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Abstract

The continuous big q-Hermite polynomials are shown to realize a ba-
sis for a representation space of an extended q-oscillator algebra. An
expansion formula is algebraically derived using this model.
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Lie algebra theory is well known to provide a unifying framework for discussing special
functions. The discovery, some ten years ago, of quantum groups has in turn prompted
the undertaking of a systematic investigation of the algebraic properties of the q-analogs
of those special functions. One indeed witnesses nowadays intense research activity in this
area as q-special functions are seen to have more and more applications.

Within the Askey scheme,1,2 sets of basic or q-orthogonal polynomials are called con-
tinuous because their elements are orthogonal with respect to continuous measures. We
have initiated in Ref. [3] a study of these continuous q-polynomials from an algebraic point
of view, focusing on the continuous q-Hermite and continuous q-ultraspherical polynomi-
als and, as a result, have shown that various properties of these functions can be derived
using symmetry techniques. We indicate here that the class of continuous big q-Hermite
polynomials also lends itself to a similar treatment.

We shall be using standard notation.1,2 The q-hypergeometric series rφs is

rφs

(

a1, a2, . . . , ar

b1, . . . , bs

∣

∣

∣

∣

q; z

)

=
∞
∑

n=0

(a1, . . . , ar; q)n

(q, b1, . . . , bs; q)n

[

(−1)nqn(n−1)/2
]1+s−r

zn , (1)

with
(a1, a2, . . . , ak; q)α = (a1; q)α(a2; q)α . . . (ak; q)α , (2a)

and

(a; q)α =
(a; q)∞

(aqα; q)∞
, (a; q)∞ =

∞
∏

k=0

(1 − aqk) , |q| < 1 . (2b)

Clearly, the series rφs terminates if one of the ai, i = 1, . . . , r, is equal to q−n with n a
positive integer.

The continuous big q-Hermite polynomials Hn(x; a|q) depend on one parameter and
are defined as follows:2

Hn(x; a|q) = a−n
3φ2

(

q−n, aeiθ,

0,

ae−iθ

0

∣

∣

∣

∣

q; q

)

(3a)

= einθ
2φ0

(

q−n, aeiθ

−

∣

∣

∣

∣

q; qne−2iθ

)

, x = cos θ . (3b)

When a is real and |a| < 1, these polynomials obey the following orthogonality relation:

1

2π

∫ 1

−1

w(x; a|q)√
1 − x2

Hm(x; a|q)Hn(x; a|q) dx =
δmn

(qn+1; q)∞
, (4)

where

w(x; a|q) =

∣

∣

∣

∣

(e2iθ; q)∞
(aeiθ; q)∞

∣

∣

∣

∣

2

. (5)

Note that as q → 1−,
Hn(x; a|q) → (2x − a)n . (6)
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The continuous q-Hermite polynomials Hn(x|q) can be defined as the a → 0 limit of the
polynomials Hn(x; a|q). This limit can be taken immediately in (3b), leading to

Hn(x|q) = einθ
2φ0

(

q−n, 0

−

∣

∣

∣

∣

q; qne−2iθ

)

. (7)

The orthogonality relations of these polynomials are obtained by setting a = 0 in (4) and
(5) and writing Hn(x; 0|q) ≡ Hn(x|q).

In the following, we shall show that the continuous big q-Hermite polynomials occur
in the realization of a set of basis vectors for a representation space of a q-algebra Gq that
encompasses the q-Heisenberg algebra. This algebraic set up will then be used to derive
an expansion formula involving the polynomials Hn(x; a|q).

We shall now present a realization of Gq in terms of operators acting on functions of
the two variables: x = (z + z−1)/2, with z = eiθ, and t. To do so, we shall need the q-shift
operators Tz and Tt whose powers act as follows:

Tα
z f

[

(z + z−1), t
]

= f
[

(qαz + q−αz−1), t
]

,

T β
t f

[

(z + z−1), t
]

= f
[

(z + z−1), qβt
]

, α, β ∈ R .
(8)

Let,

A+ =
t

z − z−1

(

T 1/2
z − T−1/2

z

)

, (9a)

A− =
q−1/2

t(z − z−1)

[

1

z2
(1 − q−1/2z T

1/2
t ) T 1/2

z

− z2

(

1 − q−1/2

z
T

1/2
t

)

T−1/2
z

]

, (9b)

B+ =
t

(z − z−1)
(z T−1/2

z − 1

z
T 1/2

z ) , (9c)

B− =
1

t(z − z−1)

[

z

(

1 − q−1/2

z
T

1/2
t

)

T−1/2
z

− 1

z

(

1 − q−1/2z T
1/2
t

)

T 1/2
z

]

, (9d)

K = Tt . (9e)

Notice that as q → 1−,

1

1 − q
A+ → − t

2

∂

∂x
, A− → −1

t
(2x − 1), B+ → t, B− → 1

t
, (10a)

and
1 − K

1 − q
→ t

∂

∂t
. (10b)
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In this limit, B+, B− and K enlarge in a simple way the Heisenberg algebra that A+/(1−q)
and A− realize. Consider the set of functions

fm
n (x, t) = tmHn(x; qm/2|q) , n ∈ Z+ , m ∈ Z . (11)

It can be checked4 that the operators A+, A−, B+, B− and K transform this ensemble of
functions onto itself according to:

A+ fm
n = −q−n/2(1 − qn)fm+1

n−1 , (12a)

A− fm
n = −q−(n+1)/2fm−1

n+1 , (12b)

B+ fm
n = q−n/2fm+1

n , (12c)

B− fm
n = q−n/2fm−1

n , (12d)

K fm
n = qmfm

n . (12e)

It is also natural to consider two additional operators, namely, multiplication by x and by
t2. Take P = 2x and Q = t2. The three-term recurrence relation of the continuous big
q-Hermite polynomials2

2xHn(x; a|q) = Hn+1(x; a|q) + aqnHn(x; a|q) + (1 − qn)Hn−1(x; a|q) , (13)

immediately gives the action of P = 2x on the space of functions spanned by the fm
n . It

reads
Pfm

n = fm
n+1 + qn+m/2fm

n + (1 − qn)fm
n−1 . (14)

In order to write down the action of Q = t2 on the basis functions, one first observes that
the continuous big q-Hermite polynomials satisfy the following identity

Hn(x; a|q) = Hn(x; aq|q)− a(1 − qn) Hn−1(x; aq|q) . (15)

This formula is most easily proven by checking that both sides verify the same recur-
rence relation with the same initial condition. It then follows from (15) that

Qfm
n = fm+2

n − qm/2(1 − qn)fm+2
n−1 . (16)

The q-algebra that the operators A±, B±, K, P and Q realize can be characterized by the
following relations:

A−A+ − qA+A− = −(1 − q) ,

B+A+ − q1/2A+B+ = 0 ,

A−B+ − q1/2B+A− = 0 ,

A+P − q1/2PA+ = −q−1/2(1 − q)B+ ,

q1/2B+P − PB+ = (1 − q)A+ ,

A+Q − QA+ = 0 ,

B+Q − QB+ = 0 ,

KA+ − qA+K = 0 ,

KB+ − qB+K = 0 ,

KP − PK = 0 ,

B+B− − B−B+ = 0 ,

B−A+ − q1/2A+B− = 0 ,

A−B− − q1/2B−A− = 0 ,

A−P − q−1/2PA− = q−1(1 − q)B− ,

B−P − q1/2PB− = −(1 − q)A− ,

(QA− − A−Q) = q−1(1 − q)B+K1/2 ,

B−Q − q QB− = (1 − q)B+ ,

KA− − q−1A−K = 0 ,

KB− − q−1B−K = 0 ,

KQ − q2QK = 0 .

(17)
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Let us make a few comments on this algebra. First note that A+ and A− generate the
q-Heisenberg algebra.5 There are also various interesting q-subalgebras. The generators
A+, B+ and P , for example, form a closed set. We see that A+ and B+ q-commute and
are in a certain way rotated one into the other by P . The set {A−, B−, P} also has a
similar structure. When q → 1, the algebra exhibits large abelian sectors. Furthermore,
some generators (see (10)) become redundant: B2

+ and Q for instance, have the same limit,
and the same is true of B+A− and −2P + 1.

We now want to illustrate how the model given in (9) and (11) can be used to derive
properties of the continuous big q-Hermite polynomials. In the Lie theory approach to
ordinary special functions, one considers exponentials of the algebra generators and relates
their matrix elements in representation spaces to various functions of interest. One then
uses diverse realizations to obtain identities and formulas. To proceed similarly in the case
of q-special functions, we need q-analogs of the exponential. It has been appreciated that
the q-exponential which is naturally associated to the continuous q-orthogonal polynomials
is the one first introduced in Ref.[6] and denoted by Eq(x; a, b). Indeed, one for example
finds6,7,3 that it generates the continuous q-Hermite polynomials:

Eq (x;−i, b/2) =
(

−b2/4; q2
)−1

∞

∞
∑

k=0

qk2/4

(q; q)k

(

ib

2

)k

Hk(x|q) . (18)

We shall analogously consider the Eq-exponential of the generator P = 2x and determine
some of its matrix elements in the bases {fm

n } to obtain an interesting expansion formula in
the polynomials Hn(x; qm|q). However before doing so, we need to define this q-exponential
Eq and to record some of its properties.

We have6

Eq(x; a, b) =
∞
∑

n=0

qn2/4

(q; q)n

(

aq(1−n)/2eiθ; q
)

n

(

aq(1−n)/2e−iθ; q
)

n
bn, x = cos θ . (19)

In the limit q → 1−,

Eq

(

x; a, (1− q)b
)

→ exp
[

(1 + a2 − 2a x)b
]

, (20)

and, in particular, for a = −i,

lim
q→1−

Eq (x;−i, (1 − q)b/2) = eibx . (21)

The essential feature of these q-exponentials is that they are eigenfunctions of the divided
difference operator

τ =
1

z − z−1
(T 1/2

z − T−1/2
z ) . (22)

Indeed,

τ Eq(x; a, b) = ab q−1/4 Eq(x; a, b) . (23)
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The continuous q-polynomials obey second order τ -difference equations. Note also that in
our model A+ = tτ (see (9a)). It is thus not surprising, in view of (23), to see Eq be the
appropriate q-exponential to use in connection with continuous q-polynomials. There is
one more property of Eq that we shall need in the following. Consider the function gn(b)
defined by

gn(b) = Eq

(

−; 0, b qn/2
)

=
∞
∑

k=0

qk(k+2n)/4

(q; q)k
bk . (24)

It is readily verified that gn(b) satisfies the 3-term recurrence relation

gn+1(b) = gn−1(b) − b q(2n−1)/4 gn(b) . (25)

As an example of application of our formalism, we will now derive an expansion
formula for Eq(x;−i, b/2) in terms of continuous big q-Hermite polynomials. This q-
exponential of the generator P/2 = x acts, of course, on the representation space of our
q-algebra. Recall that K = Tt is diagonal on the basis {fm

n }: K fm
n = qmfm

n . Since P and
K commute, we must have

Eq (x;−i, b/2) fm
0 =

∞
∑

n=0

Wm
n (b) fm

n . (26)

Note that we are considering the action of the q-exponential of x on the particular basis
vectors fm

0 (x, t) = tm. The expansion coefficients Wm
n (b) will be obtained from the recur-

sion relations that they obey. These relations will be found by exploiting properties of the
Eq-exponential and making use of the representation (12), (15), (16). Let us first act on
both sides of (26) with A+ = tτ . With the help of (23), we see on the one hand that

A+Eq (x;−i, b/2) fm
0 = −i

b

2
q−1/4Eq (x;−i, b/2) fm+1

0

= −i
b

2
q−1/4

∞
∑

n=0

Wm+1
n (b) fm+1

n ,
(27)

the last equality following from (26). On the other hand, using (12a), we have

A+Eq (x;−i, b/2) fm
0 =

∞
∑

n=0

Wm
n (b)A+ fm

n

= −
∞
∑

n=0

q−n/2(1 − qn)Wm
n (b) fm+1

n−1 .

(28)

Equating the right-hand sides of (27) and (28), we then find

i(b/2)q−1/4 Wm+1
n (b) = q−(n+1)/2(1 − qn+1) Wm

n+1(b) . (29)
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Second, we act similarly on both sides of (26) with Q = t2. Clearly,

Q Eq (x;−i, b/2) = Eq (x;−i, b/2) fm+2
0

=
∞
∑

n=0

Wm+2
n (b) fm+2

n ,
(30)

while (16) yields

Q Eq (x;−i, b/2) fm
0 =

∞
∑

n=0

Wm
n (b) Q fm

n

=

∞
∑

n=0

Wm
n (b)

[

fm+2
n − qm/2(1 − qn)fm+2

n−1

]

.

(31)

Combining (30) and (31), we get

Wm+2
n (b) = Wm

n (b) − (1 − qn+1)qm/2 Wm
n+1(b) . (32)

Finally, we replace in this last equation Wm
n+1(b) by the expression that (29) gives for it

to find

Wm+2
n (b) = Wm

n (b) − i
b

2
q(n+m+1/2)/2 Wm+1

n (b) . (33)

The matrix elements Wm
n (b) can now be explicitly determined from the two recurrence

relations (29) and (33), that we have found for them. Separation of the discrete variables
is readily achieved in these equations by taking Wm

n (b) of the form

Wm
n (b) = un(b) ym+n(b) . (34)

Indeed, substitution of (34) in (29) and (33), respectively, gives

un+1(b) =
q(2n+1)/4

1 − qn+1

(

ib

2

)

un(b) , (35)

and

ym+n+2(b) = ym+n(b) − ib

2
q(m+n+1/2)/2 ym+n+1(b) . (36)

The recurrence relation (35) is easily solved and fixes un(b) up to a function u0(b):

un(b) = u0(b)
qn2/4

(q; q)n

(

ib

2

)n

. (37)

The 3-term recurrence relation (36) is recognized as the one already given in (25) and
ym+n(b) is thus immediately identified:

ym+n(b) = Eq

(

−; 0,
ib

2
q(m+n)/2

)

. (38)
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(It is understood that the overall arbitrary function of b in the solution of (36), is to be
absorbed in u0(b).) If we use the realization fm

n (x, t) = tmHn

(

x; qm/2|q
)

and factor out
the t-dependence, (26) becomes

Eq (x;−i, b/2) =

∞
∑

n=0

Wm
n (b) Hn

(

x; qm/2|q
)

. (39)

At this point,

Wm
n (b) = u0(b)

qn2/4

(q; q)n
Eq

(

−; 0,
ib

2
q(m+n)/2

) (

ib

2

)n

. (40)

We will therefore have obtained the identity we are looking for, once we will have deter-
mined u0(b). To this end, notice that as m → ∞, or qm → 0,

Wm
n (b) → u0(b)

qn2/4

(q; q)n

(

ib

2

)n

; (41)

recall also that Hn(x; 0|q) ≡ Hn(x|q). Hence, in the limit qm → 0, (39) must coincide with
the expansion formula for Eq(x;−i, b/2) in terms of continuous q-Hermite polynomials
already given in (18). Comparison immediately shows that

u0(b) = (−b2/4; q2)−1
∞ . (42)

Putting everything together finally gives the following expansion formula of the Eq-expo-
nential of x in terms of continuous big q-Hermite polynomials:

Eq(x;−i, b/2) = (−b2/4; q2)−1
∞

∞
∑

n=0

qn2/4

(q; q)n
Eq

(

−; 0,
ib

2
q(m+n)/2

) (

ib

2

)n

×Hn(x, qm/2|q) .

(43)

The constructive derivation of this identity illustrates well the usefulness of algebraic tech-
niques for obtaining and interpreting properties of continuous q-polynomials. We plan to
pursue investigations in this direction.
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