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Abstract

In this paper, we give some determinantal and permanental representations of gen-

eralized bivariate Lucas p-polynomials by using various Hessenberg matrices. The

results that we obtained are important since generalized bivariate Lucas p-polynomials

are general forms of, for example, bivariate Jacobsthal-Lucas, bivariate Pell-Lucas p-

polynomials, Chebyshev polynomials of the first kind, Jacobsthal-Lucas numbers etc.

1 Introduction

The generalized Lucas p-numbers [15] are defined by

Lp(n) = Lp(n − 1) + Lp(n − p − 1) (1)

for n > p + 1, with boundary conditions Lp(0) = (p + 1), Lp(1) = · · · = Lp(p) = 1.
The Lucas [8], Pell-Lucas [2] and Chebyshev polynomials of the first kind [17] are defined

as follows:

ln+1(x) = xln(x) + ln−1(x), n ≥ 2 with l0(x) = 2, l1(x) = x

Qn+1(x) = 2xQn(x) + Qn−1(x), n ≥ 2 with Q0(x) = 2, Q1(x) = 2x

Tn+1(x) = 2xTn(x) − Tn−1(x), n ≥ 2 with T0(x) = 1, T1(x) = x

respectively.
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The generalized bivariate Lucas p-polynomials [16] are defined as follows:

Lp,n(x, y) = xLp,n−1(x, y) + yLp,n−p−1(x, y)

for n > p, with boundary conditions Lp,0(x, y) = (p + 1), Lp,n(x, y) = xn, n = 1, 2, . . . , p.
A few terms of Lp,n(x, y) for p = 4 and p = 5 are
5, x, x2, x3, x4, 5y +x5, 6xy +x6, x7 +7x2y, x8 +8x3y, x9 +9x4y, 5y2 +x10 +10x5y, . . . and

6, x, x2, x3, x4, x5, 5y + x6, 6xy + x7, x8 + 7x2y, x9 + 8x3y, . . . respectively.
MacHenry [9] defined generalized Lucas polynomials (Lk,n(t)) where ti (1 ≤ i ≤ k) are

constant coefficients of the core polynomial

P (x; t1, t2, . . . , tk) = xk − t1x
k−1 − · · · − tk,

which is denoted by the vector t = (t1, t2, . . . , tk).
Gk,n(t1, t2, . . . , tk) is defined by

Gk,n(t) = 0, n < 0

Gk,0(t) = k

Gk,1(t) = t1

Gk,n+1(t) = t1Gk,n(t) + · · · + tkGk,n−k+1(t).

MacHenry obtained very useful properties of these polynomials in [10, 11].

Remark 1. [16]Cognate polynomial sequence are as follows

x y p Lp,n(x, y)
x y 1 bivariate Lucas polynomials Ln(x, y)
x 1 p Lucas p−polynomials Lp,n(x)
x 1 1 Lucas polynomials ln(x)
1 1 p Lucas p−numbers Lp(n)
1 1 1 Lucas numbers Ln

2x y p bivariate Pell-Lucas p-polynomials Lp,n(2x, y)
2x y 1 bivariate Pell-Lucas polynomials Ln(2x, y)
2x 1 p Pell-Lucas p-polynomials Qp,n(x)
2x 1 1 Pell-Lucas polynomials Qn(x)
2 1 1 Pell-Lucas numbers Qn

2x −1 1 Chebyshev polynomials of the first kind Tn(x)
x 2y p bivariate Jacobsthal-Lucas p-polynomials Lp,n(x, 2y)
x 2y 1 Bivariate Jacobsthal-Lucas polynomials Ln(x, 2y)
1 2y 1 Jacobsthal-Lucas polynomials jn(y)
1 2 1 Jacobsthal-Lucas numbers jn

Remark 1 shows that Lp,n(x, y) is a general form of all sequences and polynomials men-
tioned in that remark. Therefore, any result obtained from Lp,n(x, y) is valid for all sequences
and polynomials mentioned there.

Many researchers have studied determinantal and permanental representations of k se-
quences of generalized order-k Fibonacci and Lucas numbers. For example, Minc [12] defined
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an n × n (0,1)-matrix F (n, k), and showed that the permanents of F (n, k) are equal to the
generalized order-k Fibonacci numbers. Nalli and Haukkanen [13] defined h(x)-Fibonacci
and Lucas polynomials and gave determinantal representations of these polynomials. The
authors ([6, 7]) defined two (0, 1)-matrices and showed that the permanents of these matrices
are the generalized Fibonacci and Lucas numbers. Öcal et al. [14] gave some determinan-
tal and permanental representations of k-generalized Fibonacci and Lucas numbers, and
obtained Binet’s formula for these sequences. Kılıc and Stakhov [4] gave permanent repre-
sentation of Fibonacci and Lucas p-numbers. Kılıc and Tasci [5] studied permanents and
determinants of Hessenberg matrices. Janjic [3] considers a particular case of upper Hessen-
berg matrices and gave a determinant representation of a generalized Fibonacci numbers.

In this paper, we give some determinantal and permanental representations of Lp,n(x, y)
by using various Hessenberg matrices. These results are a general form of determinantal and
permanental representations of polynomials and sequences mentioned in Remark 1.

2 The determinantal representations

In this section, we give some determinantal representations of Lp,n(x, y) using Hessenberg
matrices.

Definition 2. An n×n matrix An = (aij) is called lower Hessenberg matrix if aij = 0 when
j − i > 1 i.e.,

An =



















a11 a12 0 · · · 0
a21 a22 a23 · · · 0
a31 a32 a33 · · · 0
...

...
...

...
an−1,1 an−1,2 an−1,3 · · · an−1,n

an,1 an,2 an,3 · · · an,n



















.

Theorem 3. [1] Let An be an n×n lower Hessenberg matrix for all n ≥ 1 and det(A0) = 1.
Then,

det(A1) = a11

and for n ≥ 2

det(An) = an,n det(An−1) +
n−1
∑

r=1

[

(−1)n−ran,r(
n−1
∏

j=r

aj,j+1) det(Ar−1)

]

.

Theorem 4. Let Lp,n(x, y) be the generalized bivariate Lucas p-polynomials and Wp,n = (wij)
be an n × n Hessenberg matrix defined by

wij =































i, if i = j − 1;

x, if i = j;

ipy, if p = i − j and j 6= 1;

(p + 1)ipy, if p = i − j and j = 1;

0, otherwise;
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that is,

Wp,n =



























x i 0 · · · 0

0 x i
. . .

...
... 0 x 0

(p + 1)ipy 0
... · · ·

0 ipy 0 0
... 0

. . . x i

0 0 · · · 0 x



























. (2)

Then,
det(Wp,n) = Lp,n(x, y) (3)

where n ≥ 1 and i =
√
−1.

Proof. To prove (3), we use mathematical induction on n. The result is true for n = 1 by
hypothesis.

Assume that it is true for all positive integers less than or equal to n, namely det(Wp,n) =
Lp,n(x, y). Then, we have

det(Wp,n+1) = qn+1,n+1 det(Wp,n) +
n

∑

r=1

[

(−1)n+1−rqn+1,r(
n

∏

j=r

qj,j+1) det(Wp,r−1)

]

= x det(Wp,n) +

n−p
∑

r=1

[

(−1)n+1−rqn+1,r(
n

∏

j=r

qj,j+1) det(Wp,r−1)

]

+
n

∑

r=n−p+1

[

(−1)n+1−rqn+1,r(
n

∏

j=r

qj,j+1) det(Wp,r−1)

]

= x det(Wp,n) +

[

(−1)p(i)py

n
∏

j=n−p+1

i det(Wp,n−p)

]

= x det(Wp,n) + [(−1)py(i)p.(i)p det(Wp,n−p)]

= x det(Wp,n) + y det(Wp,n−p)

by using Theorem 3. From the induction hypothesis and the definition of Lp,n(x, y) we obtain

det(Wp,n+1) = xLp,n(x, y) + yLp,n−p(x, y) = Lp,n+1(x, y).

Therefore, (3) holds for all positive integers n.

Example 5. We obtain the 5-th Lp,n(x, y) for p = 4, by using Theorem 4

L4,5(x, y) = det













x i 0 0 0
0 x i 0 0
0 0 x i 0
0 0 0 x i

5i4y 0 0 0 x













= 5y + x5.

4



Theorem 6. Let p ≥ 1 be an integer, Lp,n(x, y) be the generalized bivariate Lucas p-
polynomials and Mp,n = (mij) be an n × n Hessenberg matrix defined by

mij =































−1, if j = i + 1;

x, if i = j;

y, if p = i − j and j 6= 1;

(p + 1)y, if p = i − j and j = 1;

0, otherwise;

that is,

Mp,n =



























x −1 0 · · · 0
0 x −1 · · · 0
0 0 x · · · 0
...

...
...

...
(p + 1)y 0 0 · · · 0

0 y 0 · · · 0
...

...
. . . −1

0 0 · · · 0 x



























. (4)

Then,
det(Mp,n) = Lp,n(x, y).

Proof. Since the proof is similar to the proof of Theorem 4, we omit the details.

3 The permanent representations

Let A = (ai,j) be a square matrix of order n over a ring R. The permanent of A is defined
by

per(A) =
∑

σ∈Sn

n
∏

i=1

ai,σ(i)

where Sn denotes the symmetric group on n letters.

Theorem 7. [14] Let An be an n×n lower Hessenberg matrix for all n ≥ 1 and per(A0) = 1.
Then, per(A1) = a11 and for n ≥ 2,

per(An) = an,nper(An−1) +
n−1
∑

r=1

[

an,r(
n−1
∏

j=r

aj,j+1)per(Ar−1)

]

.
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Theorem 8. Let p ≥ 1 be an integer, Lp,n(x, y) be the generalized bivariate Lucas p-
polynomials and Hp,n = (hrs) be an n × n lower Hessenberg matrix such that

hrs =































−i, if s − r = 1 ;

x, if r = s ;

ipy, if p = r − s and s 6= 1, ;

(p + 1)ipy, if p = r − s and s = 1;

0, otherwise;

then
per(Hp,n) = Lp,n(x, y)

where n ≥ 1 and i =
√
−1.

Proof. This is similar to the proof of Theorem 4 using Theorem 7.

Example 9. We obtain the 6-th Lp,n(x, y) for p = 4, by using Theorem 8

L4,6(x, y) = per

















x −i 0 0 0 0
0 x −i 0 0 0
0 0 x −i 0 0
0 0 0 x −i 0
5y 0 0 0 x −i

0 y 0 0 0 x

















= 6xy + x6.

Theorem 10. Let p ≥ 1 be an integer, Lp,n(x, y) be the generalized bivariate Lucas p-
polynomials and Kp,n = (kij) be an n × n lower Hessenberg matrix such that

kij =































1, if j = i + 1;

x, if i = j;

y, if i − j = p and j 6= 1;

(p + 1)y, if i − j = p and j = 1;

0, otherwise;

then
per(Kp,n) = Lp,n(x, y).

Proof. This is similar to the proof of Theorem 4 by using Theorem 7.

We note that the theorems given above are still valid for the sequences and polynomials
mentioned in Remark 1
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Corollary 11. If we rewrite Theorem 4, Theorem 6, Theorem 8 and Theorem 10 for x, y, p,
we obtain the following table.

For x y p det(Wp,n) = det(Mp,n) =per(Hp,n) =per(Kp,n) = Lp,n+1(x,y),
for x y 1 det(Wp,n) = det(Mp,n) =per(Hp,n) =per(Kp,n) = Ln(x,y),
for x 1 p det(Wp,n) = det(Mp,n) =per(Hp,n) =per(Kp,n) = Lp,n(x),
for x 1 1 det(Wp,n) = det(Mp,n) =per(Hp,n) =per(Kp,n) = ln(x),
for 1 1 p det(Wp,n) = det(Mp,n) =per(Hp,n) =per(Kp,n) = Lp(n),
for 1 1 1 det(Wp,n) = det(Mp,n) =per(Hp,n) =per(Kp,n) = Ln,

for 2x y p det(Wp,n) = det(Mp,n) = per(Hp,n) =per(Kp,n) = Lp,n(2x,y),
for 2x y 1 det(Wp,n) = det(Mp,n) =per(Hp,n) =per(Kp,n) = Ln(2x,y),
for 2x 1 p det(Wp,n) = det(Mp,n) =per(Hp,n) =per(Kp,n) = Qp,n(x),
for 2x 1 1 det(Wp,n) = det(Mp,n) =per(Hp,n) =per(Kp,n) = Qn(x),
for 2 1 1 det(Wp,n) = det(Mp,n) =per(Hp,n) =per(Kp,n) = Qn,

for 2x −1 1 det(Wp,n) = det(Mp,n) =per(Hp,n) =per(Kp,n) = Tn(x),
for x 2y p det(Wp,n) = det(Mp,n) =per(Hp,n) =per(Kp,n) = Lp,n(x,2y),
for x 2y 1 det(Wp,n) = det(Mp,n) =per(Hp,n) =per(Kp,n) = Ln(x,2y),
for 1 2y 1 det(Wp,n) = det(Mp,n) =per(Hp,n) =per(Kp,n) = jn(y),
for 1 2 1 det(Wp,n) = det(Mp,n) =per(Hp,n) =per(Kp,n) = jn.

4 Conclusion

In this paper, we have given some determinantal and permanental representations of gen-
eralized bivariate Lucas p-polynomials. Our results allow us to derive determinantal and
permanantel representations of sequences and polynomials mentioned in Remark 1.
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