Journal of Integer Sequences, Vol. 15 (2012),

Generalized Bivariate Lucas p-Polynomials and Hessenberg Matrices

Kenan Kaygisiz and Adem Şahin
Department of Mathematics
Faculty of Arts and Sciences
Gaziosmanpaşa University
60250 Tokat
Turkey
kenan.kaygisiz@gop.edu.tr adem.sahin@gop.edu.tr

Abstract

In this paper, we give some determinantal and permanental representations of generalized bivariate Lucas p-polynomials by using various Hessenberg matrices. The results that we obtained are important since generalized bivariate Lucas p-polynomials are general forms of, for example, bivariate Jacobsthal-Lucas, bivariate Pell-Lucas ppolynomials, Chebyshev polynomials of the first kind, Jacobsthal-Lucas numbers etc.

1 Introduction

The generalized Lucas p-numbers [15] are defined by

$$
\begin{equation*}
L_{p}(n)=L_{p}(n-1)+L_{p}(n-p-1) \tag{1}
\end{equation*}
$$

for $n>p+1$, with boundary conditions $L_{p}(0)=(p+1), L_{p}(1)=\cdots=L_{p}(p)=1$.
The Lucas [8], Pell-Lucas [2] and Chebyshev polynomials of the first kind [17] are defined as follows:

$$
\begin{aligned}
l_{n+1}(x) & =x l_{n}(x)+l_{n-1}(x), n \geq 2 \text { with } l_{0}(x)=2, l_{1}(x)=x \\
Q_{n+1}(x) & =2 x Q_{n}(x)+Q_{n-1}(x), n \geq 2 \text { with } Q_{0}(x)=2, Q_{1}(x)=2 x \\
T_{n+1}(x) & =2 x T_{n}(x)-T_{n-1}(x), n \geq 2 \text { with } T_{0}(x)=1, T_{1}(x)=x
\end{aligned}
$$

respectively.

The generalized bivariate Lucas p-polynomials [16] are defined as follows:

$$
L_{p, n}(x, y)=x L_{p, n-1}(x, y)+y L_{p, n-p-1}(x, y)
$$

for $n>p$, with boundary conditions $L_{p, 0}(x, y)=(p+1), L_{p, n}(x, y)=x^{n}, n=1,2, \ldots, p$.
A few terms of $L_{p, n}(x, y)$ for $p=4$ and $p=5$ are
$5, x, x^{2}, x^{3}, x^{4}, 5 y+x^{5}, 6 x y+x^{6}, x^{7}+7 x^{2} y, x^{8}+8 x^{3} y, x^{9}+9 x^{4} y, 5 y^{2}+x^{10}+10 x^{5} y, \ldots$ and $6, x, x^{2}, x^{3}, x^{4}, x^{5}, 5 y+x^{6}, 6 x y+x^{7}, x^{8}+7 x^{2} y, x^{9}+8 x^{3} y, \ldots$ respectively.

MacHenry [9] defined generalized Lucas polynomials $\left(L_{k, n}(t)\right)$ where $t_{i}(1 \leq i \leq k)$ are constant coefficients of the core polynomial

$$
P\left(x ; t_{1}, t_{2}, \ldots, t_{k}\right)=x^{k}-t_{1} x^{k-1}-\cdots-t_{k},
$$

which is denoted by the vector $t=\left(t_{1}, t_{2}, \ldots, t_{k}\right)$.
$G_{k, n}\left(t_{1}, t_{2}, \ldots, t_{k}\right)$ is defined by

$$
\begin{aligned}
G_{k, n}(t) & =0, n<0 \\
G_{k, 0}(t) & =k \\
G_{k, 1}(t) & =t_{1} \\
G_{k, n+1}(t) & =t_{1} G_{k, n}(t)+\cdots+t_{k} G_{k, n-k+1}(t)
\end{aligned}
$$

MacHenry obtained very useful properties of these polynomials in [10, 11].
Remark 1. [16]Cognate polynomial sequence are as follows

\mathbf{x}	\mathbf{y}	\mathbf{p}	$L_{p, n}(x, y)$
x	y	1	bivariate Lucas polynomials $L_{n}(x, y)$
x	1	p	Lucas p-polynomials $L_{p, n}(x)$
x	1	1	Lucas polynomials $l_{n}(x)$
1	1	p	Lucas p-numbers $L_{p}(n)$
1	1	1	Lucas numbers L_{n}
$2 x$	y	p	bivariate Pell-Lucas p-polynomials $L_{p, n}(2 x, y)$
$2 x$	y	1	bivariate Pell-Lucas polynomials $L_{n}(2 x, y)$
$2 x$	1	p	Pell-Lucas p-polynomials $Q_{p, n}(x)$
$2 x$	1	1	Pell-Lucas polynomials $Q_{n}(x)$
2	1	1	Pell-Lucas numbers Q_{n}
$2 x$	-1	1	Chebyshev polynomials of the first kind $T_{n}(x)$
x	$2 y$	p	bivariate Jacobsthal-Lucas p-polynomials $L_{p, n}(x, 2 y)$
x	$2 y$	1	Bivariate Jacobsthal-Lucas polynomials $L_{n}(x, 2 y)$
1	$2 y$	1	Jacobsthal-Lucas polynomials $j_{n}(y)$
1	2	1	Jacobsthal-Lucas numbers j_{n}

Remark 1 shows that $L_{p, n}(x, y)$ is a general form of all sequences and polynomials mentioned in that remark. Therefore, any result obtained from $L_{p, n}(x, y)$ is valid for all sequences and polynomials mentioned there.

Many researchers have studied determinantal and permanental representations of k sequences of generalized order- k Fibonacci and Lucas numbers. For example, Minc [12] defined
an $n \times n(0,1)$-matrix $F(n, k)$, and showed that the permanents of $F(n, k)$ are equal to the generalized order- k Fibonacci numbers. Nalli and Haukkanen [13] defined $h(x)$-Fibonacci and Lucas polynomials and gave determinantal representations of these polynomials. The authors $([6,7])$ defined two $(0,1)$-matrices and showed that the permanents of these matrices are the generalized Fibonacci and Lucas numbers. Öcal et al. [14] gave some determinantal and permanental representations of k-generalized Fibonacci and Lucas numbers, and obtained Binet's formula for these sequences. Kılıc and Stakhov [4] gave permanent representation of Fibonacci and Lucas p-numbers. Kılıc and Tasci [5] studied permanents and determinants of Hessenberg matrices. Janjic [3] considers a particular case of upper Hessenberg matrices and gave a determinant representation of a generalized Fibonacci numbers.

In this paper, we give some determinantal and permanental representations of $L_{p, n}(x, y)$ by using various Hessenberg matrices. These results are a general form of determinantal and permanental representations of polynomials and sequences mentioned in Remark 1.

2 The determinantal representations

In this section, we give some determinantal representations of $L_{p, n}(x, y)$ using Hessenberg matrices.

Definition 2. An $n \times n$ matrix $A_{n}=\left(a_{i j}\right)$ is called lower Hessenberg matrix if $a_{i j}=0$ when $j-i>1$ i.e.,

$$
A_{n}=\left[\begin{array}{ccccc}
a_{11} & a_{12} & 0 & \cdots & 0 \\
a_{21} & a_{22} & a_{23} & \cdots & 0 \\
a_{31} & a_{32} & a_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
a_{n-1,1} & a_{n-1,2} & a_{n-1,3} & \cdots & a_{n-1, n} \\
a_{n, 1} & a_{n, 2} & a_{n, 3} & \cdots & a_{n, n}
\end{array}\right] .
$$

Theorem 3. [1] Let A_{n} be an $n \times n$ lower Hessenberg matrix for all $n \geq 1$ and $\operatorname{det}\left(A_{0}\right)=1$. Then,

$$
\operatorname{det}\left(A_{1}\right)=a_{11}
$$

and for $n \geq 2$

$$
\operatorname{det}\left(A_{n}\right)=a_{n, n} \operatorname{det}\left(A_{n-1}\right)+\sum_{r=1}^{n-1}\left[(-1)^{n-r} a_{n, r}\left(\prod_{j=r}^{n-1} a_{j, j+1}\right) \operatorname{det}\left(A_{r-1}\right)\right] .
$$

Theorem 4. Let $L_{p, n}(x, y)$ be the generalized bivariate Lucas p-polynomials and $W_{p, n}=\left(w_{i j}\right)$ be an $n \times n$ Hessenberg matrix defined by

$$
w_{i j}= \begin{cases}i, & \text { if } i=j-1 ; \\ x, & \text { if } i=j ; \\ i^{p} y, & \text { if } p=i-j \text { and } j \neq 1 ; \\ (p+1) i^{p} y, & \text { if } p=i-j \text { and } j=1 \\ 0, & \text { otherwise } ;\end{cases}
$$

that is,

$$
W_{p, n}=\left[\begin{array}{ccccc}
x & i & 0 & \cdots & 0 \tag{2}\\
0 & x & i & \ddots & \vdots \\
\vdots & 0 & x & & 0 \\
(p+1) i^{p} y & 0 & \vdots & \cdots & \\
0 & i^{p} y & 0 & & 0 \\
\vdots & 0 & \ddots & x & i \\
0 & 0 & \cdots & 0 & x
\end{array}\right] .
$$

Then,

$$
\begin{equation*}
\operatorname{det}\left(W_{p, n}\right)=L_{p, n}(x, y) \tag{3}
\end{equation*}
$$

where $n \geq 1$ and $i=\sqrt{-1}$.
Proof. To prove (3), we use mathematical induction on n. The result is true for $n=1$ by hypothesis.

Assume that it is true for all positive integers less than or equal to n, namely $\operatorname{det}\left(W_{p, n}\right)=$ $L_{p, n}(x, y)$. Then, we have

$$
\begin{aligned}
\operatorname{det}\left(W_{p, n+1}\right)= & q_{n+1, n+1} \operatorname{det}\left(W_{p, n}\right)+\sum_{r=1}^{n}\left[(-1)^{n+1-r} q_{n+1, r}\left(\prod_{j=r}^{n} q_{j, j+1}\right) \operatorname{det}\left(W_{p, r-1}\right)\right] \\
= & x \operatorname{det}\left(W_{p, n}\right)+\sum_{r=1}^{n-p}\left[(-1)^{n+1-r} q_{n+1, r}\left(\prod_{j=r}^{n} q_{j, j+1}\right) \operatorname{det}\left(W_{p, r-1}\right)\right] \\
& +\sum_{r=n-p+1}^{n}\left[(-1)^{n+1-r} q_{n+1, r}\left(\prod_{j=r}^{n} q_{j, j+1}\right) \operatorname{det}\left(W_{p, r-1}\right)\right] \\
= & x \operatorname{det}\left(W_{p, n}\right)+\left[(-1)^{p}(i)^{p} y \prod_{j=n-p+1}^{n} i \operatorname{det}\left(W_{p, n-p}\right)\right] \\
= & x \operatorname{det}\left(W_{p, n}\right)+\left[(-1)^{p} y(i)^{p} .(i)^{p} \operatorname{det}\left(W_{p, n-p}\right)\right] \\
= & x \operatorname{det}\left(W_{p, n}\right)+y \operatorname{det}\left(W_{p, n-p}\right)
\end{aligned}
$$

by using Theorem 3. From the induction hypothesis and the definition of $L_{p, n}(x, y)$ we obtain

$$
\operatorname{det}\left(W_{p, n+1}\right)=x L_{p, n}(x, y)+y L_{p, n-p}(x, y)=L_{p, n+1}(x, y)
$$

Therefore, (3) holds for all positive integers n.
Example 5. We obtain the 5 -th $L_{p, n}(x, y)$ for $p=4$, by using Theorem 4

$$
L_{4,5}(x, y)=\operatorname{det}\left[\begin{array}{ccccc}
x & i & 0 & 0 & 0 \\
0 & x & i & 0 & 0 \\
0 & 0 & x & i & 0 \\
0 & 0 & 0 & x & i \\
5 i^{4} y & 0 & 0 & 0 & x
\end{array}\right]=5 y+x^{5}
$$

Theorem 6. Let $p \geq 1$ be an integer, $L_{p, n}(x, y)$ be the generalized bivariate Lucas p polynomials and $M_{p, n}=\left(m_{i j}\right)$ be an $n \times n$ Hessenberg matrix defined by

$$
m_{i j}= \begin{cases}-1, & \text { if } j=i+1 \\ x, & \text { if } i=j \\ y, & \text { if } p=i-j \text { and } j \neq 1 ; \\ (p+1) y, & \text { if } p=i-j \text { and } j=1 \\ 0, & \text { otherwise; }\end{cases}
$$

that is,

$$
M_{p, n}=\left[\begin{array}{ccccc}
x & -1 & 0 & \cdots & 0 \tag{4}\\
0 & x & -1 & \cdots & 0 \\
0 & 0 & x & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
(p+1) y & 0 & 0 & \cdots & 0 \\
0 & y & 0 & \cdots & 0 \\
& \vdots & \vdots & \ddots & -1 \\
0 & 0 & \cdots & 0 & x
\end{array}\right] .
$$

Then,

$$
\operatorname{det}\left(M_{p, n}\right)=L_{p, n}(x, y)
$$

Proof. Since the proof is similar to the proof of Theorem 4, we omit the details.

3 The permanent representations

Let $A=\left(a_{i, j}\right)$ be a square matrix of order n over a ring R . The permanent of A is defined by

$$
\operatorname{per}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{i, \sigma(i)}
$$

where S_{n} denotes the symmetric group on n letters.
Theorem 7. [14] Let A_{n} be an $n \times n$ lower Hessenberg matrix for all $n \geq 1$ and $\operatorname{per}\left(A_{0}\right)=1$. Then, $\operatorname{per}\left(A_{1}\right)=a_{11}$ and for $n \geq 2$,

$$
\operatorname{per}\left(A_{n}\right)=a_{n, n} \operatorname{per}\left(A_{n-1}\right)+\sum_{r=1}^{n-1}\left[a_{n, r}\left(\prod_{j=r}^{n-1} a_{j, j+1}\right) \operatorname{per}\left(A_{r-1}\right)\right] .
$$

Theorem 8. Let $p \geq 1$ be an integer, $L_{p, n}(x, y)$ be the generalized bivariate Lucas p polynomials and $H_{p, n}=\left(h_{r s}\right)$ be an $n \times n$ lower Hessenberg matrix such that

$$
h_{r s}= \begin{cases}-i, & \text { if } s-r=1 \\ x, & \text { if } r=s \\ i^{p} y, & \text { if } p=r-s \text { and } s \neq 1 \\ (p+1) i^{p} y, & \text { if } p=r-s \text { and } s=1 \\ 0, & \text { otherwise }\end{cases}
$$

then

$$
\operatorname{per}\left(H_{p, n}\right)=L_{p, n}(x, y)
$$

where $n \geq 1$ and $i=\sqrt{-1}$.
Proof. This is similar to the proof of Theorem 4 using Theorem 7.
Example 9. We obtain the 6 -th $L_{p, n}(x, y)$ for $p=4$, by using Theorem 8

$$
L_{4,6}(x, y)=\operatorname{per}\left[\begin{array}{cccccc}
x & -i & 0 & 0 & 0 & 0 \\
0 & x & -i & 0 & 0 & 0 \\
0 & 0 & x & -i & 0 & 0 \\
0 & 0 & 0 & x & -i & 0 \\
5 y & 0 & 0 & 0 & x & -i \\
0 & y & 0 & 0 & 0 & x
\end{array}\right]=6 x y+x^{6} .
$$

Theorem 10. Let $p \geq 1$ be an integer, $L_{p, n}(x, y)$ be the generalized bivariate Lucas p polynomials and $K_{p, n}=\left(k_{i j}\right)$ be an $n \times n$ lower Hessenberg matrix such that

$$
k_{i j}= \begin{cases}1, & \text { if } j=i+1 \\ x, & \text { if } i=j \\ y, & \text { if } i-j=p \text { and } j \neq 1 \\ (p+1) y, & \text { if } i-j=p \text { and } j=1 \\ 0, & \text { otherwise }\end{cases}
$$

then

$$
\operatorname{per}\left(K_{p, n}\right)=L_{p, n}(x, y) .
$$

Proof. This is similar to the proof of Theorem 4 by using Theorem 7.
We note that the theorems given above are still valid for the sequences and polynomials mentioned in Remark 1

Corollary 11. If we rewrite Theorem 4, Theorem 6, Theorem 8 and Theorem 10 for x, y, p, we obtain the following table.

$\boldsymbol{F o r} \mathbf{x}$	\mathbf{y}	\mathbf{p}	$\operatorname{det}\left(W_{p, n}\right)=\operatorname{det}\left(M_{p, n}\right)=\operatorname{per}\left(H_{p, n}\right)=\operatorname{per}\left(K_{p, n}\right)=\mathbf{L}_{p, n+1}(\mathbf{x}, \mathbf{y})$,	
for x	y	1	$\operatorname{det}\left(W_{p, n}\right)=\operatorname{det}\left(M_{p, n}\right)=\operatorname{per}\left(H_{p, n}\right)=\operatorname{per}\left(K_{p, n}\right)=\mathbf{L}_{n}(\mathbf{x}, \mathbf{y})$,	
for	x	1	p	$\operatorname{det}\left(W_{p, n}\right)=\operatorname{det}\left(M_{p, n}\right)=\operatorname{per}\left(H_{p, n}\right)=\operatorname{per}\left(K_{p, n}\right)=\mathbf{L}_{p, n}(\mathbf{x})$,
for	x	1	1	$\operatorname{det}\left(W_{p, n}\right)=\operatorname{det}\left(M_{p, n}\right)=\operatorname{per}\left(H_{p, n}\right)=\operatorname{per}\left(K_{p, n}\right)=l_{n}(x)$,
for	1	1	p	$\operatorname{det}\left(W_{p, n}\right)=\operatorname{det}\left(M_{p, n}\right)=\operatorname{per}\left(H_{p, n}\right)=\operatorname{per}\left(K_{p, n}\right)=\mathbf{L}_{p}(\mathbf{n})$,
for	1	1	1	$\operatorname{det}\left(W_{p, n}\right)=\operatorname{det}\left(M_{p, n}\right)=\operatorname{per}\left(H_{p, n}\right)=\operatorname{per}\left(K_{p, n}\right)=\mathbf{L}_{n}$,
for	$2 x$	y	p	$\operatorname{det}\left(W_{p, n}\right)=\operatorname{det}\left(M_{p, n}\right)=\operatorname{per}\left(H_{p, n}\right)=\operatorname{per}\left(K_{p, n}\right)=\mathbf{L}_{p, n}(\mathbf{2 x}, \mathbf{y})$,
for	$2 x$	y	1	$\operatorname{det}\left(W_{p, n}\right)=\operatorname{det}\left(M_{p, n}\right)=\operatorname{per}\left(H_{p, n}\right)=\operatorname{per}\left(K_{p, n}\right)=\mathbf{L}_{n}(\mathbf{2 x}, \mathbf{y})$,
for	$2 x$	1	p	$\operatorname{det}\left(W_{p, n}\right)=\operatorname{det}\left(M_{p, n}\right)=\operatorname{per}\left(H_{p, n}\right)=\operatorname{per}\left(K_{p, n}\right)=\mathbf{Q}_{p, n}(\mathbf{x})$,
for	$2 x$	1	1	$\operatorname{det}\left(W_{p, n}\right)=\operatorname{det}\left(M_{p, n}\right)=\operatorname{per}\left(H_{p, n}\right)=\operatorname{per}\left(K_{p, n}\right)=\mathbf{Q}_{n}(\mathbf{x})$,
for	2	1	1	$\operatorname{det}\left(W_{p, n}\right)=\operatorname{det}\left(M_{p, n}\right)=\operatorname{per}\left(H_{p, n}\right)=\operatorname{per}\left(K_{p, n}\right)=\mathbf{Q}_{n}$,
for	$2 x$	-1	1	$\operatorname{det}\left(W_{p, n}\right)=\operatorname{det}\left(M_{p, n}\right)=\operatorname{per}\left(H_{p, n}\right)=\operatorname{per}\left(K_{p, n}\right)=\mathbf{T}_{n}(\mathbf{x})$,
for	x	$2 y$	p	$\operatorname{det}\left(W_{p, n}\right)=\operatorname{det}\left(M_{p, n}\right)=\operatorname{per}\left(H_{p, n}\right)=\operatorname{per}\left(K_{p, n}\right)=\mathbf{L}_{p, n}(\mathbf{x}, \mathbf{2} \mathbf{y})$,
for	x	$2 y$	1	$\operatorname{det}\left(W_{p, n}\right)=\operatorname{det}\left(M_{p, n}\right)=\operatorname{per}\left(H_{p, n}\right)=\operatorname{per}\left(K_{p, n}\right)=\mathbf{L}_{n}(\mathbf{x}, \mathbf{2} \mathbf{y})$,
for	1	$2 y$	1	$\operatorname{det}\left(W_{p, n}\right)=\operatorname{det}\left(M_{p, n}\right)=\operatorname{per}\left(H_{p, n}\right)=\operatorname{per}\left(K_{p, n}\right)=\mathbf{j}_{n}(\mathbf{y})$,
for	1	2	1	$\operatorname{det}\left(W_{p, n}\right)=\operatorname{det}\left(M_{p, n}\right)=\operatorname{per}\left(H_{p, n}\right)=\operatorname{per}\left(K_{p, n}\right)=j_{n}$.

4 Conclusion

In this paper, we have given some determinantal and permanental representations of generalized bivariate Lucas p-polynomials. Our results allow us to derive determinantal and permanantel representations of sequences and polynomials mentioned in Remark 1.

References

[1] N. D. Cahill, J. R. D'Errico, D. A. Narayan, and J. Y. Narayan, Fibonacci determinants, College Math. J. 33 (2002), 221-225.
[2] A. F. Horadam and J. M. Mahon, Pell and Pell-Lucas polynomials, Fibonacci Quart. 23 (1985), 17-20.
[3] M. Janjic, Hessenberg matrices and integer sequences, J. Integer Seq. 13 (2010), Article 10.7.8.
[4] E. Kılıç and A. P. Stakhov, On the Fibonacci and Lucas p-numbers, their sums, families of bipartite graphs and permanents of certain matrices, Chaos Solitons Fractals 40 (2009), 2210-2221.
[5] E. Kılıç and D. Tasci, On the generalized Fibonacci and Pell sequences by Hessenberg matrices, Ars Combin. 94 (2010), 161-174.
[6] G.-Y. Lee and S.-G. Lee, A note on generalized Fibonacci numbers, Fibonacci Quart. 33 (1995), 273-278.
[7] G.-Y. Lee, k-Lucas numbers and associated bipartite graphs, Linear Algebra Appl. 320 (2000), 51-61.
[8] A. Lupas, A guide of Fibonacci and Lucas polynomials, Octagon Mathematics Magazine 7 (1999), 2-12.
[9] T. MacHenry, A subgroup of the group of units in the ring of arithmetic functions, Rocky Mountain J. Math. 29 (1999), 1055-1065.
[10] T. MacHenry, Generalized Fibonacci and Lucas polynomials and multiplicative arithmetic functions, Fibonacci Quart. 38 (2000), 17-24.
[11] T. MacHenry and K. Wong, Degree k linear recursions $\bmod (p)$ and number fields. Rocky Mountain J. Math. 41 (2011), 1303-1327.
[12] H. Minc, Encyclopaedia of Mathematics and its Applications, Permanents, Vol.6, Addison-Wesley Publishing Company, 1978.
[13] A. Nalli and P. Haukkanen, On generalized Fibonacci and Lucas polynomials. Chaos Solitons Fractals 42 (2009), 3179-3186.
[14] A. A. Öcal, N. Tuglu, and E. Altinisik, On the representation of k-generalized Fibonacci and Lucas numbers. Appl. Math. Comput. 170 (2005) 584-596.
[15] A. P. Stakhov, Introduction to Algorithmic Measurement Theory, Publishing House "Soviet Radio", Moscow, 1977. In Russian.
[16] N. Tuglu, E. G. Kocer, and A. Stakhov, Bivariate Fibonacci like p-polynomials. Appl. Math. Comput. 217 (2011), 10239-10246.
[17] G. Udrea, Chebshev polynomials and some methods of approximation, Port. Math., Fasc. 3, 55 (1998), 261-269.

2010 Mathematics Subject Classification: Primary 11B37, Secondary 15A15, 15A51.
Keywords: Generalized bivariate Lucas p-polynomials, determinant, permanent and Hessenberg matrix.

Received November 30 2011; revised version received February 21 2012. Published in Journal of Integer Sequences, March 112012.

Return to Journal of Integer Sequences home page.

