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Abstract

In this paper, we give some determinantal and permanental representations of gen-
eralized bivariate Lucas p-polynomials by using various Hessenberg matrices. The
results that we obtained are important since generalized bivariate Lucas p-polynomials
are general forms of, for example, bivariate Jacobsthal-Lucas, bivariate Pell-Lucas p-
polynomials, Chebyshev polynomials of the first kind, Jacobsthal-Lucas numbers etc.

1 Introduction

The generalized Lucas p-numbers [15] are defined by

L,n)=Lyn—1)+Ly(n—p—1) (1)

for n > p+ 1, with boundary conditions L,(0) = (p+1), L,(1) =--- = L,(p) = 1.
The Lucas [8], Pell-Lucas [2] and Chebyshev polynomials of the first kind [17] are defined
as follows:

lns1(x) = zly(x) + 11 (x), n > 2 with [o(x) = 2, ll(x) =z
(

Qni1(x) = 2:1:Qn z) + Qn-1(z), n > 2 with Qp(z) =2, Q1(z )
Toii(x) = 22T,(x) — T,_1(x), n > 2 with To(x) =1, Ti(x) =

respectively.



The generalized bivariate Lucas p-polynomials [16] are defined as follows:

Lp,n($7 y) = pr,n—l(xa y) + pr,n—p—l(xa y)

for n > p, with boundary conditions L,o(z,y) = (p+ 1), Ly.(z,y) =2, n=1,2,...,p.

A few terms of L, ,(z,y) for p =4 and p =5 are

5,x, 22, 23, 24, by + 2°, 6xy + 28, 27 + T2y, 28 + 823y, 2° + 92y, 5y? + 210 + 102°y, . .. and
6,x, 2% 23 24, 25, 5y + a°, 6y + 27, 28 + T2y, 2° + 823y, . .. respectively.

MacHenry [9] defined generalized Lucas polynomials (L, (t)) where t; (1 < i < k) are
constant coefficients of the core polynomial

Pzt to, .. ) = a® =t — o — 1y,

which is denoted by the vector t = (t1,ts,...,tx).
Grn(ti,to, ... 1) is defined by

Grn(t) 0, n<0
Grot) = k
Gra(t) =
Gent1(t) = tGra(t) + - + teGrn—rr1(2).

MacHenry obtained very useful properties of these polynomials in [10, 11].

Remark 1. [16]Cognate polynomial sequence are as follows

LP,TL (.Z‘ ) y)

bivariate Lucas polynomials L, (z, )

Lucas p—polynomials L, ()

Lucas polynomials I, (z)

Lucas p—numbers L,(n)

Lucas numbers L,,

bivariate Pell-Lucas p-polynomials L, (22, y)
bivariate Pell-Lucas polynomials L, (2z,y)
Pell-Lucas p-polynomials @, ()

Pell-Lucas polynomials @, (z)

Pell-Lucas numbers @),

Chebyshev polynomials of the first kind 7;,(z)
bivariate Jacobsthal-Lucas p-polynomials L, ,(z, 2y)
Bivariate Jacobsthal-Lucas polynomials L, (z, 2y)
Jacobsthal-Lucas polynomials j,(y)
Jacobsthal-Lucas numbers j,

<
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Remark 1 shows that L, ,(z,y) is a general form of all sequences and polynomials men-
tioned in that remark. Therefore, any result obtained from L, ,,(z,y) is valid for all sequences
and polynomials mentioned there.

Many researchers have studied determinantal and permanental representations of k se-
quences of generalized order-k Fibonacci and Lucas numbers. For example, Minc [12] defined
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an n x n (0,1)-matrix F(n, k), and showed that the permanents of F'(n, k) are equal to the
generalized order-k Fibonacci numbers. Nalli and Haukkanen [13] defined h(z)-Fibonacci
and Lucas polynomials and gave determinantal representations of these polynomials. The
authors ([6, 7]) defined two (0, 1)-matrices and showed that the permanents of these matrices
are the generalized Fibonacci and Lucas numbers. Ocal et al. [14] gave some determinan-
tal and permanental representations of k-generalized Fibonacci and Lucas numbers, and
obtained Binet’s formula for these sequences. Kilic and Stakhov [4] gave permanent repre-
sentation of Fibonacci and Lucas p-numbers. Kilic and Tasci [5] studied permanents and
determinants of Hessenberg matrices. Janjic [3] considers a particular case of upper Hessen-
berg matrices and gave a determinant representation of a generalized Fibonacci numbers.
In this paper, we give some determinantal and permanental representations of L, ,(z,y)
by using various Hessenberg matrices. These results are a general form of determinantal and
permanental representations of polynomials and sequences mentioned in Remark 1.

2 The determinantal representations

In this section, we give some determinantal representations of L, ,(x,y) using Hessenberg
matrices.

Definition 2. An n x n matrix A, = (a;;) is called lower Hessenberg matrix if a;; = 0 when
j—i>1ie.,

i a1 a12 O O i
a1 a2 a3 0
a31 32 a33 0
A, =
an—1,1 Ap-12 Qan—13 Ap—1,n
L Gn,1 Qn 2 an,3 Ann

Theorem 3. [1] Let A,, be an n x n lower Hessenberg matrix for alln > 1 and det(Ag) = 1.

Then,
det(Al) = a1
and for n > 2
n—1 n—1
det(A,) = apn det(A,_1) + (=1)" " any (] ] ajjer) det(A,_1)
r=1 j=r

Theorem 4. Let L, ,(x,y) be the generalized bivariate Lucas p-polynomials and W, ,, = (w;;)
be an n x n Hessenberg matriz defined by

1, if 1=73—1;
x, if 1=7;

wi; = Y, if p=1—jandj#1;
(p+ 1Py, if p=i—7jandj=1;
0, otherwise;
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that is,

Then,

T 7 0 0
0 T 1
: 0 =z 0
Won = (p+1)Py 0
0 Py 0 0
0 T 1
i 0 0 0 =x |

det(W,) = Lyn(z,y)

where n >1 and i = /—1.

(3)

Proof. To prove (3), we use mathematical induction on n. The result is true for n = 1 by

hypothesis.

Assume that it is true for all positive integers less than or equal to n, namely det(WV,,,,) =
L, (z,y). Then, we have

det(Wpnt1) =

1)n+17r(1n+1,r(H jj+1) det(Wp,Tl)]

j=r

G tnr det (W) + >
n+17TQn+1,r(H Qj,j+1) det(Wpﬂ"l)]

r=1
—p
x det (W, Z
r=1 j=r
+ Z [ D)™ g H%]+1 det(W,,— 1)]

r=n—p+1 j=r

iy ]] z‘det(wm_p)]

2 det(W) ) + [(= 1Py (7. (6)? det(Wyn_y)]
rdet(Wy,) +ydet(W,,n_p)

zdet(W,,,) +

by using Theorem 3. From the induction hypothesis and the definition of L, ,(x, y) we obtain

det(Wp,n—H) - pr,n(xa y) + yLP7n—p(x7 y) - Lp,n—l—l(xv y)

Therefore, (3) holds for all positive integers n.

Example 5. We obtain the 5-th L, ,,(z,y) for p = 4, by using Theorem 4

0

L4,5 (‘Ta y) = det

OO O R

1 0 0
z 1 0 0
0 z i 0| =5y+2a’
0 0 = 1
0 0 0 =z

ot

~.

=
<



Theorem 6. Let p > 1 be an integer, L,,(z,y) be the generalized bivariate Lucas p-
polynomials and M,,, = (m;;) be an n x n Hessenberg matriz defined by

~1, if j=i+1;
z, if 1=
Mij = 4 Y, if p=i—jandj#1;
(p+1)y, if p=i—jandj=1;
W otherwise;
that is,
[ x -1 0 0 7
0 z -1 0
0 0 =z 0
Mon =1 1)y 0 0 0 (4)
0 y 0 0
: —1
| 0 0 0 z |
Then,
det(M,,) = Lyn(z,y).
Proof. Since the proof is similar to the proof of Theorem 4, we omit the details. m

3 The permanent representations

Let A = (a;;) be a square matrix of order n over a ring R. The permanent of A is defined

by
per(A) = Z Haz‘,a(z‘)

o€eSy i=1

where S,, denotes the symmetric group on n letters.

Theorem 7. [1}] Let A,, be an nxn lower Hessenberqg matrixz for alln > 1 and per(Ag) = 1.
Then, per(Ay) = ay1 and forn > 2,

n—1 n—1

p6T’(An) - an,npeT(An—l) + Z an,T(H aj,j+1)p€r(Ar—1)

r=1 j=r



be an integer, L,,(x,y) be the generalized bivariate Lucas p-

Theorem 8. Let p > 1
= (hys) be an n x n lower Hessenberg matriz such that

polynomials and H,,,

—1, if s—r=1;
x, if r=s;

hrs = < Py, if p=r—sands#1, ;
(p+1)iPy, of p=r—sands=1;
0, otherwise;

then
per(Hp,n) - Lp,n(xv y)
wheren > 1 and i = /—1.

Proof. This is similar to the proof of Theorem 4 using Theorem 7. [

Example 9. We obtain the 6-th L, ,(z,y) for p = 4, by using Theorem 8

[z — 0 0 0 0 ]
0O =z — 0 0 0
B 0O 0 x —2 0 0 | 6
Lyg(x,y) = per 000 0 2 —i ol= 6ry + x°.
5y 0 0 0 =z —1
0y 0 0 0 =z |

Theorem 10. Let p >
polynomials and K, =

1 be an integer, L,,(z,y) be the generalized bivariate Lucas p-
(kij) be an n x n lower Hessenberg matriz such that

1, if j=1+1,;
T, if i=J;
ki =3 v, if i—j=pandj+#1;
(p+ 1y, of i—j=pandj=1;
W otherwise;
then
per(Kpn) = Lpn(2,y).
Proof. This is similar to the proof of Theorem 4 by using Theorem 7. O]

We note that the theorems given above are still valid for the sequences and polynomials
mentioned in Remark 1



Corollary 11. If we rewrite Theorem /, Theorem 6, Theorem 8 and Theorem 10 for x,y,p,
we obtain the following table.

For x y p det(W,,,) = det(M,,,) =per(H,,) =per(Ky,n) = Lynt1(x,¥),
for x 'y 1 det(W,,,,) = det(M,,,) =per(H,,) =per(K,,) = L,(x,y),
for x 1 p det(W,,,) = det(M,,,) =per(H,,) =per(K,,) = L, (%),

for x 1 1 det(W,,,) = det(M,,,,) =per(H,,) =per(K,.n) = (),

for 11 p det(W,,,) = det(M,,,) =per(H,,) =per(K,,) = L,(n),

for 11 1 det(W,,,) = det(M,,,,) =per(H,,) =per(K,,) = Ly,

for 2z 'y p det(W,,,,) = det(M,,,) = per(H,,) =per(K,,) = L, .(2x,y),
for 20 y 1 det(W,,,) = det(M,,,) =per(H,,) =per(K,,) = L,.(2x,y),
for 2z 1 p det(Wy,n) = det(Myn) =per(Hp ) =per(Kpn) = Qpn(x),
for 2z 1 1 det(W,,,) = det(M,,,) =per(H,,,) =per(K,n) = Qn(X),

for 2.1 1 det(W,,,) = det(M,,,,) =per(H,,) =per(K,,) = Qu,

for 2oz -1 1 det(W,,,,) = det(M,,,,) =per(H,,) =per(K,,) = T,(x),

for x 2y p det(W,,,) = det(M,,,,) =per(H,n) =per(K,,) = L, .(x, 2y),
for x 2y 1 det(W,,,) = det(M,,,) =per(H,,) =per(K,,) = L,(x,2y),
for 1. 2y 1 det(Wp,n) = det(M,,) =per(Hpn) =per(Kpn) = ju(y),

for 1.2 1 det(W,,,) = det(M,,) =per(H,,) =per(Kpn) = Jjn.

4 Conclusion

In this paper, we have given some determinantal and permanental representations of gen-
eralized bivariate Lucas p-polynomials. Our results allow us to derive determinantal and
permanantel representations of sequences and polynomials mentioned in Remark 1.
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