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1. INTRODUCTION 

If p,q are integers, p +4q£ 0f let co = co(p,q) be the set of those second-order integer sequences 

(wj = (w0, wv w2, •••; 
satisfying the relationship 

which are not also first-order sequences; i.e., they do not satisfy Wn = cWn„7 fyn) for some c. In Horadam's papers 

( [3 ] , [4 ] , [5 ] , [6]) our Wn is denoted by Wn(a,b;p,-q). In this paper we show that oo can be partitioned natur-

ally into a set F of generalized Fibonacci sequences and a set L of generalized Lucas sequences; to each F e F 

there corresponds one L e L and vice-versa. We also indicate how very many of the well-known identities may be 

generalized in a simple way. 

2. THE PARTITION OF oo(p,q) 

If a,(l are the roots of x -px -q = 0, d= +\/p2 + 4q then the following relationships are true: 

a*fi = p, aft = -q, a - j3 = d, 

(1) w^^f.. 
where A = W1 -W0& B = W1~W0a. Since (Wn) is not a first-order sequence it follows that a±0,$±Q. A * 

0, B J=0. When Wn is represented as in (1) we say that Wn is in Fibonacci form. On the other hand, with differ-

ent constants C and D, Wn could be represented as 

Wn = Ca" + D$n . 

In this case, we say that Wn is in Lucas form. 

When Wn is in Fibonacci form (1) we may perform an operation ( ') to obtain a number W'm where 

Wn = Adn + B$n . 

We say that the sequence (W'n) is derived from the sequence (Wn). The sequence (W'n) is a sequence of integers 

since 

(2) WQ = A+ B = W7-W0$+W7-W0a = 2W1-W0(a + $) = 2Wr~pW0 

and 

(3) W7 - Aa + B$ = (W7 - W0$)a M\N1 - W0a)$ = W7(a + &)- 2W0a$ = pW7 + 2qW0. 

W'n may now be expressed in Fibonacci form. In that case 

If we perform the operation ( ') on Wn we obtain 

W% = [Ma - p)J an + f(-B)(a - fi)J $n 

-'«-«2[^f] 
ifw„ 
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We have proved 

Theorem 1. W% = d2Wn for ail n > 0. 

St is not hard to verify that the equation Wn = W'n (vn) cannot be true if (Wn) is not a first-order sequence. 

Throughout this paper let (Xn), (Yn) e co (p,q), let X'n =Yn (n = Q, 1, 2, - ) and let X0 = a, X1 = b. 

Then, from (2) and (3), 

YQ = 2b - ap, Ky = pb + 2qa . 

By theorem 1, therefore, or directly, it follows that 

ad2 = 2Y1-pY0f bd2 = pY, +2qY0 . 

The following theorem now follows easily: 

Theorem 2. (i) 
(4) d2\2Yn-pYnm.t and d2\pYn+2qYn_1 for all n>1. 

(ii) If (Wn)eo>(p,q), d2\2W7-pW0 and d2\pW1+2qW0 then (Wn) = (Xn) for some 

(Xn)e<A)(p,q). 

Proof of (ii). If 

X0-^Lzfo. Xl.»bimL a n d (xH,e»<M). 

the* ' , «2 

xbJp^^oyphw^\Wo and x,JPw1+m0\ +2qhw^wg\ =Wi 

which proves part (ii). 

The basic linear relationships connecting (Xn) and (Yn ) are described in the following theorem. 

Theorem 3. The following are equivalent: 

(«» (X'n) = (Yn), 

(ii) Yn = 2Xn+1 - pXn for ail n > 0 , 

(iii) YnH = pXn+1+2qXn forail n>0, 

(iv) Yn = Xn+<i + qXn_7 for ail n > 1, 

(v) Xn =
 2Yn+1-pyn f f l r a | | n>Qf 

d
2 

(vi) xn+1=
pYn+1+2SXR foraS| n>Qf 

d2 

(vii) Xn = Y-H+l+qY»-l for all n>1. 

d2 

NOTE: For each of (ii), —, (vii) we need only require that the expression is true for two adjacent values of n. 

Proof (i)=*(ii). If (X'n) = (Yn), then from (2) and (3), Y0 = 2X1~pXo and K ; =pX7 +q2X0 = 2X2-pX-j 

since X2 =pXf + qXg. Let m>2 and assume (ii) is true for 0<n<m. Then 

Ym = PYm-1 + QYm-2 = P(2Xm-pXm^) + q(2Xm^ -pXm„2) = 2Xm+1 ~pXm. 

The result now follows by induction. 

(ii) ^ ( i i i ) <» — <*» (vii). This follows easily using 

Xn+1 = pXn+qXn^ and Yn+1 = pYn + qYn^ (n>f). 

f ( i iU i i i ) , - ( v i i ) ]=>( i ) . Since 

x0 = ̂ fXo and Xf_Ph+*yo 
d2 d2 

it follows from (2) and (3) that 
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and similarly X^ = Y-j. Hence (X'n) = (Yn). This completes the proof of Theorem 3„ 

We now describe the partition of oo(p,q) previously referred to: 

If (Wn)<Eto(p,q) and d * 1 let Wn = dzm ton for all n > 0, where nr^O is an integer, (con) G CO and 

d / oon for at least one n > ft Then 

(Wn)<E L if d2\2cjf -pojg and d2\poj^ + 2qu>Q , 

(Wn)^F if either d2^2co7 -poo0 or d2^pojf+2qco0 . 

If (Wn)<=oj(p,q) and d=1 Set 

(Wn)^L if WT-WQGLKO, 

(Wn) ^F if W7-W0a > 0. 

The assignment of (Wn) to L or F is natural in the case d/1, but if d= 1, although the partition itself is nat-

ural, it is not true to say that a sequence is " l ike" the Lucas sequence rather than the Fibonacci sequence or vice-

versa. In view of Theorem 3 if (Wn) is a member of F {or D then any " ta i l " of (Wn) is also a member of F(m 

L, respectively). 

Theorem 4 . (XJ e F if and only if (Yn) G L . 

Proof Casel. d=1. (Xn)e F 

o Xn = Aan - BPn, where B < 0 

o Yn = Aan + B$n 

~ (YJ G L. 

Case 2. d?1. (i) If (Xn) G.F suppose that Xn = d2mxn for all n > 0, where m>0 is an integer, 

fr„ J G Fand tf2^ for at least one n>0. Clearly </2K*0 or flf2^;. By Theorem 3, Y0
S=2X1~pX0 and 

Y1=pX1 + 2qX0. Let Yn = d2myn forail /? > o. Then y# = 2x1-pxQ and j / v =pxt+2qxQ. Since 6rnJ G 

i ^ either d2\2x1-px0 or d2\px1+2qxQ. Therefore either £/2|Vo ° r ^ J W - But it is easy to verify that 

2y1-py0= d2x0 and py1+2qy0 = d2x1. 

Therefore ( / „ j G L and so f K^J G L „ 

(ii) If (YJ<EL suppose that Yn = d2myn forail /7 > 0, where /?? > 0 is an integer, 

/>„ ) G L and £ / 2 | / „ for at least one / ? > & Clearly ^ 2 | K ^ or d2\yp By Theorem 3, 

X0 = 

Let * „ = d2mxn for all /7 > 0, Then 

* 0 = 

Since (yn) ^L, 

d2\2y1-py0 and d2\py1+2qy0 , 

so * 0 and * / are integers, so (xn)^co-.But 

2x1~pxo = yo and pxj+2qxo = Yi, 

and since d2\y0 or d2\y1 it follows that either d2)(2x1-px0 or d2\px1+2qx0. Therefore (xn)(=F and 

so (Xn)(=F. This completes the proof of Theorem 4. 

Here are some examples of members of F alongside the corresponding member of L. 

0, 1, 1, 2, 3, 5, 8, 13,.» 2, 1, 3, 4, 7, 13, ••• 

0:i,p,p2 + q,<- 2,p,p2 + 2q,-

0, 1, 3, 7, 15, •, 2n - 1, ••• 2, 3, 5, 9, 17, - , 2n + 1, -

0, 1, 2, 5, 12, 29, •. 2,2, 6, 14, -

(Pell's sequences) 

a, b, qa, qb, q2a, q2b, — 2b, 2qa, 2qb, 2q2a, 2q2b, ••• 

2Y1-PY0 

d2 ' 

2yi~PVo 

d2 ' 

_pY1+2qY0 
A / - • • 

d2 

_ PYi+2qyo 
X1 

d2 
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3. BINOMIAL IDENTITIES 

Many identities involving Fibonacci and Lucas numbers are readily derived from the binomial theorem; for exam-

ple see [1], [2] or [8]. They can nearly always be generalized to become identities involving generalized Fibonacci 

and Lucas numbers, 

In this section we could derive a long list of such identities; but this seems unnecessary in view of the proofs in [21 

and [8], and also it would take up a lot of space, as the constant multipliers which have to be introduced seem to 

make the generalized formulae up to twice as Song as the formulae in [2] and [8]. Instead we derive one set of iden-

tities as an example and show how further identities may be derived. 

There often seem to be two very similar identities, one featuring Fibonacci numbers, the other Lucas numbers. 

When there are two such identities they may often be derived from one identity by using the fact that 1 and y/E are 

linearly independent over the rationals, although this is not the procedure adopted in [21 or [81. With generalized 

Fibonacci and Lucas numbers such a process would not be appropriate, but, as the examples show, the method of 

proof which is natural does lead to a single identity, from which the two identities may be obtained by specialization. 

For this section (Fn) and (Ln) denote a pair of sequences such that (Fn)^F, fZ^jeZ, and (Fn)' = (Ln). Also, 

C=F1~F0P, D = F1-F0a. 

The natural method of proof is firstly to derive a single identity involving (Xn) and (Ynl Then either of the 

following sets of substitutions may be made: 

!• Xn ~ Fn+r 

Yn = Ln+r 

A = Xj- X0P = FrH - Frp = Car 

B = Xj - X0a = Fr+1 - Fra = Dpr . 

(The third of these follows since 

"~r+i ~ 
Ca*1 ~DPr+1

 = (Car-DPr)P~-Carp+Car+1
 = F »+Car 

a-P a-P 

and the fourth follows similarly.! 

Or 

Xn - Ln+r 

Yn = d2Fn+r 

A = Xj - X0P - Lr+j - LrP = Cdar 

B = Xi-Xaa= Lr+1 - Lra - -Dcipr . 

Then each of these sets of substitutions leads to one of the two derived identities mentioned above. 

EXAMPLES OF BINOMIAL IDENTITIES 

EXAMPLE I Since 

it follows that 
n 

'£ 
i=0 

n 

am Y 
= .JH 

ri'Y1 Yn"s 
a Amrm 

E "'*!» YST\ 

, + dXm 

2A 

(? ) -

!?)• 

2B 

and pmn = mrn J^ f - / jV '4C( i-t 

i=Q 

Therefore, 

Ymn + dXmn = (2A) Un ] T d'xl
m Yn

m-'> (?), and Ymn - dXmn = (2B) Un £ l-lfd,Xl
mY^1 ( ,"). 

i=0 i=0 

Therefore, 

Xmn = 2-"d~1 £ {dXjYtfitf) [A1-n-(-1)iB1-f>] . 
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A similar formula may be derived for Ymn. 

Making the first set of substitutions, we obtain 

n 

Fmn+r = 2-»d"1 Y. (dFm+rH
n^r ( ?)([Car] 1'n - (-1)! [Dp] 1'n) 

1=0 
But 

pl-n^r-rn / 1u'n1-nnr-rn _ r1-n \ *•r-rn + °*r-rn \ \ — VD (Lr„rn — drr_r C a -1-7)0 p -C | Yc I — 

\ 
Therefore 

2 \ cr Dr J z \ cn Qn 

Fnm+r - r - ' f 1 t ( d F m + r H ^ 1 ) J Lr.rn [ ^ - ( - D ' j - n ) + dFr-rn{j-n-(-^j-n)\ • 

Making the second set of substitutions we obtain 

i=0 

But 

Therefore 

Lnm+r = 2~"d-1 J^ (dLm+r)
i(d2Fm+rr

i ( 1 ) (fedaTj h'n - (-iN-Ddpl1'") 

= 2~n E ^ W c t ( ; j (rearj ?~" - (-»"-'• (-n 1-nwi 1~n) 

= 2~n £ (dFm+rn^+r ( i ) <icar] 1-n+(- irwn 1'n). 

i=0 

C1-nar-rn + (_1)iD1-nrm __ ^ B ( J L +{-tf JL j +dFr.m ( ± -(-,)< J- ) . 

i=0 \ J 

EXAMPLE 2. Since 

dXm = 2Aam - Ym and dXm = ~(2B$m - YJ 

it follows that 

akd"Xm = E (-Yj(2A)n-i[nj\a
mn'mi+k and fdnX% - (~1)n £ (-YjW)™ [^ff1 

i=0 i=0 

Therefore 

Ykd
nX"m +Xkd

n+1X"m - 2 . <-Yj(2Ari([
 n. )(Ymn„mJ+k + dXmn„mi+k) 

s=0 

and 

n 

Ykd
nXn

m-Xkd
n+1X"m = (-1)" £ (~Ym)l'(2p)n'^ n

f)lYmn„mi+k-dXmn„mi+k) . 

1=0 

Therefore 

li/oDin-i ( n\ omn-mi+k 
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n 

XkX
nm = - 7 7 £ (-in^"-1 [n\ [Yrnn-wHkfA"^-(-1)nr') + dXmn.mi+k(A

n-i + (-1)"^-')] 

and 

Making the first set of substitutions we obtain 

zt/ 7=0 

and 

^ = ^ r Z t-D'l-m2"'1 [l)lLmn-mi+k(Cn-'' + (-1)" D"'1)+dFmn„mi+k(C
n--(-7)"D"-')] . 

i'=0 

Making the second set of substitutions we obtain 

d2FkL"m = j ^ £ (-Vi(d2Fj'2™'(»)fd2tmn^n(*™'C^ + {-in-V^d^D'H) 

+ dLmn.mi+k(d
n-iC"-i - (-1)n(-1jn-idn-iD"-i)] 

2d" M> 

so that 

n 

i=0 

and 

LkL
n

m = —j^ £ (-ind2Fj2n-i[n.)[d2Fmn.mi+k(d"-iCn-i-(-1)n(-1)n-id"-iDn-iS 

so that 

+ dLmn.mi+k(d
n-'Cn-' + (-Vn(-l)n-'dn-'Dn-')J 

LkL"™ = 1 Z ^ m / ^ " ' ( ? ) lLmn-ml+k(Dn-iH-1)lCn-i) - dFmn,mi+k(D
n-'' - (-D'C"'1)]. 

i=0 

Further three term identities from which binomial identities may be derived in the way described are 

dXn = Aa" - 50" , 

Yn = Aa" + B$n , 

(5) Aam+n = Xman+1 + qXm.1a
n , 

(6) Bpm+" = Xm?P+1-t-qX^f , 

a
2
 = pa+q , 

f ' = pP + q , 

(7) Y2 = d2X2+4AB(-q)i , 

Aa2m = Ymam-B(-q)m , 

Aa2m = dXrrflL
m + B(-q)m 

Bfm = Ym$m - A(-q)m , B02m = -dXm&m + A(-qjm . 
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Most of these identities are obvious, or nearly so. Identity (5) may be proved as follows: 

Aam = V2Ym + y2dXm = y2(PXm+2qXm„1+dXm) = Xm(<LjiL) +QXm-l = Xma^qXm^ , 

and identity (6) is proved similarly. Identity (7) is proved as follows: 

Y2 = (Aan + Bf)2 = (AcP-B$n) + 4AB(a$)n = (a-$)2 I ^ " ' ^ ) + 4AB(-q)n = d2X2+4AB(-q)n. 
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ERRATA 

Please make the following corrections to "Fibonacci Sequences Modulo /^/'appearing in the February 1974 (Vol. 

12, No. 1) issue of The Fibonacci Quarterly, pp. 51-64. 

On page 52, last line, last sentence, change " I f 2/f(p)," to read "If 2jff(p)/f 

On page 53, change the fourth line of the third paragraph from "which (a,b,pe) = 7,"to: "which (a,b,pe)^19" 

On page 56, third paragraph of proof, tenth line should read: 

"...is given by 52e - 52e~2 - 4-52e"2 = 4»52e~1 . . . . " 

On page 61, change the second displayed equation to read: 

n(k) = 2—p? . 
k 

Line 7 from the bottom should read: 

" f o r i=t, . » , * - 1. " 


