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Abstract

We consider a particular case of upper Hessenberg matrices, in which all subdiag-

onal elements are −1. We investigate three type of matrices related to polynomials,

generalized Fibonacci numbers, and special compositions of natural numbers. We give

the combinatorial meaning of the coefficients of the characteristic polynomials of these

matrices.

1 Introduction

We investigate a particular case of upper Hessenberg matrices, in which all subdiagonal
elements are −1. Several mathematical objects may be represented as determinants of such
matrices. We consider three type of matrices related to polynomials, generalized Fibonacci
numbers, and a special kind of composition of natural numbers. Our objective is to find the
combinatorial meaning of the coefficients of the characteristic polynomials.

The coefficients of the characteristic polynomials of matrices of the first type, that is, the
sums of principal minors, are related to some binomial identities.

The characteristic polynomials of matrices of the second kind give, as a particular case,
the so-called convolved Fibonacci numbers defined by Riordan [4].

Coefficients of the characteristic polynomial of matrices of the third kind are connected
with a special kind of composition of natural numbers, in which there are two different types
of ones. These were introduced by Deutsch [2], and studied by Grimaldi [3].
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We prove several formulas which generate a number of sequences in Slonae’s Encyclopedia
[5].

The following result about upper Hessenberg matrices, which may be easily proved by
induction, will be used in this paper.

Theorem 1. Let the matrix Pn be defined by

Pn =



















p1,1 p1,2 p1,3 · · · p1,n−1 p1,n

−1 p2,2 p2,3 · · · p2,n−1 p2,n

0 −1 p3,3 · · · p3,n−1 p3,n

...
...

...
. . .

...
...

0 0 0 · · · pn−1,n−1 pn−1,n

0 0 0 · · · −1 pn,n



















, (1)

and let the sequence a1, a2, . . . be defined by

an+1 =
n

∑

i=1

pi,nai, (n = 1, 2, . . .). (2)

Then
an+1 = a1 det Pn, (n = 1, 2, . . .).

The Fibonacci numbers are defined by F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2
Also, we use the well-known fact that the coefficients of the characteristic polynomial of a
matrix are, up to the sign, sums of principal minors of the matrix.

2 Polynomials

We start our investigations with Hessenbeg matrices whose determinants are polynomials.
According to Theorem 1 we have

Proposition 2. Let the matrix Pn+1 be defined by:

Pn+1 =



















1 p1 p2 · · · pn−1 pn

−1 x 0 · · · 0 0
0 −1 x · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · x 0
0 0 0 · · · −1 x



















.

Then
det Pn+1 = xn + p1x

n−1 + · · · + pn.

We let Sn+1−k(x) denote the sum of all principal minors of order n+1−k of Pn+1, where
k = 0, . . . , n, and S0 = 1.
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Proposition 3. The following formulas are valid

Sn+1−k(x) =

(

n

k − 1

)

xn−k+1 + xn−k

n−k
∑

i=0

pi

(

n − i

k

)

x−i, (k = 0, 1, 2, . . . , n). (3)

Proof. For k = 0 equation (3) means that Sn+1 = det Pn+1, which is clear.
If we delete the first row and the first column of Pn+1 we obtain a lower triangular matrix

of order n with x’s on the main diagonal. Hence, all principal minors of order n−k obtained
by deleting the first row and the first column of Pn+1 and another k − 1 rows and columns
with the same indices are equal to xn−k+1. There are

(

n

k−1

)

such minors. This gives the first
term in equation (3).

We shall next calculate the minor Mn+1−k obtained by deleting the rows and columns
with indices 2 ≤ m1 < · · · < mk ≤ n + 1. By deleting the mth row and the mth column
of Pn+1, for m > 1, we obtain an upper triangular block matrix where the upper block is
Pm−1 and thus its determinant is equal

∑m−2
i=0 pix

m−2−i. The lower block is a lower triangular
matrix of order n + 1 − m with x’s on the main diagonal. It follows that Mn+1−k(x) =
∑m−2

i=0 pix
m−2−ixn−k−m+2. For a fixed m > 1 there are

(

n+1−m

k−1

)

such minors.
We thus obtain

Sn+1−k(x) =

(

n

k − 1

)

xn−k+1 +
n−k+2
∑

m=2

m−2
∑

i=0

pi

(

n − m + 1

k − 1

)

xn−k−i, (k = 1, 2, . . . , n).

Changing the order of summation yields

Sn+1−k(x) =

(

n

k − 1

)

xn−k+1 +
n−k
∑

i=0

pix
n−k−i

n−k+2
∑

m=i+2

(

n − m + 1

k − 1

)

, (k = 1, 2, . . . , n).

The corollary now holds by the following recurrence relation for binomial coefficients:

n−k
∑

i=0

(

n − i

k

)

=

(

n + 1

k + 1

)

.

Corollary 4. If x = 1, pi = 1, (i = 0, 1, . . . , n) then

Sn+1 = n + 1, Sn+1−k =

(

n

k − 1

)

+

(

n + 1

k + 1

)

, (k = 1, 2, . . . , n).

Several sequences from Sloane’s OIES [5] are generated by the preceding formulas. We
state some of them: A000124, A000217, A001105, A001845, A004006, A005744, A005893,
A006522, A017281, A027927, A056220, A057979, A080855, A080856, A080857, A105163,
A121555, A168050.

Corollary 5. If x 6= 1, pi = 1, (i = 1, . . . , n) in (3) then

Sn+1(x) =
xn+1 − 1

x − 1
, Sn+1−k(x) =

(

n

k − 1

)

xn−k+1 +
n−k
∑

j=0

(

k + j

k

)

xj, (k = 0, 1, . . . , n).
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According to the well-known binomial identity
(

k + j

j

)

= (−1)j

(

−k − 1

j

)

,

we see that the second term
n−k
∑

j=0

(

k + j

k

)

xj,

in the preceding equation is the partial sum of the expansion of the function 1
(1−x)k+1 into

powers of x.

The characteristic matrix Qn+1(t) of Pn+1 has the form

Qn+1(t) = −



















1 − t p1 p2 · · · pn−1 pn

−1 x − t 0 · · · 0 0
0 −1 x − t · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · x − t 0
0 0 0 · · · −1 x − t



















.

This is also a Hessenberg matrix. If fn+1(t) is the characteristic polynomial of Pn+1 then

fn+1(t) = det(Qn+1(t)) = (−1)n+1

[

n
∑

k=1

pk(x − t)n−k + (1 − t)(x − t)n

]

.

We thus obtain

Proposition 6. The following equation holds

n+1
∑

k=0

(−1)n−k+1Sn−k+1(x)tk = (−1)n+1

[

n
∑

k=1

pk(x − t)n−k + (1 − t)(x − t)n

]

. (4)

As a consequence we shall prove a curious binomial identity.

Proposition 7. Let m,n (0 ≤ m ≤ n) be arbitrary integers. Then

n
∑

j=m

n−j
∑

k=0

(−1)k

(

k + j

j

)(

j

m

)

= 1.

Proof. Take pi = 1, (i = 0, . . . , n), t = 1, and x+1 instead of x in (4). The left side becomes

L = 1 +
n

∑

k=0

(−1)n−k+1

[

(

n

k − 1

)

(x + 1)n−k+1 +
n−k
∑

j=0

(−1)n−k+1

(

k + j

j

)

(x + 1)j

]

.

It is easily seen that

n
∑

k=0

(−1)n−k+1

(

n

k − 1

)

(x + 1)n−k+1 = (−x)n − 1.
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Therefore,

L = (−x)n +
n

∑

k=0

n−k
∑

j=0

j
∑

m=0

(−1)n−k+1

(

k + j

j

)(

j

m

)

xm.

Changing the order of summation we have

L = (−x)n +
n

∑

m=0

[

n
∑

j=m

n−j
∑

k=0

(−1)n−k+1

(

k + j

j

)(

j

m

)

]

xm.

The right side of (4) has the form R = (−1)n+1(xn−1 + xn−2 + · · · + 1).
In this way we obtain

n
∑

m=0

[

n
∑

j=m

n−j
∑

k=0

(−1)n−k+1

(

k + j

j

)(

j

m

)

]

xm = (−1)n+1(xn + xn−1 + · · · + 1).

The proposition follows by comparing coefficients of the same powers of x in this equation.

3 Generalized Fibonacci Numbers

Consider the sequence recursively given by l1 = 1, l2 = x, ln+1 = yln−1 + xln, (n > 2), and
an upper Hessenberg matrix Ln of order n defined by:

Ln =



















x y 0 · · · 0 0
−1 x y · · · 0 0

0 −1 x · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · x y

0 0 0 · · · −1 x



















.

From Theorem 1 we obtain

det Ln = ln+1, (n = 1, 2, . . .).

For l1 = l2 = x = y = 1 we have ln+1 = fn+1, where fn+1 is the n + 1th Fibonacci number.
The numbers ln are usually called generalized Fibonacci numbers.

Proposition 8. Let Sn−k, (k = 0, 1, . . . , n − 1) be the sum of all principal minors of Ln of
order n − k. Then

Sn−k =
∑

j1+j2+···+jk+1=n+1

lj1lj2 · · · ljk+1
, (5)

where the sum is taken over jt ≥ 1, (t = 1, 2, . . . , k + 1).
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Proof. Principal minors of Ln are some convolutions of ln. For example, the minor obtained
by deleting the ith row and the ith column of Ln is obviously equal to li · ln−i+1. Therefore,
the principal minor M(i1, i2, . . . , ik) of Ln obtained by deleting the rows and columns with
indices 1 ≤ i1 < i2 < · · · < ik ≤ n is

M(i1, i2, . . . , ik) = li1 · li2−i1 · · · lik−ik−1
· ln−ik+1.

Denoting i1 = j1, i2 − i1 = j2, . . . , ik − ik−1 = jk, n − ik + 1 = jk+1 yields

M(i1, i2, . . . , ik) = lj1 · lj2 · · · ljk
· ljk+1

,

where jt ≥ 1, (t = 1, 2, . . . , k + 1), and j1 + · · · + jk+1 = n + 1.
Summing over all 1 ≤ i1 < i2 < · · · < ik ≤ n we obtain (5).

From Proposition 8 we easily derive the following known result for compositions of a
natural number.

Proposition 9. The number c(n + 1, k + 1) of compositions of n + 1 into k + 1 parts is

c(n + 1, k + 1) =

(

n

k

)

.

Proof. Take specifically l1 = x = 1, y = 0. Then Ln is a lower triangular matrix with 1’s on
the main diagonal. Therefore, all of its principal minors equal 1, and there are

(

n

k

)

minors
of order n − k. It follows that the sum (5) equals

(

n

k

)

, and that all its summands are equal
1. On the other hand, this sum is taken over all compositions of n + 1 into k + 1 parts and
the proposition follows.

In Riordan’s book [4] the sum on the right side of (5) for x = y = 1 is called a convolved

Fibonacci number and is denoted by f
(k+1)
n−k+1. Hence,

Corollary 10. The convolved Fibonacci number f
(k+1)
n−k+1 is equal, up to sign, to the coefficient

of tk in the characteristic polynomial pn(t) of Ln, in the case x = y = 1.

The following result is an explicit formula for convolved Fibonacci numbers.

Corollary 11. Let f
(k+1)
n−k+1 denote the convolved Fibonacci number. Then

f
(k+1)
n−k+1 =

⌊n−k

2
⌋

∑

i=0

(

n − i

i

)(

n − 2i

k

)

.

Proof. The characteristic matrix of Ln has the form:


















t − 1 1 0 · · · 0 0
−1 t − 1 1 · · · 0 0

0 −1 t − 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · t − 1 1
0 0 0 · · · −1 t − 1



















.
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It follows that pn(t) = fn+1(t − 1), where fn+1(t) is a Fibonacci polynomial. The corol-
lary follows from the preceding corollary and the following explicit formula for Fibonacci
polynomials:

fn+1(x) =

⌊n

2
⌋

∑

i=0

(

n − i

i

)

xn−2i.

Since fn+1(1) = fn+1 we also have the following identity for Fibonacci numbers:

Corollary 12. For Fibonacci numbers fn, (n = 0, 1, . . .) we have

fn+1 = (−1)n

n
∑

k=0

⌊n−k

2
⌋

∑

i=0

(−2)k

(

n − i

i

)(

n − 2i

k

)

.

Remark 13. Taking particular values for x and y in the matrix Ln we may obtain different
kinds of generalized Fibonacci numbers. For example, taking x = y = 1, and taking 3 instead
of 1 in the upper left corner of Ln we obtain a matrix whose determinant is a Lucas number.
In this case Proposition 8 shows that the coefficients of the characteristic polynomial are
convolutions between Fibonacci and Lucas numbers.

Many of the sequences in Sloane’s Encyclopedia are generated by the sums from Proposi-
tion 8. Here are some of them: A000045, A000129, A001076, A001628, A001629, A001872,
A006190, A006503, A006504, A006645, A023607, A052918, A054457, A073380, A073381.
A077985, A152881.

4 Particular Compositions of Natural Numbers

We shall now consider a type of Hessenberg matrices whose determinants are Fibonacci
numbers with odd indices. This will lead us to the compositions of a natural number with
two different types of ones, introduced by E. Deutsch in [2].

Proposition 14. Let Gn be the matrix of order n defined by:

Gn =



















2 1 1 · · · 1 1
−1 2 1 · · · 1 1

0 −1 2 · · · 1 1
...

...
...

. . .
...

...
0 0 0 · · · 2 1
0 0 0 · · · −1 2



















.

Then
det Gn = f2n+1.
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Proof. According to Theorem 1 we have

a1 = 1, a2 = 2, . . . , an+1 = a1 + a2 + · · · + an−1 + 2an, (n > 2).

It follows from Identity 2 in [1] that an+1 = f2n+1.

Proposition 15. Let Sn−k, (0 ≤ k ≤ n) be the sum of all minors of order n − k of Gn.

Then
Sn−k =

∑

j1+j2+···+jk+1=n−k

f2j1+1f2j2+1 · · · f2jk+1+1,

where the sum is taken over jt ≥ 0, (t = 1, 2, . . . , k + 1).

Proof. Let M(i1, i2, . . . , ik) be the minor of order n − k obtained by deleting the rows and
columns with indices 1 ≤ i1 < i2 < · · · < ik ≤ n. Then

M = det(Gi1−1) · det(Gi2−i1−1) · · · det(Gik−ik−1−1) · det(Gn−ik).

Applying Proposition 14 we obtain

M = f2(i1−1)+1f2(i2−i1−1)+1 · · · f2(ik−ik−1−1)+1f2(n−ik)+1.

It follows that

Sn−k =
∑

1≤i1<i2<···<ik≤n

f2(i1−1)+1f2(i2−i1−1)+1 · · · f2(ik−ik−1−1)+1f2(n−ik)+1.

If we set
i1 − 1 = j1, i2 − i1 − 1 = j2, . . . , ik − ik−1 − 1 = jk, n − ik = jk+1,

we have

Sn−k =
∑

j1+j2+···+jk+1=n−k

f2j1+1f2j2+1 · · · f2jk+1+1,

where the sum is taken over all jt ≥ 0, (t = 1, 2, . . . , k + 1).

For compositions of n in which there are two types of ones Grimaldi, in his paper [3],
shows that its number is f2n+1.

We let cn,k denote the number of such compositions in which exactly k parts equal 0. We
finish the paper by showing that the number Sn−k, from the preceding proposition, is in fact
equal to cn−k,k.

Proposition 16. Let n be a positive integer, and let k be a nonnegative integer. Then

cn,k =
∑

j1+j2+···+jk+1=n

f2j1+1f2j2+1 · · · f2jk+1+1, (6)

where the sum is taken over jt ≥ 0, (t = 1, 2, . . . , k + 1).
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Proof. We use induction with respect of k. The theorem is true for k = 0, according to the
preceding proposition.

Assume the theorem is true for k− 1. The greatest value of jk+1 is n, and is obtained for
j1 = j2 = · · · = jk = 0. We thus may write (6) in the form:

cn,k =
n

∑

j=0

f2j+1

∑

j1+j2+···+jk=n−j

f2j1+1f2j2+1 · · · f2jk+1.

By the induction hypothesis we have

cn,k =
n

∑

j=0

f2j+1 · cn−j,k−1. (7)

Let (i1, i2, . . .) be a composition of n with two different types of ones and exactly k zeroes,
and let first index, where 0 is a summand, be ip. Then (i1, i2, . . . , ip−1) is a composition of
j = i1 + · · ·+ ip−1 with no zeroes, and (ip+1, . . .) is a composition of n− j with exactly k− 1
zeroes. The number of such compositions is f2j+1 · c(n − j, k − 1), which is a summand on
the right side of (7). In this way the sum on the right side of (7) counts all of the required
compositions.

This part of the paper is concerned with A030267.
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