPeiO, pLI*e-ie; 

Bql12, -Bql~2 
3 

+ 

q, q , 

(3.1) 

cf. [4, (3.10)]. If we make the substitutions (2.2) in (3.1) then the right 
hand side of (3.1) becomes 

44% ( 

e4r, e4rq2a + 1, q (l/2)1+ l/4- (1/4)ip 
>4 

(l/Z)a + l/4 + (1/4)ip 

4 
a+1 ) -qa+‘, -q~+1/2 (3.2) 

Formally, as q t 1, (3.2) tends to the ordinary hypergeometric function 

F 
( 

~a+~-~ip,~a+~+~ip. (1 -e”‘)(l -e-4t) 
2 1 cc+1 3 

1 4 ’ (3.3) 

which we can write as a Jacobi function 

(3.4) 
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by [15, (2.7) (5.32)]. Of course, this is the way we obtained (1.6) first, but 
it is not valid as a proof. 

Remark 2. One would expect that Jacobi functions of general order 
(4 8) 

~l”,P’(t):=*lrl(t(a+B+l+i~),~(cc+P+l-i~);a+l; -sh2t) (3.5) 

can be similarly obtained as limits of q-Wilson polynomials (cf. Askey and 
Wilson [S]). Indeed, write the q-Wilson polynomial as 

-II 
P,(e”; a, b, c, dlq) = d3 ’ ’ ’ 

n- ‘abed, aeie, ae-” 
ab ac ad (3.6) 

> > 

Make the substitutions 

2t fl=- ei0=q(-l/2)‘“, a=q (1/2)(a+B+l) 

log q-1 ’ 
3 

(3.7) 
b=q (1PKz-pfl) > cc -q’, d= -qs. 

Then the right hand side of (3.6) becomes 

(3.8) 

As q t 1 this converges formally to the right hand side of (3.5). It would be 
interesting to give a rigorous proof that 

f$(“~D’(t) = lim P P 
4t 1 

2r,(,os4~,)(q(~l/2)i~; q(1/2)(*+8+1), q(1/2)(--B+1), -qY, -qS1q). 

(3.9) 

It is remarkable that the Jacobi functions of general order cannot be 
obtained as limits of q-Jacobi polynomials (cf. Askey and Wilson 
[S, (4.16), (4.17)]). One would only obtain order (a, -CY) or (a, -4) for 
the Jacobi functions. 

Formally, one can obtain many other limit transitions to Jacobi func- 
tions of the above type, for instance, starting with continuous dual Hahn 
polynomials, cf. [ 16, (5.14)]. 

Remark 3. The limit formula (1.6), which we proved in Section 2 only 
if c( > 4, can be extended to CI > -1 by use of the q-difference formula 
[S, (5.14)] specialized to the case of the q-ultraspherical polynomials and 
a similar difference formula in p for the Jacobi functions. 

Remark 4. The limit formula (1.6) might be used in order to derive 
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new formulas for Jacobi functions from known ones for q-ultraspherical 
polynomials. In particular, an expression for the product 

as an integral over v of d?“)(t) might be obtained from the product 
formula for q-ultraspherical polynomials in Rahman and Verma [22]. 
Until now such a formula is only known for the cases cr=O or $, 
cf. Mizony [20]. 

Remark 5. Macdonald [17] has given multivariable generalizations of 
the q-ultraspherical polynomials. These are associated with root systems. 
Similarly, Heckman and Opdam [lo, 93 have studied multivariable 
analogues of Jacobi polynomials and Jacobi functions associated with root 
systems. Macdonald [17] already observed that some Heckman-Opdam 
polynomials occur as limits of Macdonald’s polynomials as q t 1 and some 
very deep results in the Heckman-Opdam papers could thus be proved in 
a much more elementary way. It would be very interesting to prove that an 
analogue of (1.6) would also be valid for functions associated with root 
systems. 

Remark 6. It would be of interest to prove the Plancherel formula for 
the Jacobi function transform (cf. [15]) from the orthogonality relations 
for the q-ultraspherical polynomials by use of (1.6). For this the 
q-ultraspherical polynomial transform should converge strongly to the 
Jacobi function transform. See Ruijsenaars [23], where such a strong limit 
result has been proved for some other class of orthogonal special functions. 
A next step would be to do the same in the multivariable situation of the 
previous remark. 

APPENDIX A: ON THE CONVERGENCE OF THE q-BINOMIAL SERIES 
TO THE BINOMIAL SERIES 

Ramanujan observed in his second notebook (Entry I in Chapter 16, cf. 
[ 1, p. 43) that 

lim (q~x’ ‘)O” = (1 _ X)-” 
Yfl kq), 

(A.1) 

As pointed out by Askey and Ismail [4, (2.12)], this follows formally from 
the q-binomial formula 

(A.21 
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and the binomial formula 

(A.3) 

by taking termwise limits. In order to make this formal proof into a 
rigorous one, we have to majorize the series in the right hand side of (A.2) 
by a convergent series not depending on (I. 

LEMMA A.l. Let 1, p, kE[W, Odp-,ldk, p+A>l, 

t > 0. 

Then f’(t) Q 0 if t > 0. 

ProoJ: Put 

g(t):= (1 -e-(k+‘q2 f’(t) 

= -pe -W+(i+k)e-(“+k)’ +(p-k- 1) 
Xe~(~+k+l)r+(l_~)e-(i+2k+l)I. 

Then a calculation shows that 

‘0) = g’(O) = 0, 

g"(O)= -(k+ l)(k+A-p)(i+p- l)<O, 

and 

d/dt(e(kf’)fd/dt(e(~“~2k~1+Ic)rd/dt(e(~+2k+l)g(t)))) 

= -(k+ l)(k+A-p)(k+A)(p-A+ l)d~-i+l)r<O, 

Hence g(t) d 0. 1 

PROPOSITION A.2. Let /I, p E R. Then 

(A.4) 

uniformly on {z E @ ( (z( d 1) if p >, A, p + i 2 1, and unifarmly on compacta 
of {ZE CJ Iz( < 1, z# l} for other choices of 2, p. 

Proof: It is sufficient to prove the Proposition in the case p > E,, 
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p+,I>l, since we can always find m,leZ+ such that p+m>l+l, 
(,u + m) + (A + 1) >, 1. If we then write 

(4% 4Lc G&i S)l hi+‘& 91, 
(4% 4)m = (4% qh (4”+mz; q), ’ 

we observe that the first quotient tends to (1 - z)‘-~~ as q t 1, uniformly on 
compactaof {z~@~~2(<1,~#1}. 

So assume p > 2, p + A > 1, 0 <q < 1, the result being trivial if p = 1. 
Then, for (zl < 1, 

(qiz; 4)m = (Pw; 4)m 
(4% s)m (4% 4)m 

= f (4? 4L (qpz)” 
n=O (4;4Ll 

m q”-qj.q”-q”+l...q’l-q”+“-l n 
=,,c, 1-q 1 -q* l-q” z. (A.51 

By Lemma A.1 we have, for k 2 p - A, 

o<qp-qi+k ’ l-qk+l 
<limqi”-qi+k I-p+k 

c/f1 l-qk+’ = k+l 

Put m := [p-J*+ 11. Then, for n>m, 

where 

(4? 4)?l (A-p++m),-, 
(4; 4)” (m+l),-, ’ 

qP _ q-J qP _ qj. + 1 
M:= sup - 

...qP-qj.+m-l 

O<U<l 1-q 1-q* 1-q” 

Now the series C,“=, ((2-p + m),_,/(m -t l)npm) converges. Hence the 
series (A-5) converges uniformly to its termwise limit 

f (A-P), ----zz”=(1-z)~-~. 1 
II=0 n! 

APPENDIX B: ON THE CONVERGENCE OF THE q-GAMMA FUNCTION 
TO THE GAMMA FUNCTION 

In (2.6) we introduced the q-gamma function 

,(Z).=(1-q)1-=kJ~4L 
Y . (q2;4)cc ’ 

ZEC, zzo, -1, -2 )...) O<q<l. (B.1) 
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A version of this function, namely 

(4; 41% 
Q(% a) := (qU+ 1; q)x f 

cf. Heine [ 11, p. 1091, seems to go back to a paper by Heine in Crelle’s 
J. 24 (1847), p. 309. Jackson [ 121 introduced a q-gamma function similar 
to (B.l) except for a factor qz(z+1)‘2 and he claimed that it reduces for 
q = 1 to Gauss’s product expansion (B.5) for the gamma function. In 
Jackson’s paper [13] of 1905 the q-gamma function essentially occurs as 
in (B.l), with )qj < 1. Jackson there rewrites l/T,(z) as an infinite product 
resembling Weierstrass’s product expansion [7, (1.1.3)] for l/T(z) and 
he claims that his expression converges to Weierstrass’s expression as q r 1. 
The same limit 

f; qx) = W), x > 0, (B.2) 

was given (without proof) in Ramanujan’s second notebook (Entry 1 in 
Chapter 16), cf. [ 1, p. 41. In more recent times Askey [3] extensively dis- 
cussed the q-gamma function, together with a rigorous proof of (A.l). In 
Andrews [2, Appendix A] one finds W. Gosper’s proof of (B.2), which is 
very short, but not completely satisfactory, as it is only formal. Here we 
add some material which makes Gosper’s proof rigorous. Moreover we 
extend the proof to complex values of the argument. The proof of this 
extension was suggested by W. van Assche. 

Define for n = 1, 2, 3, . . . . 

c (l-qn+‘)- 1 ’ o<q< 1, 

fz,n(s) := n n+ 1 z 

i 

(1 -q”fZ)(l -q,y 

~- 
( > n+z n ’ 

q= 1. 
(B.3) 

Then, by (B.l) and following [2, Appendix A] we can write 

while for T(z + 1) we have Gauss’s formula 

O<q<l, 

T(z+ I)= fi L,,(l), 
n=l 

cf. for instance Olver [21, Chap. 2, Sect. 1.31. 

(B.4) 

(B.5) 
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LEMMA B.l. Let qE [0, 11, XE (0, co), n E N. Then f,,, is continuous on 
CO, 11, fdq)= 1, f,,,(O)= 1, and L,, is monotonically decreasing or 
increasing on [0, l] according to whether 0 < x < 1 or x > 1, respectively. 

Proof. Put 

g,,,(t) := los(fJe-2’)), 

h(y) := y coth y. 
Then 

g’&t)=t-‘(xh((n+l)t)-h((n+x)t)-(x-l)h(nt)) 

and h”(y) > 0. Hence h is convex and g:,,(t) < 0 or > 0 for t E (0, co) 
according to whether 0 <x < 1 or x > 1, respectively. 1 

THEOREM B.2. For all complex z # - 1, - 2, . . . . we have 

li$(z+l)=I-(z+l). u3.6) 

ProoJ First we take z E (1, CC ). Then, by Lemma B.1, the factors fJq) 
lie between 1 and fi,,( 1). Hence, the limit as q t 1 in (B.4) can be taken 
factorwise and the result follows from (B.5). 

Next we take z E C with Re z > 0. Then it is easily seen from (B.3) that 

I fz,n(q)l G fRe &n(q). 

Hence 

So the family of functions {z H T,(z)) (0 < q < 1) is uniformly bounded 
on compacta of (z 1 Re z > 0}, while it tends to a limit as q 11 if z > 0. 
Hence, by Vitali’s convergence theorem (cf. for instance Titchmarsh 
[25, Sect. 5.211) the family tends to a limit on the whole right half plane 
as q t 1. This limit is necessarily the analytic continuation of z H f(z + 1). 

Finally the limit formula can be proved for other complex z # 
-1, -2, *.., by use of the two recurrence formulas 

1 -qz 
rqcz + 1) = r g.4 and f(z + 1) = zf(z). 

4 
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