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Multivariate versions of classical orthogonal polynomials such as Jacobi, Hahn, Laguerre and
Meixner are reviewed and their connection explored by adopting a probabilistic approach. Hahn
and Meixner polynomials are interpreted as posterior mixtures of Jacobi and Laguerre polyno-
mials, respectively. By using known properties of gamma point processes and related transfor-
mations, a new infinite-dimensional version of Jacobi polynomials is constructed with respect
to the size-biased version of the Poisson–Dirichlet weight measure and to the law of the gamma
point process from which it is derived.
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discrete distributions

1. Introduction

In this paper we will review multivariate orthogonal polynomials, complete with respect
to weight measures given by the Dirichlet and Dirichlet-multinomial probability distribu-
tions (denoted respectively as Dα or DM α, α ∈Rd

+), that is, polynomials {Gn :n ∈ Nd}
satisfying

∫
GnGm dµ=

1

cm
δnm, n,m ∈N

d. (1.1)

The polynomials {Gn} are known as multivariate Jacobi polynomials if (1.1) is satisfied
with µ = Dα, and multivariate Hahn polynomials if µ = DM α. Here cm are positive
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constants. Completeness means that, for every function f with finite variance (under µ),
there is an expansion

f(x) =
∑

n∈Nd

cnanGn(x), (1.2)

where

an = E[f(X)Gn(X)].

Systems of multivariate orthogonal polynomials are not unique, and a large number
of characterizations of d-dimensional Jacobi and Hahn polynomials exist in literature.
We will focus on a construction of Jacobi polynomials, based on a method originally
proposed by Koornwinder [15] that has a strong probabilistic interpretation. Based on
this, we will re-interpret the role of Jacobi polynomials in the construction of multivariate
Hahn and several other well-known classes of multivariate orthogonal polynomials. In
particular, we will (1) describe multivariate Hahn polynomials as posterior mixtures of
Jacobi polynomials, in a sense which will become precise in Section 5; (2) construct, in
Section 4, a new system of multiple Laguerre polynomials, orthogonal with respect to
the product of several gamma probability distributions with identical scale parameters;
(3) derive, in Section 6, a new class of multiple Meixner polynomials as posterior mixtures
of the Laguerre polynomials mentioned in (2); (4) obtain polynomials in the multivariate
hypergeometric distribution by taking the parameters in the Hahn polynomials to be
negative; (5) obtain (Section 3.3) asymptotic results as the dimension d→∞ with |α| :=∑d

i=1 αi → |θ|> 0, by considering size-biased Dirichlet measures.
Furthermore, we will see that an extensive application of Koornwinder’s method leads

directly to finding new systems of polynomials, orthogonal with respect to a wider family
of distributions on the infinite simplex, known in Bayesian nonparametric statistics as
the (discrete) beta-Stacy family [23], a popular member of which is the GEM distribution
(so named after Griffiths, Engen and McCloskey who introduced it independently) and
its two-parameter distribution.
The intricate relationship existing among all the mentioned systems of polynomials is

traditionally described in terms of their analytic/algebraic expression as (multivariate)
basic hypergeometric series (see, e.g., [5, 7]). The main advantage of a probabilistic
approach is that it re-expresses most relationships in terms of random variables, which
may be more transparent to statisticians and probabilists. With this in mind we will begin
the paper with an introductory summary (Section 2) of known facts from the theory
of probability distributions. Section 3.1 is devoted to multivariate Jacobi polynomials,
whose structure will be the building block for the subsequent sections: Multiple Laguerre
in Section 4, Hahn in Section 5 and Meixner in Section 6.
It is worth observing that the posterior mixture representation of multivariate Hahn

polynomials shown in Proposition 5.2 is obtained without imposing a priori any
Bernstein–Bézier form to the Jacobi polynomials, and nevertheless it agrees with re-
cent interpretations of Hahn polynomials as Bernstein coefficients of Jacobi polynomials
in such a form [21, 22], a result for which a new, more probabilistic proof is offered in
Section 5.2.1. In particular, our approach will make more intuitive the link between the
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Bernstein–Bézier interpretation and the original formulation proposed decades ago by
Karlin and McGregor [11]. In terms of applications, understanding such a link will com-
plete Karlin and McGregor’s analysis of some well-known d-type models in population
genetics (Section 5.2.3). Our extensions of Sections 3.3 and 4.2 open for possible new
infinite-dimensional versions of Karlin and McGregor’s work.
Along the same lines one can view the Meixner polynomials obtained in Proposition 6.2

as re-scaled Bernstein coefficients of our multiple Laguerre polynomials, as shown in
Section 6.1.
The original motivation for this study was to obtain some background material that

can be used to characterize bivariate distributions, or transition functions, with fixed
Dirichlet or Dirichlet-multinomial marginals, for which the following canonical expansions
are possible:

p(dx,dy) =

{
1 +

∞∑

n∈Zd
+

cnρnGn(x)Gn(y)

}
Dα(dx)Dα(dy), x, y ∈∆(d−1),

for appropriate, positive-definite sequences ρm :m ∈N
d, called the canonical correlation

coefficients of the model. Some results on such a problem are in [8] and [9]. Other possible
applications in statistics are related to least-squares approximations and regression. An
MCMC (Markov chain Monte Carlo)-Gibbs sampler use of orthogonal polynomials is
explored, for example, in [3]; related applications are in [13]. In this paper, however, we
will focus merely on the construction of the mentioned systems of polynomials.

2. Distributions on the discrete and continuous
simplex

Throughout the paper we will denote by |x| the total sum of all components of x =
(x1, . . . , xd) ∈Rd. We will also adopt the notation:

xα = xα1
1 · · ·xαd

d , Γ(α) =

d∏

i=1

Γ(αi)

and (
|n|
n

)
=

|n|!
∏d

i=1 ni!
.

For example, the Dirichlet distribution Dα :α ∈R
d
+ will be written as

Dα(dx) =
Γ(|α|)xα−1

Γ(α)
I(x ∈∆(d−1)) dx,

where 1 = (1,1, . . . ,1) and, for d= 2,3, . . . , ∆(d−1) = {x ∈Rd
+ : |x|= 1}.
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2.1. Conditional independence in the Dirichlet distribution

2.1.1. Gamma sums

For every α= (α1, . . . , αd) ∈Rd
+ and β > 0, let Y = (Y1, . . . , Yd) be a collection of d-inde-

pendent gamma random variables with parameter, respectively, (αi, β). The distribution
of Y is given by the product measure

γdα,β(dy) =
yα−1e−|y|/β

Γ(α)β|α|
I(y ∈R

d
+) dy.

Consider the mapping

(Y1, . . . , Yd) 7−→ (|Y |,X1, . . . ,Xd−1),

where

Xj :=
Yj
|Y |

, j = 1, . . . , d− 1,

and set Xd = 1−
∑d−1

i=1 Xi. It is easy to rewrite

γdα,β(dy) = γ1|α|,β(d|y|)Dα(dx),

that is: (i) |Y | :=
∑d

i=1 Yi is a gamma(|α|, β) random variable, and (ii) X is independent
of |Y | and has Dirichlet distribution with parameter α.

2.1.2. Dirichlet as a right-neutral distribution

Let X = (X1, . . . ,Xd) be a random distribution on {1, . . . , d} with Dirichlet distribution

Dα, α ∈Rd
+. Consider the random cumulative frequencies Sj :=

∑j
i=1Xi, j = 1, . . . , d−1.

Then the increments

Bj :=
Xj

1− Sj−1
, j = 1, . . . , d− 1, (2.1)

are independent random variables, each with a beta distribution with parameters
(αj , |α| −

∑j
i=1 αi). This property is also known as right-neutrality [4]. Notice that such

a structure holds, with different parameters, for any reordering of the atoms of X .

2.2. Size-biased Dirichlet frequencies and limit distributions

One remarkable advantage of considering unordered versions of Dirichlet frequencies is
that they admit sensible limits as the dimension d grows to infinity, whereas the original
Dirichlet distribution is obviously bounded to finite dimensions. Two possible ways of
unordering the Dirichlet atoms are equivalent: (1) Rearranging the frequencies in a size-
biased random order; (2) Ranking them in order of magnitude. For Dirichlet measures,
size-biased frequencies are much more mathematically treatable than the ranked ones.
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2.2.1. Size-biased order and the GEM distribution

Let x be a point of ∆(d−1). Then x induces a probability distribution on the group Gd

of all permutations of {1, . . . , d}:

σx(π) =

d−1∏

i=1

xπi

1−
∑i−1

j=1 xπj

, π ∈ Gd.

Let α ∈ Rd
+. The size-biased measure on ∆(d−1) induced by a Dirichlet distribution Dα

is given by

D̈α(A) =

∫
σx(π :πx ∈A)Dα(dx).

Note that σ̃x{y} := σx(π :πx= y) is non-zero if and only if y is a permutation of x, and
that

σ̃x{y}= σ̃πx{y}=: σ̃{y} ∀π ∈ G,

hence the density of the size-biased measure is

dD̈α

dy
(y) = σ̃{y}

∑

π∈GD

Dα(d(π
−1y)).

In particular, if α = (|θ|/d, . . . , |θ|/d) for some |θ| > 0 (symmetric Dirichlet), then its
size-biased measure is

D̈|θ|,d(dx) = d!

d−1∏

i=1

xi

1−
∑i−1

j=1 xj
Dα(dx) (2.2)

∝

d−1∏

i=1

b
|θ|/d
i (1− bi)

((d−i)/d)θ−1 dbi, (2.3)

where bi = xi/(1−
∑i−1

j=1 xj), i= 1, . . . , d− 1. So if Ẍ(d) has distribution D̈|θ|,d, then

Ẍ(d) d
= (B̈

(d)
1 , . . . , B̈

(d)
d−1),

where (B̈
(d)
i ) are d− 1 independent beta random variables with parameters, respectively,

(|θ|/d+ 1, (d− i/d)θ), i= 1, . . . , d− 1.
The measure D̈|θ|,d is, again, a right-neutral measure.

Now, let d→∞. Then D̈|θ|,d converges to the law of a right-neutral sequence Ẍ∞ =

(Ẍ1, Ẍ2, . . .) such that

Ẍj
D
= B̈j

j−1∏

i=1

(1− B̈i), j ≥ 1, (2.4)
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for a sequence B̈ = (B̈1, B̈2, . . .) of independent and identically distributed (i.i.d.) beta
weights with parameter (1, |θ|) (here and in the following pages, D means “in distribu-
tion”).

Definition 2.1. The random sequence Ẍ∞ satisfying (2.4) for a sequence of beta(1, |θ|)
weights is called the GEM distribution with parameter |θ| (GEM(|θ|)).
Poisson point process construction [14].

Let Y∞ = (Y1, Y2, . . .) be the sequence of points of a non-homogeneous point process
with intensity measure

N|θ|(y) = |θ|y−1e−y.

The probability generating functional is

F|θ|(ξ) = E|θ|

(
exp

{∫
log ξ(y)N|θ|(dy)

})
= exp

{
|θ|

∫ ∞

0

(ξ(y)− 1)y−1e−y dy

}
(2.5)

for suitable functions ξ :R→ [0,1]. The GEM(|θ|) distribution can be redefined in terms
of the same point process Y∞: Reorder the jumps by their size-biased random order,
that is, set

Ÿ1 = Yi1

with probability Yi1/|Y
∞| and

P(Ÿk+1 = Yi,k+1 |Ÿ1, . . . , Ÿk) =
Yi,k+1

|Y | −
∑k

j=1 Ÿj
, k = 1,2, . . . .

Denote the vector of all the size-biased jumps by Ÿ∞. Then |Ÿ∞|
D
= |Y∞| is a gamma(θ)

random variable, independent of the normalized sequence

Ẍ∞ :=
Ÿ∞

|Ÿ∞|

and Ẍ∞ has the GEM(|θ|) distribution.
To intuitively convince oneself of such a statement, just notice that the probability

generating functional of γdα,1, for α= (|θ|/d, . . . , |θ|/d), is [10]

F|θ|,d(ξ) =

(∫ ∞

0

ξ(y)γ|θ|/d,1(dy)

)d

=

(
1 +

∫ ∞

0

(ξ(y)− 1)
|θ|

d

y|θ|/d−1e−y

Γ(|θ|/d+ 1)
dy

)d

(2.6)

→
d→∞

F|θ|(ξ),
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so a finite size-biased collection of d i.i.d., normalized gamma jumps has a GEM(θ) limit
distribution, as d→∞.

2.2.2. Beta-Stacy distributions

The measures Dα, D̈|θ|,d, D̈|θ| are all right-neutral distributions with independent beta
parameters.

Definition 2.2. For d ≤ ∞, let B∗
1 , . . . ,B

∗
d−1 be a collection of mutually independent

beta random variables with parameters {αi, βi}
d
i=1 (if d=∞, take an infinite sequence of

such weights). A random discrete distribution X ∈∆(d−1) is said to have a beta-Stacy

law if X1
D
=B∗

1 and, for every j ≤ d− 1,

1−

j−1∑

i=1

Xi
D
=

j−1∏

i=1

(1−B∗
i ).

A notable example of infinite-dimensional beta-Stacy distribution is the two-parameter
GEM(α, θ) distribution [18, 19] whereby, for every j ≤ d− 1, B∗

j is a beta(1− σ, θ+ jσ)
random variable, with either σ ∈ [0,1] and θ >−σ or σ < 0 and θ= |σ|m for some m ∈N.
The two-parameter GEM distribution is the most general class of right-neutral distri-

butions that is also invariant under size-biased permutation; other remarkable properties
(it is regenerative and Gibbs) make it one of the most studied models for generating
consistent, exchangeable random partitions (see [20] and references therein).

2.3. Sampling formulae

The multinomial-Dirichlet distribution can be obtained by mixing the parameter of
a multinomial distribution with a Dirichlet mixing measure: If X has Dα distribution,

DM α(r; |r|) = E

[(
|r|
r

)
Xr

]
=

(
|r|
r

) ∏d
i=1(αi)(ri)

(|α|)(|r|)
, (2.7)

where (a)(x) := Γ(a+ x)/Γ(a) for a > 0.

2.3.1. Partial right-neutrality

For every r ∈Nd and α ∈Rd
+, denote as usual Rj =

∑d
i=j+1 ri and Aj =

∑d
i=j+1 αi. It is

easy to see that

DM α(r;R) =

d−1∏

j=1

(
Rj−1

rj

)∫ 1

0

z
rj
j (1− zj)

RjDαj,Aj
(dzj)

(2.8)

=

d−1∏

j=1

DM αj ,Aj
(rj ;Rj−1).
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In other words, for every j = 1, . . . , d − 1, rj/Rj is conditionally independent of
r1, . . . , rj−1, given Rj . Such a property, a direct consequence of the Dirichlet, is respon-
sible for our construction of multivariate Hahn polynomials.

2.3.2. Negative binomial sums

Another construction of DMα is possible, based on negative binomial random sequences,
which parallels the gamma construction of the Dirichlet measure of Section 2.1.1.
Let NB |α|,y(k) : |α|> 0, denote the negative binomial distribution with probability mass

function:

NB |α|,p(k) =
(|α|)(k)

k!
pk(1− p)|α|, k = 0,1, . . . . (2.9)

With both parameters in N, such a measure describes the distribution of the number of
failures occurring in a sequence of i.i.d. Bernoulli experiments (with success probability
1− p), before the αth success.
Two features of NB |α|,p will prove useful, in Section 6, to connect multiple Meixner

polynomials to multivariate Hahn polynomials.

(1) Poisson–gamma mixtures:

NB |α|,p(k) =

∫ ∞

0

Poλ(k)γ|α|,p/(1−p)(dλ),

(2.10)

Poλ(k) =
λke−λ

k!
, k = 0,1,2, . . . .

(2) Normalized negative binomial vectors.

Consider any α ∈Rd
+ and p ∈ (0,1). Let R1, . . . ,Rd be independent negative binomial

random variables with parameter (αi, p), respectively, for i= 1, . . . , d. Then

(i) |R| :=
∑d

i=1Ri has law NB |α|,p.
(ii) Conditional on |R|= |r|, the vector R= (R1, . . . ,Rd) has a Dirichlet-multinomial

distribution with parameter (α, |r|):

d∏

i=1

NBαi,p(ri) =NB |α|,p(|r|) DM α(r; |r|). (2.11)

2.3.3. Hypergeometric distribution

Consider the form of the probability mass function DM α but now replace the parameter α
with −ε= (−ε1, . . . ,−εd) with 0≤ nj ≤ εj , j = 1, . . . , d. Then

DM−ε(n) =
|n|!

n1! · · ·nd!

(−ε)(n)
(−|ε|)(|n|)

=

∏d
i=1

(
εi
ni

)
(|ε|
|n|

) =:Hε(n). (2.12)

Hε(n) is known as the multivariate hypergeometric distribution with parameter ε.
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The partial right-neutrality property of the Dirichlet-multinomial distribution is pre-
served for the hypergeometric law; however, the interpretation as a Dirichlet mixture of
i.i.d. laws is lost as the Dirichlet (as well as the gamma and the beta) integral is not
defined for negative parameters.

2.4. Conjugacy properties

The gamma and the Dirichlet distribution, and, similarly, the negative binomial and
the Dirichlet-multinomial distributions, are entangled by yet another property known in
Bayesian statistics as conjugacy with respect to sampling.
A statistical model can be described by a probability triplet {M,M, lΛ}Λ∈E , where the

likelihood function lΛ(x) depends on a random parameter Λ living in some probability
space (E,E , π). The distribution π of Λ is called the prior measure of the model. The
posterior measure of the model is any version πx(·) = π(·|X = x) of the conditional
probability satisfying

∫

A

π(B|X = x)

∫
lλ(dx)π(dx) =

∫

B

lλ(A)π(dλ) a.s. ∀A ∈M,B ∈ E . (2.13)

Definition 2.3. Let C be a family of prior measures for a statistical model with likeli-
hood lΛ. C is conjugate with respect to lΛ if

π ∈ C =⇒ πx ∈ C ∀x.

It is easy to check that both gamma and Dirichlet measures are conjugate classes
of prior measures. Bayes’ theorem shows us the role as marginal distributions played,
respectively, by NBα,p and DM α.

Example 2.4. The class of gamma priors is conjugate with respect to lλ = Poλ on
{0,1,2, . . .}. The posterior measure is

πx(dλ) =
Poλ(x)γα,β(dλ)

NBα,β/(1+β)(x)
= γα+x,β/(1+β)(dλ). (2.14)

Similarly, the class of multivariate gamma priors {γdα,β : α ∈Rd, β > 0} is conjugate with

respect to {Pod
λ(x), λ ∈Rd

+, x ∈Nd}.

Example 2.5. The class of beta priors {Dα,β : (α,β) ∈R2
+} is conjugate with respect to

the binomial likelihood lλ =Bλ(·) on {0,1,2, . . . , |n|}, for any integer |n|. The posterior
distribution is

πr(dλ) =
Bλ(|r|, |n− r|)Dα,β(dλ)

DMα,β(|r|; |n| − |r|)
=Dα+|r|,β+|n|−|r|(dλ). (2.15)

Similarly, the class of Dirichlet measures is conjugate with respect to multinomial sam-
pling.
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3. Jacobi polynomials on the simplex

If X,Y are independent random variables, their distributionWX,Y is the productWXWY

of their marginal distributions, and therefore orthogonal polynomials Qn,k(x, y) in WX,Y

are simply obtained by products Pn(x)Rk(y) of orthogonal polynomials withWX andWY

as weight measures, respectively.
The key idea for deriving multivariate polynomials with respect to Dirichlet measures

on the simplex, and to all related distributions treated in the subsequent sections, exploits
the several properties of conditional independence enjoyed by the increments of Dα, as
pointed out in Section 2.1.1. A method for constructing orthogonal polynomials in the
presence of a particular kind of conditional independence, where Y depends on X only
through a polynomial ρ(x) of the first-order, is illustrated by the following multidimen-
sional modification of Koornwinder’s method (see [15], Section 3.7.2).

Proposition 3.1. For l, d ∈ N, let (X,Y ) be a random point of Rl ×Rd with distribu-
tion W . Let ρ :Rl →R define polynomials on Rl of order at most 1.
Assume that the random variable

Z :=
Y

ρ(X)

is independent of X. Denote with WX and WZ the marginal distributions of X and Z,
respectively. Then a system of multivariate polynomials, orthogonal with respect to W, is
given by

Gn(x, y) = P
(Nl)
(n1,...,nl)

(x)(ρ(x))NlR(nl+1,...,nl+d)

(
y

ρ(x)

)
,

(3.1)
(x, y) ∈R

l ×R
d, n ∈N

l+d,

where Nl = nl+1 + · · · + nl+d, {P
(|m|)
k }k∈Rl and {Rm}m∈Rd are systems of orthogonal

polynomials with weight measures given by (ρ(x))2|m|WX and WZ , respectively.

Proof. When d = l = 1 this proposition is essentially a probabilistic reformulation of
Koornwinder’s construction ([15], Section 3.7.2). The proof is similar for any l, d. That Gn

is a polynomial of degree |n| is evident as the denominator of the term of maximum degree
in R simplifies with (ρ(x))nl+1+···+nl+d . To show orthogonality, note that the assumption
of conditional independence implies that

W (dx,dy) =WX(dx)WZ

(
1

(ρ(x))d
dy

)
.

Denote bn = E[P 2
n ] and cn = E[R2

n], n= 0,1,2, . . . . For k, r ∈R
l and m,s ∈R

d,

∫
G(k,m)(x, y)G(r,s)(x, y)W (dx,dy)
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=

∫
Pm
k (x)P s

r (x)(ρ(x))
m+sWX(dx)

∫
Rm(z)Rs(z)WZ(dz)

=

∫
Pm
k (x)Pm

r (x)(ρ(x))2mWX(dx)cmδms

= bkcmδkrδms. �

3.1. d= 2; Jacobi polynomials on [0,1]

For d = 2, Dα reduces to the beta distribution, the weight measure of (shifted) Jacobi
polynomials. These are functions of one variable living in ∆1 ≡ [0,1]. It is convenient to
recall some known properties of such polynomials. Consider the measure

w̃a,b(dx) = (1− x)a(1 + x)bI(x ∈ (−1,1))dx, a, b >−1, (3.2)

where I(A) is the indicator function, equal to 1 if A, and 0 otherwise. This is the weight
measure of the Jacobi polynomials defined by

P̃ a,b
n (x) :=

(a+ 1)(n)

n!
2F1

(
−n, n+ a+ b+ 1

a+ 1

1− x

2

)
,

where pFq, p, q ∈N, denote the hypergeometric function (see [1] for basic properties).
The normalization constants are given by the relation

∫

(−1,1)

P̃ a,b
n (x)P̃ a,b

m (x)w̃a,b(dx) =
2a+b+1

2n+ a+ b+1

Γ(n+ a+1)Γ(n+ b+ 1)

n!Γ(n+ a+ b+ 1)
δmn. (3.3)

The Jacobi polynomials are known to be solution of the second-order partial differential
equation

(1− x2)y′′(x) + [b− a− x(a+ b+ 2)]y′(x) =−n(n+ a+ b+ 1)y(x). (3.4)

By a simple shift of measure it is easy to see that, for α,β > 0 and θ := α+β, the modified
polynomials

Pα,β
n (x) =

n!

(n+ θ− 1)(n)
P̃ β−1,α−1
n (2x− 1), α, β > 0, (3.5)

are orthogonal with respect to the beta distribution on [0,1], which can be written as

Dα,β(dx) =
w̃β−1,α−1(du)

2α+β−1B(α,β)
, (3.6)

where u= 2x− 1.
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Denote the standardized Jacobi polynomials with

R̃a,b
n (x) =

P̃ a,b
n (x)

P̃ a,b
n (1)

and Rα,β
n (x) =

Pα,β
n (x)

Pα,β
n (1)

.

Obviously

Rα,β
n (x) = R̃(β−1,α−1)

n (2x− 1). (3.7)

By (3.3) the new constant of proportionality is

1

ζ
(α,β)
n

:=

∫ 1

0

[Rα,β
n (x)]2Dα,β(dx)

=

(
(θ+ n− 1)(n)

(β)(n)

)2 n!α(n)(β)(n)

(θ)(2n)(θ+ n− 1)(n)
(3.8)

= n!
1

(θ+2n− 1)(θ)(n−1)

(α)(n)

(β)(n)
, n= 0,1, . . . .

A symmetry relation is

Rα,β
n (x) =

Rβ,α
n (1− x)

Rβ,α
n (0)

. (3.9)

Note that, if {P ∗
n
α,β(x)} is a system of orthonormal polynomials with weight mea-

sure Dα,β , then

ζ(α,β)n = [P ∗
n
α,β(1)]2. (3.10)

3.2. 2≤ d <∞. Multivariate Jacobi polynomials on the simplex
from right-neutrality

A system of multivariate polynomials with respect to a Dirichlet distribution on d≤∞
points can be derived by using its right-neutrality property, via Proposition 3.1. Let
Nd,|m| = {n = (n1, . . . , nd) ∈ N

d : |n| = |m|}. For every n ∈ Nd−1,|n| and α ∈ R
d
+ denote

Nj =
∑d−1

i=j+1 ni and Aj =
∑d

i=j+1 αi.

Proposition 3.2. For d <∞, a system of multivariate orthogonal polynomials on the
Dirichlet distribution Dα is given by

Rα
n(x) =

d−1∏

j=1

R(αj,Aj+2Nj)
nj

(
xj

1− sj−1

)
(1− sj−1)

Nj , x ∈∆(d−1), (3.11)

where sj =
∑j

i=1 xi.
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Notice that Rα
n(ed) = 1, where ej := (δij : i = 1, . . . , d). A similar definition for poly-

nomials in the Dirichlet distribution is proposed in [16], in terms of non-shifted Jacobi

polynomials R̃n. For an alternative choice of basis, see [5].

Proof of Proposition 3.2. The polynomials in Rα
n(x) given in Proposition 3.2 admit

a recursive definition as follows:

Rα
n1,...,nd−1

(x1, . . . , xd)
(3.12)

=R(α1,A1+2N1)
n1

(x1)(1− x1)
N1R

α∗

2
n2,...,nd−1

(
x2

1− x1
, . . . ,

xd
1− x1

)
,

where α∗
j = (αj , . . . , αd) (j ≤ d− 1); so Proposition 3.1 is used with l = 1, ρ(x) = 1 − x

and inductively on d. The claim is a consequence of the neutral-to-the-right property and

Proposition 3.1 – for consider the orthogonality of a term

(
1−

Xj

1− Sj−1

)Nj

Rαj,Aj+2Nj

nj

(
Xj

1− Sj−1

)
(3.13)

in Rα
n with a similar term in Rα

m for some m = (m1, . . . ,md−1)-polynomial. Assume

without loss of generality that for some j = 1, . . . , d− 1, mk = nk for k = j +1, . . . , d− 1

and mj < nj . Then Nj =Mj and, multiplying the product of (3.13) by the corresponding

beta density Dαj ,Aj
(dBj)/dBj , where Bj is as in (2.1), gives

B
αj−1
j (1−Bj)

Aj+2Nj−1Rαj ,Aj+2Nj

nj
(Bj)R

αj ,Aj+2Nj

mj
(Bj). (3.14)

Since Rnj
is orthogonal to polynomials of degree less than nj on the weight measure

Dαj ,Aj+2Nj
, then the integral with respect to dBj of the quantity (3.14) vanishes, which

proves the orthogonality. �

The orthogonality constant for {Rα
n} can be easily derived as

1

ζαn
:=

∫

∆(d−1)

(Rα
n(x))

2Dα(dx) =
1

∏d−1
j=1 ζ

αj ,Aj+2Nj

nj

(3.15)

=

d−1∏

j=1

nj !(αj)(nj)

(Aj−1 +Nj)(nj−1)(Aj−1 + 2Nj−1 − 1)(Aj + 2Nj)(nj)

.

Notice that the same construction shown in Proposition 3.2 could be similarly expressed

in terms of the polynomials {P
αj ,Aj+2Nj

nj } or {P ⋆αj ,Aj+2Nj} instead of {R
αj ,Aj+2Nj

nj },

the only difference resulting in the orthogonality constants.



1108 R.C. Griffiths and D. Spanò

3.3. Multivariate Jacobi on beta-Stacy distributions

Random distributions of beta-Stacy type are all right-neutral. Orthogonal polynomials

with respect to general beta-Stacy measures can be therefore constructed in very much

the same way as in Proposition 3.2, with a similar proof.

Proposition 3.3. Let d ≤ ∞ and (α,β) ∈ R
d
+ × R

d
+. Let µα,β be the distribution of

a beta-Stacy(α,β) random point of ∆(d−1). A system of orthogonal polynomials in µα,β

is given by

R∗(α,β)
n (x) =

d−1∏

j=1

R(αj,βj+2Nj)
nj

(
xj

1− sj−1

)
(1− sj−1)

Nj , x ∈∆(d−1), n ∈N
d. (3.16)

The constant of orthogonality is given by

1

ζα,βn

=
1

∏d−1
j=1 ζ

αj ,βj+2Nj

nj

(3.17)

=
d−1∏

i=1

ni!(αi)(ni)

(αi + βi +2Ni−1 − 1)(αi + βi + 2Ni)(ni−1)(βi +2Ni)(ni)

.

Example 3.4. We have seen that all size-biased Dirichlet measures are beta-Stacy.

A system of orthogonal polynomials in D̈|θ|,d is

R̈(|θ|,d)
n (x) =

d−1∏

j=1

R(|θ|/d+1,((d−j)/d)θ+2Nj)
nj

(
xj

1− sj−1

)
(1− sj−1)

Nj ,

(3.18)
x ∈∆(d−1), n∈N

d.

Example 3.5. As d→∞, D̈|θ|,d converges to the so-called GEM(θ) distribution, that

is, an infinite-dimensional beta-Stacy with all i.i.d. weights being beta random variables

with parameter (αj , βj) = (1, θ). Let D̈|θ|,∞ = limd→∞ D̈|θ|,d denote the GEM distribution

with parameter |θ|. For |θ|> 0, an orthogonal system with respect to the weight measu-

re D̈|θ|,∞ is given by the polynomials:

R̈|θ|
n (x) =

∞∏

j=1

R(1,θ+2Nj)
nj

(
xj

1− sj−1

)
(1− sj−1)

Nj ,

(3.19)
x ∈∆∞, n ∈N

∞ : |n|= 0,1, . . . .
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Example 3.6. For the two-parameter GEM(σ, θ) distribution, αj = 1 − σ and βj =
θ+ jσ. The polynomials are of the form

R̈σ,θ
n (x) =

∞∏

j=1

R(1−σ,θ+jσ+2Nj)
nj

(
xj

1− sj−1

)
(1− sj−1)

Nj ,

(3.20)
x ∈∆∞, n∈N

∞ : |n|= 0,1, . . . .

4. Multivariate Jacobi and multiple Laguerre
polynomials

The Laguerre polynomials, defined by

L
|α|
|n|(y) =

(|α|)(|n|)

|n|!
1F1(−|n|; |α|;y), |α|> 0, (4.1)

are orthogonal to the gamma density γ|α|,1 with constant of orthogonality

∫ ∞

0

[L
|α|
|n|(y)]

2
γ|α|(dy) =

(|α|)(|n|)

|n|!
. (4.2)

(Note that the usual convention is to define Laguerre polynomials in terms of the param-
eter |α′| := |α| − 1 >−1. Here we prefer to use positive parameter for consistency with
the parameters in the amma distribution.)

Remark 4.1. If Y is a gamma(|α|) random variable, then, for every scale parameter
β ∈R+, the distribution of Z := βY is γ|α|,β(dz). Thus the system

{
L|α|
n

(
z

β

)}

n=0,1,...

is orthogonal with weight measure γ|α|,β.

Let Y ∈Rd
+ be a random vector with distribution γdα,β . By the stochastic independence

of its coordinates, orthogonal polynomials of degree |n| with the distribution of Y as
weight measure are simply

Lα,β
n (y) =

d∏

i=1

Lαi

ni

(
yi
β

)
, y ∈R

d, n∈Nn, (4.3)

with constants of orthogonality of

1

ϕn
= E(Lα

n(Y ))2 =

d∏

i=1

(αi)(ni)

ni!
. (4.4)
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Therefore, with the notation introduced in Section 2.1.1, because of the one-to-one map-
ping

(Y1, . . . , Yd) 7→ (|Y |,X1, . . . ,Xd),

one can obtain an alternative system of orthogonal polynomials from y1, . . . , yn.

Proposition 4.2. The polynomials defined by

Lα,β∗
n (y) =L|α|+2|n′|

nd

(
|y|

β

)(
|y|

β

)|n′|

Rα
n′

(
y

|y|

)
, n ∈N

d, y ∈R
d, (4.5)

with n′ = (n1, . . . , nd−1) and Rα
m defined by (3.11), are orthogonal with respect to γdα,β .

Proof. The proof of (4.5) is straightforward and follows immediately from Proposi-
tion 3.1, with l= 1, X = |Y | and ρ(x) = x (remember that |Y | is gamma with parameter
(|α|, β)). �

From now on we will only consider the case with β = 1, without much loss of generality.
The constant of orthogonality of the resulting system {Lα∗

n } is

1

ϕ∗
n

:=

∫

Rd

[Lα∗
n (y)]2

d∏

i=1

γαi
(dyi)

=

∫ ∞

0

[L|α|+2(|n|−nd)
nd

(|y|)|y||n|−nd ]
2
γ|α|(d|y|)

∫

∆(d−1)

[Rα
n′(x)]2Dα(dx)

=
(|α|)(2|n′|)

ζαn′

∫
[L|α|+2|n′|

nd
(|y|)]

2
γα+2|n′|(d|y|)

=
1

nd!

((|α|)(2|n′|))
2

ζαn′

, (4.6)

where ζαn′ is as in (3.15).

4.1. Connection coefficients

The two systems Lα
n and Lα∗

n can be expressed as linear combinations of each other:

Lα∗
n (y) =

∑

|m|=|n|

ϕmc
∗
m(n)Lα

m(y) (4.7)

and

Lα
n(y) =

∑

|m|=|n|

ϕ∗
mcm(n)Lα∗

m (y), (4.8)
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where

c∗m(n)δ|m||n| = E[Lα∗
n (y)Lα

m(y)] = cn(m)δ|m||n|.

For general m,n a representation for c∗m(n) can be derived in terms of a mixture of
Lauricella functions of the first (A) type. Such functions are defined [17] as

FA(|a|; b; c; z) =
∑

m∈Nd

1

m1! · · ·md!

|a|(|m|)b(m)

c(m)
zm, a, b, c, z ∈C

d,

where v(r) :=
∏d

i=1 (vi)(ri) for every v, r ∈Rd.

Proposition 4.3. For every n ∈Nd denote n′ := (n1, . . . , nd−1). A representation for the
connection coefficients in (4.7) is

c∗m(n) = δmn

(|α|)(|n|)

|n|!
DM α(m)

(4.9)

×

|n|∑

j=0

dj

∫

∆(d−1)

Rα
n′(t)FA(|α|;−m,−j;α, |α|; t,1− |t|,1)Dα(dt),

where

dj :=

|n′|∑

i=0

(−|n′|)(i)
(|α|)(|n′|)(|α|+2|n′|)(nd)

i!nd!
(4.10)

× FA(|α|;−i,−nd,−j; |α|, |α|+ 2i, |α|; 1,1,1).

The proof relies on a beautiful representation due to Erdélyi [6]: for every |a|, |z| ∈R,
α,k ∈Rd and n ∈Nd,

d∏

j=1

Lαj
nj
(kj |z|) =

|n|∑

s=0

φs(|a|;α;n;k)L
|a|
s (|z|), (4.11)

where

φs(|a|;α;n;k) = FA(|a|;−n,−s;α, |a|;k,1)

d∏

j=1

(αj)(nj)

nj !
.

The full proof of Proposition 4.3 involves tedious algebra that we omit here as not relevant
for the general purposes of the paper.

Remark 4.4. A simplified representation of c∗m(n) in terms of Hahn polynomials will
be given in Section 5.2.2.
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Remark 4.5. Note that when |n′|= 0, c∗m(0, . . . ,0, nd) = 1, which agrees with the known
identity

Lα+β
n (x+ y) =

n∑

j=0

Lα
j (x)L

β
n−j(y), x, y ∈R (4.12)

(see [2], formula (6.2.35), page 191), an identity with an obvious extension to the d-di-
mensional case.

Remark 4.6. It is immediate to verify that the coefficients c∗m(n) also satisfy

L
|α|
|n−n′|(|β

−1y|)|β−1y||n
′|Rα

n′

(
y

|y|

)
=

∑

|m|=|n|

ϕmc
∗
m(n)Lα

m(|β−1y|), β ∈R+. (4.13)

4.2. Size-biased multiple Laguerre

Let Y d = (Y1, . . . , Yd) be a collection of independent gamma random variables, each with
parameters (θ/d,1), i = 1, . . . , d. Let Ÿ d be the same vector with the coordinates rear-
ranged in size-biased random order. The proof of the following corollaries is, at this point,
obvious from Proposition 4.2.

Corollary 4.7. A system of polynomials, orthogonal with respect to the law of Ÿ d, is
given by

L̈
|θ|,d
(|m|,n′)(y) = L

|θ|+2|n′|
|m| (|y|)(|y|)|n

′|R̈
|θ|,d
n′

(
y

|y|

)
, (4.14)

|m| ∈N, n′ ∈Nd : |n′| ∈N, with {R̈n} as in (3.18).

It is possible to derive an infinite-dimensional version of {Lα⋆
n }, orthogonal with re-

spect to the law of the size-biased point process Ÿ∞, obtained by Y∞ of Section 2.2.1.
Remember that Ẍ∞ := Ÿ∞/|Ÿ∞| has GEM(|θ|) distribution and it is independent of

|Ÿ∞|
D
= |Y∞|, which has a gamma(|θ|) law.

Corollary 4.8. Let γ̈|θ| be the probability distribution of the size-biased sequence Ÿ∞

obtained by rearranging in size-biased random order the sequence Y∞ of points of a Pois-
son process with generating functional (2.5). The polynomials defined by

L̈
|θ|
(|m|,n′)(y) = L

|θ|+2|n′|
|m| (|y|)(|y|)|n

′|R̈
|θ|
n′

(
y

|y|

)
(4.15)

for |m| ∈N, n′ ∈N∞ : |n′| ∈N, with {R̈n} as in (3.19), are the limit, as d→∞, of the poly-

nomials {L̈
|θ|,d
(|m|,n′)} defined by (4.14) and form an orthogonal system with respect to γ̈|θ|.
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5. Multivariate Hahn polynomials

5.1. Hahn polynomials on {1, . . . ,N}

As for the Laguerre polynomials, we introduce the discrete Hahn polynomials on
{1, . . . ,N} with parameters shifted by 1 to make the notation consistent with the stan-
dard probabilistic notation in the corresponding weight measure. The Hahn polynomials,
orthogonal on DM α,β(n;N), are defined as the hypergeometric series:

hα,βn (r;N) = 3F2

(
−n,n+ θ− 1,−r

α,−N
1

)
, n= 0,1, . . . ,N. (5.1)

The orthogonality constants are given by

1

uα,βN,n

:=

N∑

r=0

[hα,βn (r;N)]2DMα,β(n;N) =
1(
N
n

) (θ+N)(n)

(θ)(n−1)

1

θ+2n− 1

(β)(n)

(α)(n)
.

A special point value is ([12], formula (1.15))

hα,βn (N ;N) = (−1)n
(β)(n)

(α)(n)
. (5.2)

Thus if we consider the normalization

qα,βn (r;N) :=
hα,βn (r;N)

hα,βn (N ;N)
,

then the new constant is, from (5.2),

1

wα,β
N,n

:= E[qα,βn (R;N)]2

=
1(
N
n

) (θ+N)(n)

(θ)(n−1)

1

θ+ 2n− 1

(α)(n)

(β)(n)
(5.3)

=

[
(θ+N)(n)

N[n]

]
1

ζα,βn

,

where ζn is the Jacobi orthogonality constant, given by (3.8).
A symmetry relation is

qα,βn (r;N) =
qβ,αn (N − r;N)

qβ,αn (0;N)
. (5.4)

A well-known relationship is in the limit:

lim
N→∞

hα,βn (Nz;N) = R̃α−1,β−1
n (1− 2z), α, β > 0 (5.5)
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(see [12]), where R̃a,b
n = R̃a,b

n /R̃a,b
n (1) are standardized Jacobi polynomials orthogonal on

[−1,1] as defined in Section 3.1. Because of our definition (3.5), combining (3.9), (5.4)
and (5.6) gives the equivalent limit: For every n,

lim
N→∞

qα,βn (Nz;N) =Rα,β
n (z), α, β > 0. (5.6)

Note that also

lim
N→∞

wα,β
N,n = ζα,βn . (5.7)

An inverse relation holds as well, which allows one to derive Hahn polynomials as a mix-
ture of Jacobi polynomials. Denote by Bx(r;N) = Bx,1−x(r,N − r) the binomial distri-
bution.

Proposition 5.1. The functions

q̃α,βn (r;N) :=

∫ 1

0

Rα,β
n (x)

Bx(r;N)

DM α,β(r;N)
Dα,β(dx) (5.8)

=

∫ 1

0

Rα,β
n (x)Dα+r,β+N−r(dx), n= 0,1, . . . ,N, (5.9)

form the Hahn system of orthogonal polynomials with DM α,β as the weight function,
such that

q̃α,βn (r;N) =
N[n]

(θ+N)(n)
qα,βn (r;N). (5.10)

The representation (5.9), in particular, shows a Bayesian interpretation of Hahn poly-
nomials, as a posterior mixture of Jacobi polynomials evaluated on a random Bernoulli
probability of successX , conditionally on having previously observed r successes out of N
independent Bernoulli(X) trials, where X has a Beta(α,β) distribution on {0, . . . ,N}.

Proof of Proposition 5.1. The integral defined by (5.8) is a polynomial: Consider

∫ 1

0

xn(1− x)m
Bx(r;N)

DM α,β(r;N)
Dα,β(dx) =

(α)(n+r)(β)(N+m−r)(θ)(N)

(α)(r)(β)(N−r)(θ)(N+n+m)

=
(α+ r)(n)(β +N − r)(m)

(θ+N)(n+m)

.

The numerator is a polynomial in r of order n+m. Write

Rα,β
n (x) =

n∑

j=1

cjx
j ,
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then

∫ 1

0

Rα,β
n (x)

Bx(r;N)

DM α,β(r;N)
Dα,β(dx) =

n∑

j=1

cj
(θ+N)(j)

(α+ r)(j)

(5.11)

=

n∑

j=1

cj
(θ+N)(j)

r[j] +L,

where L is a polynomial in r of order less than n. Then qα,βn (r) is a polynomial of order n
in r.
To show orthogonality it is sufficient to show that hn are orthogonal with respect to

polynomials of the basis formed by the falling factorials {r[l], l= 0,1, . . .}. For l≤ n,

n∑

r=0

DMα,β(r;N)r[l]q̃
α,β
n (r;N)

=
N !

(N − l)!

∫ 1

0

xlRα,β
n (x)

[
n∑

r=0

(
N − l
r− l

)
xl−r(1− x)N−r

]
Dα,β(dx) (5.12)

=N[l]

∫ 1

0

xlRα,β
n (x)Dα,β(dx).

The last integral is non-zero only if l= n, which proves the orthogonality of qα,βn (r;N).
Now consider that, in Rα,β

n (x), the leading coefficient cn satisfies

∫ 1

0

cnx
nRα,β

n (x)Dα,β(dx) =

∫ 1

0

[Rα,β
n (x)]2Dα,β(dx) =

1

ζα,βn

;

1

ωα,β
N,n

=
n∑

r=0

DM α,β(r;N)q̃α,βn (r;N)q̃α,βn (r;N)

=

n∑

r=0

DM α,β(r;N)

(
n∑

j=0

cj
(θ+N)(j)

r[j]

)
q̃α,βn (r;N) +L′

(5.13)

= N[n]
cn

(θ+N)(n)

∫
xnRα,β

n (x)Dα,β(dx)

=
N[n]

(θ+N)(n)

1

ζα,βn

.

That is,

ωα,β
N,n =

[
(θ+N)(n)

N[n]

]2
wα,β

N,n (5.14)

with wα,β
N,n as in (5.2), and therefore the identity (5.10) follows, completing the proof. �
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5.2. Multivariate polynomials on the Dirichlet-multinomial
distribution

Multivariate polynomials orthogonal with respect to DMα on the discrete d-dimensional
simplex were first introduced by Karlin and McGregor [11] as eigenfunctions of the birth-
and-death process with neutral mutation. Here we derive an alternative derivation as
a posterior mixture of multivariate Jacobi polynomials, which extends Proposition 5.1 to
a multivariate setting.

Proposition 5.2. For every α ∈ Rd, a system of polynomials, orthogonal with respect
to DM α, is given by

q̃αn(r; |r|) =

∫

∆(d−1)

Rα
n(x)

Bx(r)

DM α(r)
Dα(dx) (5.15)

=

∫

∆(d−1)

Rα
n(x)Dα+r(dx), |n| ≤ |r| (5.16)

=

(∏d−1
j=1 (Aj +Rj +Nj+1)(nj+1)

(|α|+ |r|)(N1)

) d∏

j=1

q̃αj ,Aj+2Nj
nj

(rj ;Rj−1 −Nj), (5.17)

with constant of orthogonality given by

1

ωn(α; |r|)
:= E[q̃αn (R; |r|)]

2 =
|r|[n]

(|α|+ |r|)(n)

1

ζαn
. (5.18)

Proof. The identity between (5.15) and (5.16) is obvious from Section 2.4 and (5.17)
follows from Proposition 5.1 and some simple algebra. For every n ∈N

d,

∫

∆(d−1)

xnDα+r(dx) = DMα+r(n) =

d−1∏

i=1

(αi + ri)(ni)
(Ai +Ri)(Ni)

(Ai−1 +Ri−1)(Ni−1)

(5.19)

=

∏d
i=1 (αi + ri)(ni)

(|α|+ |r|)(|n|)
=

1

(|α|+ |r|)(|n|)

d∏

i=1

ri[ni] +L,

where L is a polynomial in r of order less than |n|. Therefore q̃αn (r; |r|) are polynomials
of order |n| in r.
To show that they are orthogonal, denote

pl(r) :=

d∏

i=1

(ri)[li]
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and consider that, for every l ∈Nd : |l| ≤ |n|,

∑

|m|=|r|

DM α(m; |r|)pl(m)q̃αn (m; |r|)

=
|r|!

(|r| − |l|)!

∫
xlRα

n(x)

( ∑

|m|=|r|

(
|r− l|
m− l

)
xm−l

)
Dα(dx) (5.20)

= |r|[|l|]

∫
xlRα

n(x)Dα(dx),

which, by orthogonality of Rn, is non-zero only if |l|= |n|. Since it is always possible to
write, for appropriate coefficients cnm

Rα
n(x) =

∑

|m|=|n|

cnmx
m +C,

where C is a polynomial of order less than |n| in x; then

q̃αs (r; |r|) =
∑

|m|=|s|

csm
(|α|+ |r|)(|s|)

pm(r) +C′

and by (5.20)

E[q̃αs (R; |r|)q̃
α
n (R; |r|)] =

∑

|k|=|s|

csk
(|α|+ |r|)(|s|)

E[pk(R)q̃
α
n (R; |r|)] +C′′

= |r|[|n|]
∑

|k|=|r|

csk
(|α|+ |r|)(|s|)

∫
xkRα

n(x)Dα(dx)

=
|r|[|n|]

(|α|+ |r|)(|n|)

1

ζαn
δsn, |n|= |r|.

�

Remark 5.3. Note that the representation (5.17) holds also for negative parameters,
so that, if we replace α with −ε (ε ∈Rd) then (5.17) is a representation for polynomials
with respect to the hypergeometric distribution (Section 2.3.3).

5.2.1. Bernstein–Bézier coefficients of Jacobi polynomials

As anticipated in the introduction, Proposition 5.2 gives a probabilistic proof of a re-
cent result of [22], namely that Hahn polynomials are the Berstein–Bézier coefficients of
the multivariate Jacobi polynomials. Remember that the Bernstein polynomials, when
taken on the simplex, are essentially multinomial distributions Bx(n) =

(
|n|
n

)
xn, seen as

functions of x.
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Corollary 5.4. For every d ∈N, α ∈Rd, r ∈Nd,

Rα
r (x) =

(|α|+ |r|)(|n|)

|r|[|n|]

∑

|m|=|r|

q̃αr (m; |r|)Bx(m), (5.21)

where ωr(|α|; |r|) is given by (5.18).

Proof. From Proposition 5.2,

DMα(m; |r|)q̃αr (m; |r|) = E[BX(m)Rα
r (X)]

so

Bx(m) =DM α(m; |m|)

|m|∑

|n|=0

ζαn q̃
α
n(m; |m|)Rn(x).

Hence ∑

m

q̃αr (m; |r|)Bx(m)

=

|r|∑

|n|=0

ζαn

[ ∑

|m|=|r|

DMα(m; |r|)q̃αr (m; |r|)q̃αn (m; |r|)

]
Rα

n(x) (5.22)

=

|r|∑

|n|=0

ζαn
ωr(|α|; |r|)

δrnR
α
n(x) =

|r|[|n|]
(|α|+ |r|)(|n|)

Rα
r (x),

which completes the proof. �

Remark 5.5. By a similar argument it is easy to come back from (5.21) to (5.15).

5.2.2. The connection coefficients of Proposition 4.3

Consider again the connection coefficients c∗n(m) of Proposition 4.3 and their representa-
tions (4.9) and (4.10). An alternative representation can be given in terms of multivariate
Hahn polynomials.

Corollary 5.6. Let c∗n(m) be the connection coefficients between Lα∗
n and Lα

m, as in
Section 4. Then

c∗n(m) = δmn b
|α|
|n|,nd

DM α(m)

|n|∑

|r|=0

(−m)(r)∏d
l=1 rl!

q̃αn′(r; |r|), (5.23)

where n′ = (n1, . . . , nd − 1),

b
|α|
|n|,nd

=
(|α|)(|n|)

|n|!

[
|n|∑

j=0

dj
j!|α|(j)

]

and dj is as in (4.10).
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Proof. It is sufficient to use the explicit expression of the Lauricella function FA in (4.9)
to see that

c∗m(n) = δmn

(|α|)(|n|)

|n|!
DM α(m)

[
|n|∑

j=0

dj
j!|α|(j)

]
|n|∑

|r|=0

(−m)(r)∏d
l=1 rl!

∫ (
|r|
r

)
trRα

n′(t)

DM α(r)
Dα(dt)

(5.24)

= δmnb
|α|
|n|,nd

DM α(m)

|n|∑

|r|=0

(−m)(r)∏d
l=1 rl!

q̃αn′(r; |r|).
�

5.2.3. Application: The d-types linear growth model

The multivariate Hahn polynomials were first studied by Karlin and McGregor [11] to
derive the transition density of the so-called d-type neutral Moran model of popula-
tion genetics. This is, for any fixed |r| ∈ N, a stochastic process (N(t) : t ≥ 0) living in
the discrete simplex Nd,|r| = {m ∈ Nd : |m|= |r|}, with Dirichlet-multinomial stationary
distribution, and whose generator has Hahn polynomials as eigenfunctions.
Karlin and McGregor’s description of such eigenfunctions is structurally similar to

our (5.17), up to some re-scaling and reordering of the variables.
In the same paper ([11], formula (6.2)), the functions (rewritten in our notation)

ψ(m) :=

(
|r|
|m|

)
L
|α|+2|m|
|r|−|m| (|y|)q̃αn(m; |m|), m ∈N

d : |m| ≤ |r|, |r| ∈N,

were introduced to connect the d-type Moran model of reproduction to a d-type linear
growth model with immigration rates proportional to α1, . . . , αd. The generator of the
latter process has eigenfunctions that are the solution of the recursion

−|y|ψ(m) =

d∑

i=1

mi[ψ(m− ei)− ψ(m)] +

d∑

i=1

(mi + αi)[ψ(m− ei)− ψ(m)].

Note that, for every z ∈ R
d such that |z|= |y|, ψ(m) = Lα

|r|−|m|,m(y) is also a solution,

hence so is ψ(m) = Lα∗
|r|−|m|,m(z).

Reconsider now the system Lα∗
n of multiple Laguerre polynomials. In view of our

representation (5.16) of Hahn polynomials, it is easy to write

ψ(m) =

(
|r|
|m|

)
Γ(|α|)

Γ(α)

∫

Rd−1

Lα∗
|r|−|m|,m(y)

1

|y|d−1
yα−1 dy1 · · ·dyd−1,

which is identical to

ψ(m) =

(
|r|
|m|

)
L
|α|+2|m|
|r|−|m| (|y|)

∫

∆d−1

Rα
m(x)Dα+m(dx).

Our representation in a sense completes Karlin and McGregor’s analysis, in terms of
eigenfunctions, of the relationship existing between the r-type linear growth model (prod-
uct of independent Laguerre polynomials), the Moran model (multivariate Hahn) and its
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scaling limit, the d-type Wright–Fisher diffusion (multivariate Jacobi). In [11] the role
of the latter was not very visible. The representation (5.16) shows how to map directly
polynomial eigenfunctions of the scaling limit process (Jacobi ) to polynomial eigenfunc-
tions of its finite-size dual model (Hahn). In Karlin and McGregor’s work this idea was
present only implicitly (see their formula (3.8) and observation (3.10)), via their use of
Laguerre products. Considering the system {Lα∗

|r|−|m|,m} makes the connection between
all the three processes more transparent.

6. Multivariate Hahn and multiple Meixner
polynomials

The Meixner polynomials on {0,1,2, . . .}, defined by

Mn(k;α, p) = 2F1

(
−n, −k

α

p− 1

p

)
, α > 0, p∈ (0,1), (6.1)

are orthogonal with respect to the negative binomial distribution NBα,p. The following
representation of the Meixner polynomials comes from the interpretation of NBα,p as
a gamma mixture of Poisson likelihood (formula (2.10)).

Proposition 6.1. For α ∈ R+ and p ∈ (0,1), a system of orthogonal polynomials with
the negative binomial (α, p) distribution as weight measure is given by

M̃α,p
n (k) =

∫ ∞

0

Poλ(k)

NBα,p(k)
Lα
n

(
λ
1− p

p

)
γα,p/(1−p)(dλ) (6.2)

=

∫ ∞

0

Lα
n

(
λ
1− p

p

)
γα+k,p(dλ), n= 0,1, . . . , (6.3)

where Lα
n are Laguerre polynomials with parameter α.

Proof. For every n, consider that

∫ ∞

0

λnγα+k,p(dλ) =

∫ ∞

0

λα+k+n−1e−λ/p

Γ(α+ k)pα+k
dλ= (α+ k)(n)p

n.

So every polynomial in Λ of order n is mapped to a polynomial in k of the same order.
To show orthogonality it is, again, sufficient to consider polynomials in the basis

{r[k] :k= 0,1, . . .}. Let m≤ n.

∞∑

k=0

NBα,p(k)k[m]M̃
α,p
n (k)

=

∫ ∞

0

Lα
n

(
λ
1− p

p

){ ∞∑

k=0

(α)(k)

k!
pk(1− p)αk[m]

λα+k−1e−λ/p

Γ(α+ k)pα+k

}
dλ
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(6.4)

=

∫ ∞

0

Lα
n

(
λ
1− p

p

){ ∞∑

k=0

k[m]Poλ(k)

}
γα,p/(1−p)(dλ)

=

∫ ∞

0

Lα
n

(
λ
1− p

p

)
λmγα,p/(1−p)(dλ),

where the last line comes from the fact that, if K is a Poisson(λ) random variable, then

Eλ(K[n]) = λn, n= 0,1,2, . . . .

Now, consider the change of measure induced by

z := λ
1− p

p
.

The last line of (6.4) reads

(
p

1− p

)m ∫ ∞

0

Lα
n(z)z

mγα,1(dz).

The integral vanishes for every m<n, and therefore the orthogonality is proved. �

From property (2) of the negative binomial distribution (Section 2.3.2), by using Propo-
sitions 6.1, 5.2 and 4.3, and Remark 4.6, it is possible to find the following alternative
systems of multivariate Meixner polynomials, orthogonal with respect to NBd

α,p(r).

Proposition 6.2. Let α ∈R
d
+ and p ∈ (0,1).

(i) Two systems of multivariate orthogonal polynomials with weight measure NBd
α,p(r)

are:

M̃α,p
n (r) =

d∏

i=1

M̃αi,p
ni

(ri), n ∈N
d, (6.5)

and

∗M̃α,p
n (r) = (1− p)|n

′|M̃ |α|+2|n′|,p
nd

(|r| − |n′|)(|α+ r|)(|n′|) q̃
α
n′(r; |r|), n ∈N

d, (6.6)

where n′ = (n1, . . . , nd − 1), {Mαi,p
ni

} are Meixner polynomials as in Proposition 6.1
and q̃α are multivariate Hahn polynomials defined by Proposition 5.2.

(ii) A representation for these polynomials is:

M̃α,p
n (r) =

∫

Rd
+

Pod
λ(r)

NBd
α,p(r)

Lα
n

(
λ
1− p

p

)
γdα,p/(1−p)(dλ) (6.7)

=

∫

Rd
+

Lα
n

(
λ
1− p

p

)
γdα+r,p(dλ) (6.8)
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and

∗M̃α,p
n (r) =

∫

Rd
+

Pod
λ(r)

NBd
α,p(r)

Lα∗
n

(
λ
1− p

p

)
γdα,p/(1−p)(dλ) (6.9)

=

∫

Rd
+

Lα∗
n

(
λ
1− p

p

)
γdα+r,p(dλ), (6.10)

where {Lα
n} and {Lα∗

n } are given by (4.3) and (4.5), and

γdα,β(dz) :=

d∏

i=1

γαi,β(dzi), β ∈R, z ∈R
d.

(iii) The connection coefficients between {M̃α,p
n } and ∗M̃α,p

n are given by

E[∗M̃α,p
n (R)M̃α,p

m (R)] = c∗m(n), (6.11)

where c∗m(n) are as in (4.9) or (5.23).

Proof. (6.5) is trivial and (6.7) and (6.8) follow from (6.2) and (6.3).
Now let us first prove (6.9) and (6.10). For every z ∈ Rd

+, denote x = z/|z|. Consider
that

γα,β(dz) = γ|α|,β(d|z|)Dα(dx)

and that

Pod
z(r) = Po|z|(|r|)Lx(r).

Combining this with (2.11),

∫

Rd
+

Pod
λ(r)

NBd
α,p(r)

Lα∗
n

(
λ
1− p

p

)
γdα,p/(1−p)(dλ)

=

(∫

R+

Po|λ|(|r|)

NB |α|,p(|r|)
L|α|+2|n′|
nd

(
|λ|

1− p

p

)[
|λ|

1− p

p

]|n′|

γ|α|,p/(1−p)(d|λ|)

)
(6.12)

×

(∫

∆(d−1)

Lx(r)

DMα(r, |r|)
Rα

n′(x)Dα(dx)

)
.

From Proposition 5.2, the last integral in (6.12) is equal to q̃αn′(r; |r|).
The first integral can be rewritten as

∫

R+

L|α|+2|n′|
nd

(
|λ|

1− p

p

)[
|λ|

1− p

p

]|n′|

γ|α|+|r|,p/(1−p)(d|λ|)
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= (1− p)|n
′|(|α+ r|)(|n′|)

∫

R+

L|α|+2|n′|
nd

(
|λ|

1− p

p

)
|λ||α+r+n′|e−|λ|/p

Γ(|α+ r+ n′|)p|α+r+n′|
d|λ| (6.13)

= (1− p)|n
′|(|α+ r|)(|n′|)M̃

α+2|n′|
nd

(|r| − |n′|).

The last line in (6.13) is obtained from (6.3) by rewriting |n′|= 2|n′| − |n′| in the mixing
measure. Thus the identities (6.9) and (6.10) are proved.
To prove part (iii), simply use (4.7) with coefficients given by Proposition 4.3 to see

that (6.7) and (6.8) and (6.9) and (6.10) imply

∗M̃α,p
n (r) = Eα+r,p

[
Lα∗
n

(
λ
1− p

p

)]
= Eα+r,p

[ ∑

|m|=|n|

c∗m(n)Lα
m

(
λ
1− p

p

)]

=
∑

|m|=|n|

c∗m(n)Eα+r,p

[
Lα
m

(
λ
1− p

p

)]
=

∑

|m|=|n|

c∗m(n)M̃α,p
m (r).

This is equivalent to (6.11) because of the orthogonality of M̃α,p
m (R).

But (6.11) also implies that {∗M̃α,p
n (r)} is an orthogonal system with NBd

α,p as weight
measure since, for every polynomial r[l] of degree |l| ≤ |n|,

∑

r∈Nd

NBd
α,p(r)

∗M̃α,p
n (r)r[l] =

∑

|m|=|n|

c∗m(n)

(∑

r∈Nd

NBd
α,p(r)M̃

α,p
m (r)r[l]

)
.

The term between brackets is non-zero only for |l|= |m|= |n|, which implies orthogonal-
ity, so the proof of the proposition is now complete. �

6.1. The Bernstein–Bézier coefficients of the multiple Laguerre
polynomials

The representation of Meixner polynomials given in Proposition 6.2 leads us, not sur-
prisingly, to interpret these as the Bernstein–Bézier coefficients of the multiple Laguerre
polynomials (for any choice of basis), up to proportionality constants. Note that, for
products of Poisson distributions we can write

Pod
λ(r) =

d∏

i=1

e−λiλrii
ri!

=
e−|λ|

|λ|!
Bλ(r). (6.14)

To simplify the notation, let (Lm,Mn) denote either (Lα
m, M̃

α,p
m ) or (Lα∗

m , ∗M̃α,p
m ), for

some α ∈Rd and p ∈ (0,1). Let ϕn be either as in (4.4) or as in (4.6), consistently with
the choice of Ln, and set ρr(α, p)

−1 :=E[M2
r ].
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Corollary 6.3.

Lr

(
λ
1− p

p

)
=
ρr(α, p)

ϕr

e−|λ|

|λ|!

∑

m

Mr(m)Bλ(m). (6.15)

Proof. The proof is along the same lines as for Corollary 5.4. From (6.7)–(6.9),

E

[
Ln

(
Y
1− p

p

)
Pod

Y (m)

]
=Mn(m)NBd

α,p(m), n,m∈N
d.

Then from (6.14),

Bλ(m) = |λ|!e|λ|NBd
α,p(m)

∑

n

ϕnMn(m)Ln

(
Y
1− p

p

)
.

So for every r ∈Nd

∑

m

Mr(m)Bλ(m) = |λ|!e|λ|
∑

n

ϕn

[∑

m

NBd
α,p(m)Mn(m)Mr(m)

]
Ln

(
Y
1− p

p

)

= |λ|!e|λ|
∑

n

Ln

(
Y
1− p

p

)
ϕn

ρr(α, p)
δnr

=
|λ|!e|λ|ϕr

ρr(α, p)
Lr

(
Y
1− p

p

)
,

and the proof is complete. �
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