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Here we present a connection between a sequence of numbers generated by a linear recurrence
relation of order 2 and sequences of the generalized Gegenbauer-Humbert polynomials. Many
new and known formulas of the Fibonacci, the Lucas, the Pell, and the Jacobsthal numbers in
terms of the generalized Gegenbauer-Humbert polynomial values are given. The applications
of the relationship to the construction of identities of number and polynomial value sequences
defined by linear recurrence relations are also discussed.

1. Introduction

Many number and polynomial sequences can be defined, characterized, evaluated, and/or
classified by linear recurrence relations with certain orders. A number sequence {an} is called
sequence of order 2 if it satisfies the linear recurrence relation of order 2:

an = pan−1 + qan−2, n ≥ 2, (1.1)

for some nonzero constants p and q and initial conditions a0 and a1. In Mansour [1], the
sequence {an}n≥0 defined by (1.1) is called Horadam’s sequence, which was introduced in
1965 by Horadam [2]. In [1] also the generating functions for powers of Horadam’s sequence
are obtained. To construct an explicit formula of its general term, one may use a generating
function, characteristic equation, or a matrix method (see Comtet [3], Hsu [4], Strang [5],
Wilf [6], etc.) In [7], Benjamin and Quinn presented many elegant combinatorial meanings
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of the sequence defined by recurrence relation (1.1). For instance, an counts the number of
ways to tile an n-board (i.e., board of length n)with squares (representing 1s) and dominoes
(representing 2s) where each tile, except the initial one, has a color. In addition, there are p
colors for squares and q colors for dominoes. In particular, Aharonov et al. (see [8]) have
proved that the solution of any sequence of numbers that satisfies a recurrence relation of
order 2 with constant coefficients and initial conditions a0 = 0 and a1 = 1, called the primary
solution, can be expressed in terms of the Chebyshev polynomial values. For instance, the
authors show Fn = i−nUn(i/2) and Ln = 2i−nTn(i/2), where Fn and Ln, respectively, are the
Fibonacci numbers and Lucas numbers, and Tn andUn are the Chebyshev polynomials of the
first kind and the second kind, respectively. Some identities drawn from those relations were
given by Beardon in [9]. Marr and Vineyard in [10] use the relationship to establish explicit
expression of five-diagonal Toeplitz determinants. In [11], the first two authors presented a
new method to construct an explicit formula of {an} generated by (1.1). For the sake of the
reader’s convenience, we cite this result as follows.

Proposition 1.1 (see [11]). Let {an} be a sequence of order 2 satisfying linear recurrence relation
(1.1), and let α and β be two roots of of quadratic equation x2 − px − q = 0. Then

an =

⎧
⎪⎨

⎪⎩

(
a1 − βa0
α − β

)

αn −
(
a1 − αa0
α − β

)

βn, if α/= β,

na1α
n−1 − (n − 1)a0αn, if α = β.

(1.2)

A sequence of the generalized Gegenbauer-Humbert polynomials {Pλ,y,Cn (x)}n≥0 is
defined by the expansion (see, e.g., Comtet [3], Gould [12], Lidl et al. [13], the two authors
with He et al. [14])

Φ(t) ≡
(
C − 2xt + yt2

)−λ
=
∑

n≥0
P
λ,y,C
n (x)tn, (1.3)

where λ > 0, y and C/= 0 are real numbers. As special cases of (1.3), we consider Pλ,y,Cn (x) as
follows (see [14]):

P 1,1,1
n (x) = Un(x), the Chebyshev polynomial of the second kind,

P 1/2,1,1
n (x) = ψn(x), the Legendre polynomial,

P 1,−1,1
n (x) = Pn+1(x), the Pell polynomial,

P 1,−1,1
n (x/2) = Fn+1(x), the Fibonacci polynomial,

P 1,2,1
n (x/2) = Φn+1(x), the Fermat polynomial of the first kind,

P 1,2a,2
n (x) = Dn(x, a), the Dickson polynomial of the second kind, a/= 0 (see, e.g.,

[13]),

where a is a real parameter, and Fn = Fn(1) is the Fibonacci number. In particular, if y = C = 1,
the corresponding polynomials are called the Gegenbauer polynomials (see [3]). More results
on the Gegenbauer-Humbert-type polynomials can be found in [15] by Hsu and in [16] by
the second author and Hsu, and so forth.
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Similarly, for a class of the generalized Gegenbauer-Humbert polynomial sequences
defined by

P
λ,y,C
n (x) = 2x

λ + n − 1
Cn

P
λ,y,C

n−1 (x) − y2λ + n − 2
Cn

P
λ,y,C

n−2 (x), (1.4)

for all n ≥ 2 with initial conditions

P
λ,y,C

0 (x) = Φ(0) = C−λ,

P
λ,y,C

1 (x) = Φ′(0) = 2λxC−λ−1,

(1.5)

the following theorem has been obtained in [11].

Theorem 1.2 (see [11]). Let x /= ± √Cy. The generalized Gegenbauer-Humbert polynomials
{P 1,y,C

n (x)}n≥0 defined by expansion (1.3) can be expressed as

P
1,y,C
n (x) = C−n−2

(
x +
√

x2 − Cy
)n+1

−
(
x −
√

x2 − Cy
)n+1

2
√

x2 − Cy
. (1.6)

In this paper, we will use an alternative form of (1.2) to establish a relationship
between the number sequences defined by recurrence relation (1.1) and the generalized
Gegenbauer-Humbert polynomial sequences defined by (1.4). Our results are suitable for
all such number sequences defined by (1.1) with arbitrary initial conditions a0 and a1,
which includes the results in [8, 9] as our special cases. Many new and known formulas
of the Fibonacci, the Lucas, the Pell, and the Jacobsthal numbers in terms of the generalized
Gegenbauer-Humbert polynomial values and applications of the established relationship to
the construction of identities of number and polynomial value sequences will be presented
in Section 3.

2. Main Results

We now modify the explicit formula of the number sequences defined by linear recurrence
relations of order 2. If α/= β, the first formula in (1.2) can be written as

an =
a1
(
αn − βn) − a0αβ

(
αn−1 − βn−1)

α − β

=
a1
(
αn − βn) + a0q

(
αn−1 − βn−1)

α − β ,

(2.1)
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where the last step is due to α and β being solutions of t2 − pt − q = 0. Noting that α2 − pα =
α2 − (α + β)α = −αβ = q and α(α − p) = −αβ = β(β − p), we may further write the above last
expression of an as

an =
a1
(
αn − βn) + a0

(
α2 − pα)(αn−1 − βn−1)

α − β

=
a1
(
αn − βn) + a0

(
α2 − pα)αn−1 − a0

(
β2 − pβ)βn−1

α − β

=
a0
(
αn+1 − βn+1) + (a1 − a0p

)(
αn − βn)

α − β .

(2.2)

Denote r(x) = x +
√

x2 − Cy and s(x) = x −
√

x2 − Cy. Comparing expressions (2.2)
and (1.6), we have reason to consider the following transform: for a nonzero real or complex
number k, we set

α :=
r(x)
k

, β :=
s(x)
k

(2.3)

for a certain x depending on α, β, and k, which we will find out later. Denote α + β = p and
αβ = −q; that is, α and β are roots of t2 − pt − q. By adding the two equations in (2.3) side by
side, we obtain 2x = kp. Thus, when x = kp/2, the equations in (2.2) hold. Meanwhile, by
using (α − β)2 = (α + β)2 − 4αβ = p2 + 4q, we have

r(x) − s(x) = 2
√

x2 − Cy = k
(
α − β) = k

√

p2 + 4q, (2.4)

where x = kp/2. Therefore, we obtain

2

√
(
kp

2

)2

− Cy = k
√

p2 + 4q, (2.5)

which implies

k = ±
√
Cy

−q . (2.6)

We first consider the case of k =
√−Cy/q.
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We now substitute r(x) = kα, s(x) = kβ, x = kp/2, and k =
√−Cy/q into (2.2) and

simplify as follows:

an =
a0
(
(r(x)/k)n+1 − (s(x)/k)n+1

)
+
(
a1 − a0p

)(
(r(x)/k)n − (s(x)/k)n

)

(1/k)(r(x) − s(x))

=
a0
(
rn+1(x) − sn+1(x)) + k(a1 − a0p

)
(rn(x) − sn(x))

kn(r(x) − s(x))

= a0Cn+2

(√
−q
Cy

)n

P
1,y,C
n

(
kp

2

)

+
(
a1 − a0p

)
Cn+1

(√
−q
Cy

)n−1

P
1,y,C
n−1

(
kp

2

)

= a0Cn+2

(√
−q
Cy

)n

P
1,y,C
n

(
p

2

√
Cy

−q

)

+
(
a1 − a0p

)
Cn+1

(√
−q
Cy

)n−1

P
1,y,C
n−1

(
p

2

√
Cy

−q

)

.

(2.7)

Similarly, for k = −√−Cy/q, we have

an = a0Cn+2

(

−
√

−q
Cy

)n

P
1,y,C
n

(

−p
2

√
Cy

−q

)

+
(
a1 − a0p

)
Cn+1

(

−
√

−q
Cy

)n−1

P
1,y,C
n−1

(

−p
2

√
Cy

−q

)

.

(2.8)

Therefore, we obtain our main result.

Theorem 2.1. Let sequence {an} be defined by an = pan−1 + qan−2 (n ≥ 2) with initial conditions a0
and a1. Then, an can be presented as (2.7) and (2.8). In particular, for (y,C) = (1, 1), (−1, 1), (2, 1),
and (2a, 2) (a/= 0), respectively, one has

an = a0
(√−q)nUn

(
p

2
√−q

)

+
(
a1 − a0p

)(√−q)n−1Un−1

(
p

2
√−q

)

,

an = a0
(√

q
)n
Pn+1

(
p

2√q

)

+
(
a1 − a0p

)(√
q
)n−1

Pn

(
p

2√q

)

,

an = a0
(√

q
)n
Fn+1

(
p√
q

)

+
(
a1 − a0p

)(√
q
)n−1

Fn

(
p√
q

)

,

an = a0

(√−q
2

)n

Φn+1

(

p

√
2
−q

)

+
(
a1 − a0p

)
(√−q

2

)n−1
Φn

(

p

√
2
−q

)

,
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an = a02n+2
(√−q

4a

)n

Dn

(

p

√
a

−q , a
)

+
(
a1 − a0p

)
2n+1
(√−q

4a

)n−1
Dn−1

(

p

√
a

−q , a
)

,

an = a0
(−√−q)nUn

( −p
2
√−q

)

+
(
a1 − a0p

)(−√−q)n−1Un−1

( −p
2
√−q

)

,

an = a0
(−√q)nPn+1

(
−p
2√q

)

+
(
a1 − a0p

)(−√q)n−1Pn
(

−p
2√q

)

,

an = a0
(−√q)nFn+1

(
−p√
q

)

+
(
a1 − a0p

)(−√q)n−1Fn
(

−p√
q

)

,

an = a0

(

−
√−q

2

)n

Φn+1

(

−p
√

2
−q

)

+
(
a1 − a0p

)
(

−
√−q

2

)n−1
Φn

(

−p
√

2
−q

)

,

an = a02n+2
(

−
√−q

4a

)n

Dn

(

−p
√

a

−q , a
)

+
(
a1 − a0p

)
2n+1
(

−
√−q

4a

)n−1
Dn−1

(

−p
√

a

−q , a
)

,

(2.9)

where Un(x), Pn(x), Fn(x), Φn(x), and Dn(x, a) are the nth degree Chebyshev polynomial of the
second kind, the Pell polynomial, the Fibonacci polynomial, the Fermat polynomial, and the Dickson
polynomial of the second kind, respectively.

For the special cases of a0 and a1, we have the following corollaries.

Corollary 2.2. Let sequence {an} be defined by an = pan−1 + qan−2 (n ≥ 2) with initial conditions
a0 = 0 and a1 = d. Then

an = d
(√−q)n−1Un−1

(
p

2
√−q

)

,

an = d
(√

q
)n−1

Pn

(
p

2√q

)

,

an = d
(√

q
)n−1

Fn

(
p√
q

)

,

an = d

(√−q
2

)n−1
Φn

(

p

√
2
−q

)

,
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an = d2n+1
(√−q

4a

)n−1
Dn−1

(

p

√
a

−q , a
)

,

an = d
(−√−q)n−1Un−1

( −p
2
√−q

)

,

an = d
(−√q)n−1Pn

(
−p
2√q

)

,

an = d
(−√q)n−1Fn

(
−p√
q

)

,

an = d

(

−
√−q

2

)n−1
Φn

(

−p
√

2
−q

)

,

an = d2n+1
(

−
√−q

4a

)n−1
Dn−1

(

−p
√

a

−q , a
)

.

(2.10)

Corollary 2.3. Let sequence {an} be defined by an = pan−1 + qan−2 (n ≥ 2) with initial conditions
a0 = c and a1 = pc. Then

an = c
(√−q)nUn

(
p

2
√−q

)

,

an = c
(√

q
)n
Pn+1

(
p

2√q

)

,

an = c
(√

q
)n
Fn+1

(
p√
q

)

,

an = c

(√−q
2

)n

Φn+1

(

p

√
2
−q

)

,

an = c2n+2
(√−q

4a

)n

Dn

(

p

√
a

−q , a
)

,

an = c
(−√−q)nUn

( −p
2
√−q

)

,

an = c
(−√q)nPn+1

(
−p
2√q

)

,

an = c
(−√q)nFn+1

(
−p√
q

)

,
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an = c

(

−
√−q

2

)n

Φn+1

(

−p
√

2
−q

)

,

an = c2n+2
(

−
√−q

4a

)n

Dn

(

−p
√

a

−q , a
)

.

(2.11)

If a1 = d = 1, then Corollary 2.2 gives the primary solutions of recurrence relation (1.1)
in terms of the nth degree Chebyshev polynomial of the second kind, the Pell polynomial,
the Fibonacci polynomial, the Fermat polynomial, and the Dickson polynomial of the second
kind, respectively. For instance, if p = q = 1, then an are the Fibonacci numbers Fn. Thus,

Fn = (i)n−1Un−1

(
1
2i

)

= (i)n−1Un−1

(

− i
2

)

,

Fn = Pn
(
1
2

)

,

Fn = Fn(1),

Fn =
(

i√
2

)n−1
Φn

(
−
√
2i
)
,

Fn = 2n+1
(

i√
4a

)n−1
Dn−1

(−√ai, a),

Fn = (−i)n−1Un−1

(
i

2

)

,

Fn = (−1)n−1Pn
(

−1
2

)

,

Fn = (−1)n−1Fn(−1),

Fn =
(

− i√
2

)n−1
Φn

(√
2i
)
,

Fn = 2n+1
(

− i√
4a

)n−1
Dn−1

(√
ai, a

)
,

(2.12)

where Fn = (i)n−1Un−1(−i/2) was shown in [8] and Fn = (−i)n−1Un−1(i/2) was given by Chen
and Louck in [17]. From the above expressions of Fn, we may obtain many identities. For
instance, we have

Pn

(
1
2

)

= (−1)n−1Pn
(

−1
2

)

= Fn(1) = (−1)n−1Fn(−1),

(i)n−1Un−1

(

− i
2

)

= (−i)n−1Un−1

(
i

2

)

=
(

i√
2

)n−1
Φn

(
−
√
2i
)
=
(

− i√
2

)n−1
Φn

(√
2i
)
,

(2.13)

and so forth.
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We now give another special case of Theorem 2.1 for the sequence defined by (1.1)
with initial cases a0 = 2 and a1.

Corollary 2.4. Let sequence {an} be defined by an = pan−1 + qan−2 (n ≥ 2) with initial conditions
a0 = 2 and a1 = p. Then

an = 2
(√−q)nUn

(
p

2
√−q

)

− p(√−q)n−1Un−1

(
p

2
√−q

)

,

an = 2
(√

q
)n
Pn+1

(
p

2√q

)

− p(√q)n−1Pn
(

p

2√q

)

,

an = 2
(√

q
)n
Fn+1

(
p√
q

)

− p(√q)n−1Fn
(

p√
q

)

,

an = 2

(√−q
2

)n

Φn+1

(

p

√
2
−q

)

− p
(√−q

2

)n−1
Φn

(

p

√
2
−q

)

,

an = 2n+3
(√−q

4a

)n

Dn

(

p

√
a

−q , a
)

− p2n+1
(√−q

4a

)n−1
Dn−1

(

p

√
a

−q , a
)

,

an = 2
(−√−q)nUn

( −p
2
√−q

)

− p(−√−q)n−1Un−1

( −p
2
√−q

)

,

an = 2
(−√q)nPn+1

(
−p
2√q

)

− p(−√q)n−1Pn
(

−p
2√q

)

,

an = 2
(−√q)nFn+1

(
−p√
q

)

− p(−√q)n−1Fn
(

−p√
q

)

,

an = 2

(

−
√−q

2

)n

Φn+1

(

−p
√

2
−q

)

− p
(

−
√−q

2

)n−1
Φn

(

−p
√

2
−q

)

,

an = 2n+3
(

−
√−q

4a

)n

Dn

(

−p
√

a

−q , a
)

− p2n+1
(

−
√−q

4a

)n−1
Dn−1

(

−p
√

a

−q , a
)

.

(2.14)

In addition, one has

an = 2
(√−q)nTn

(
p

2
√−q

)

, (2.15)

an = 2
(−√−q)nTn

(

− p

2
√−q

)

, (2.16)

where Tn(x) are the Chebyshev polynomials of the first kind.
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Proof. It is sufficient to prove (2.15) and (2.16). From the first formula shown in Corollary 2.4
and the recurrence relationUn(x) = 2xUn−1(x) −Un−2(x), one easily sees

an =
(√−q)n

[

2Un

(
p

2
√−q

)

− p√−qUn−1

(
p

2
√−q

)]

=
(√−q)n

[

2Un

(
p

2
√−q

)

−
(

Un

(
p

2
√−q

)

+Un−2

(
p

2
√−q

))]

=
(√−q)n

[

Un

(
p

2
√−q

)

−Un−2

(
p

2
√−q

)]

.

(2.17)

From the basic relation between Chebyshev polynomials of the first and the second kinds
(see, e.g., (1.7) in [18] by Mason and Handscomb), Un(x) − Un−2(x) = 2Tn(x), the last
expression of an implies (2.15). Equation (2.16) can be proved similarly.

As an example, the Lucas number sequence {Ln} defined by (1.1) with p = q = 1 and
initial conditions L0 = 2 and L1 = 1 has the explicit formula for its general term:

Ln = 2inTn
(

− i
2

)

= 2(−i)nTn
(
i

2

)

. (2.18)

3. Examples and Applications

We first give some examples of Corollary 2.2 for sequences {an} that are primary solutions of
(1.1).

Example 3.1. If p = 2 and q = 1, then an defined by (1.1) with initial conditions a0 = 0 and
a1 = 1 are the Pell numbers Pn. Thus, from Corollary 2.2, we have

Pn = (i)n−1Un−1(−i) = (−i)n−1Un−1(i),

Pn = Pn(1) = (−1)n−1Pn(−1),

Pn = Fn(2) = (−1)n−1Fn(−2),

Pn =
(

i√
2

)n−1
Φn

(
−2

√
2i
)
=
(

− i√
2

)n−1
Φn

(
2
√
2i
)
,

Pn = 2n+1
(

i√
4a

)n−1
Dn−1

(−2√ai, a)

= 2n+1
(

− i√
4a

)n−1
Dn−1

(
2
√
ai, a

)
.

(3.1)
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Example 3.2. If p = 1 and q = 2, then an defined by (1.1) with initial conditions a0 = 0 and
a1 = 1 are the Jacobsthal numbers Jn (see Bergum et al. [19]). Thus Corollary 2.2 gives the
expressions of Jn as follows:

Jn =
(√

2i
)n−1

Un−1

( −i
2
√
2

)

=
(
−
√
2i
)n−1

Un−1

(
i

2
√
2

)

,

Jn =
(√

2
)n−1

Pn

(
1

2
√
2

)

=
(
−
√
2
)n−1

Pn

(

− 1

2
√
2

)

,

Jn =
(√

2
)n−1

Fn

(
1√
2

)

=
(
−
√
2
)n−1

Fn

(

− 1√
2

)

,

Jn = in−1Φn

(−pi) = (−i)n−1Φn

(
pi
)
,

Jn = 2n+1
(

i√
2a

)n−1
Dn−1

(

−p
√
ai√
2
, a

)

= 2n+1
(

− i√
2a

)n−1
Dn−1

(
p
√
ai√
2
, a

)

.

(3.2)

Example 3.3. If p = 3 and q = −2, then an defined by (1.1) with initial conditions a0 = 0 and
a1 = 1 are the Mersenne numbersMn = 2n − 1. From Corollary 2.2, we have

Mn =
(√

2
)n−1

Un−1

(
3

2
√
2

)

=
(
−
√
2
)n−1

Un−1

( −3
2
√
2

)

,

Mn =
(√

2i
)n−1

Pn

(

− 3i

2
√
2

)

=
(
−
√
2i
)n−1

Pn

(
3i

2
√
2

)

,

Mn =
(√

2i
)n−1

Fn

(

− 3i√
2

)

=
(
−
√
2i
)n−1

Fn

(
3i√
2

)

,

Mn = Φn(3) = (−1)n−1Φn(−3),

Mn = 2n+1
(

1√
2a

)n−1
Dn−1

(
3
√
a√
2
, a

)

= 2n+1
(

− 1√
2a

)n−1
Dn−1

(

−3
√
a√
2
, a

)

.

(3.3)

Next, we give several examples of nonprimary solutions of (1.1) by using
Corollary 2.4.
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Example 3.4. If p = 1 and q = 1, then an defined by (1.1) with initial conditions a0 = 2 and
a1 = 1 are the Lucas numbers Ln. Thus, besides (2.18), we have

Ln = 2inUn

(

− i
2

)

− in−1Un−1

(

− i
2

)

= 2(−i)nUn

(
i

2

)

− (−i)n−1Un−1

(
i

2

)

,

Ln = 2Pn+1
(
1
2

)

− Pn
(
1
2

)

= 2(−1)nPn+1
(

−1
2

)

− (−1)n−1Pn
(

−1
2

)

,

Ln = 2Fn+1(1) − Fn(1) = 2(−1)nFn+1(−1) − (−1)n−1Fn(−1),

Ln = 2
(

i√
2

)n

Φn+1

(
−
√
2i
)
−
(

i√
2

)n−1
Φn

(
−
√
2i
)

= 2
(

− i√
2

)n

Φn+1

(√
2i
)
−
(

− i√
2

)n−1
Φn

(√
2i
)
,

Ln = 2n+3
(

i√
4a

)n

Dn

(−√ai, a) − 2n+1
(

i√
4a

)n−1
Dn−1

(−√ai, a)

= 2n+3
(

− i√
4a

)n

Dn

(√
ai, a

) − 2n+1
(

− i√
4a

)n−1
Dn−1

(√
ai, a

)
.

(3.4)

Example 3.5. If p = 2 and q = 1, then an defined by (1.1) with initial conditions a0 = 2 and
a1 = 2 are the Pell-Lucas numbers An (see Example 2 in [11]). Thus, from Corollary 2.4, we
obtain

An = 2inTn(−i) = 2(−i)nTn(i),

An = 2inUn(−i) − 2in−1Un−1(−i) = 2inUn(−i) − 2in−1Un−1(−i),

An = 2Pn+1(1) − 2Pn(1) = 2(−1)nPn+1(−1) − p(−1)n−1Pn(−1),

An = 2Fn+1(2) − 2Fn(2) = 2(−1)nFn+1(−2) − p(−1)n−1Fn(−2),

An = 2
(

− i√
2

)n

Φn+1

(
2
√
2i
)
− 2
(

− i√
2

)n−1
Φn

(
2
√
2i
)

= 2
(

i√
2

)n

Φn+1

(
−2

√
2i
)
− 2
(

i√
2

)n−1
Φn

(
−2

√
2i
)
,

An = 2n+3
(

i√
4a

)n

Dn

(−2√ai, a) − 2n+2
(

i√
4a

)n−1
Dn−1

(−2√ai, a)

= 2n+3
(

− i√
4a

)n

Dn

(
2
√
ai, a

) − 2n+2
(

− i√
4a

)n−1
Dn−1

(
2
√
ai, a

)
.

(3.5)
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Example 3.6. If p = 1 and q = 2, then an defined by (1.1) with initial conditions a0 = 2 and
a1 = 1 are the Jacobsthal-Lucas numbers Bn (see Example 2 in [11]). Thus,

Bn = 2
(√

2i
)n
Tn

(

− i

2
√
2

)

= 2
(
−
√
2i
)n
Tn

(
i

2
√
2

)

,

Bn = 2
(√

2i
)n
Un

(

− i

2
√
2

)

−
(√

2i
)n−1

Un−1

(

− i

2
√
2

)

= 2
(
−
√
2i
)n
Un

(
i

2
√
2

)

−
(
−
√
2i
)n−1

Un−1

(
i

2
√
2

)

,

Bn = 2
(√

2
)n
Pn+1

(
1

2
√
2

)

−
(√

2
)n−1

Pn

(
1

2
√
2

)

= 2
(
−
√
2
)n
Pn+1

(

− 1

2
√
2

)

−
(
−
√
2
)n−1

Pn

(

− 1

2
√
2

)

,

Bn = 2
(√

2
)n
Fn+1

(
1√
2

)

−
(√

2
)n−1

Fn

(
1√
2

)

= 2
(
−
√
2
)n
Fn+1

(

− 1√
2

)

−
(
−
√
2
)n−1

Fn

(

− 1√
2

)

,

Bn = 2inΦn+1(−i) − in−1Φn(−i) = 2(−i)nΦn+1(i) − (−i)n−1Φn(i),

Bn = 2n+3
(

i√
2a

)n

Dn

(

−
√
ai√
2
, a

)

− 2n+1
(

i√
2a

)n−1
Dn−1

(

−
√
ai√
2
, a

)

= 2n+3
(

− i√
2a

)n

Dn

(√
ai√
2
, a

)

− 2n+1
(

− i√
2a

)n−1
Dn−1

(√
ai√
2
, a

)

.

(3.6)

Example 3.7. If p = 3 and q = −2, then an defined by (1.1) with initial conditions a0 = 2 and
a1 = 3 are the Fermat numbers fn (see [20]). Thus, from Corollary 2.4, we obtain

fn = 2
(√

2
)n
Tn

(
3

2
√
2

)

= 2
(
−
√
2
)n
Tn

(

− 3

2
√
2

)

,

fn = 2
(√

2
)n
Un

(
3

2
√
2

)

− 3
(√

2
)n−1

Un−1

(
3

2
√
2

)

= 2
(
−
√
2
)n
Un

(

− 3

2
√
2

)

− 3
(
−
√
2
)n−1

Un−1

(

− 3

2
√
2

)

,
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fn = 2
(√

2i
)n
Pn+1

(

− 3i

2
√
2

)

− 3
(√

2i
)n−1

Pn

(

− 3i

2
√
2

)

= 2
(
−
√
2i
)n
Pn+1

(
3i

2
√
2

)

− 3
(
−
√
2i
)n−1

Pn

(
3i

2
√
2

)

,

fn = 2
(√

2i
)n
Fn+1

(

− 3i√
2

)

− 3
(√

2i
)n−1

Fn

(

− 3i√
2

)

= 2
(
−
√
2i
)n
Fn+1

(
3i√
2

)

− 3
(
−
√
2i
)n−1

Fn

(
3i√
2

)

,

fn = 2Φn+1(3) − 3Φn(3) = 2(−1)nΦn+1(−3) − 3(−1)n−1Φn(−3),

fn = 2n+3
(

1√
2a

)n

Dn

(
3
√
a√
2
, a

)

− (3)2n+1
(

1√
2a

)n−1
Dn−1

(
3
√
a√
2
, a

)

= 2n+3
(

− 1√
2a

)n

Dn

(

−3
√
a√
2
, a

)

− (3)2n+1
(

− 1√
2a

)n−1
Dn−1

(

−3
√
a√
2
, a

)

.

(3.7)

Using the relationship established above, we may obtain some identities of number
sequences and polynomial value sequences. Theorem 3.2 in [11] presented a generalized
Gegenbauer-Humbert polynomial sequence identity:

P
1,y,C
n (x) = α(x)P 1,y,C

n−1 (x) + C−2(2x − α(x)C)(β(x))n−1, (3.8)

where P 1,y,C
n (x) satisfies the recurrence relation of order 2, P 1,y,C

n = pP
1,y,C
n−1 + qP

1,y,C
n−2 with

coefficients p(x) and q(x), and α(x)+β(x) = p(x) and α(x)β(x) = −q(x). Clearly (see (19) and
(20) in [11]),

α =
1
C

{

x +
√

x2 − Cy
}

,

β =
1
C

{

x −
√

x2 − Cy
}

.

(3.9)

For y = −1 and C = 1, we have P 1,−1,1
n (x) = Fn+1(2x), where Fn(x) are the Fibonacci

polynomials, and we can write (3.8) as

Fn+1(2x) = α(x)Fn(2x) + (2x − α(x))(β(x))n−1 = α(x)Fn(2x) +
(
β(x)

)n
, (3.10)

where α(x) = x +
√
x2 + 1 and β(x) = x −

√
x2 + 1. If x = 1/2, then Fn(1) = Fn, the Fibonacci

numbers, and

α

(
1
2

)

=
1 +

√
5

2
, β

(
1
2

)

=
1 − √

5
2

. (3.11)
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Thus (3.10) yields the identity

Fn+1 =
1 +

√
5

2
Fn +

(
1 − √

5
2

)n

, (3.12)

or equivalently,

1 − √
5

2
Fn+1 + Fn =

(
1 − √

5
2

)n+1

. (3.13)

Similarly, if x = 1, then Fn(2) = Pn, the Pell numbers, and

α(1) = 1 +
√
2, β(1) = 1 −

√
2. (3.14)

Thus (3.10) yields the identity

Pn+1 =
(
1 +

√
2
)
Pn +

(
1 −

√
2
)n
, (3.15)

or equivalently,

(
1 −

√
2
)
Pn+1 + Pn =

(
1 −

√
2
)n+1

. (3.16)

Substituting x = 1/(2
√
2) into (3.10) and noting Fn(1/

√
2) = Jn/(

√
2)n, where Jn are

the Jacobsthal numbers, we obtain the identity

Jn+1 − 2Jn = (−1)n. (3.17)

When x = −3i/(2√2), Fn(−3i/(2
√
2)) = Mn/(

√
2i)n−1, the Mersenne numbers. Hence (3.10)

givesMn+1 −Mn = 2n.
Conversely, one may use the expressions of various number sequences in terms of

the generalized Gegenbauer-Humbert polynomial sequences to construct the identities of the
different generalized Gegenbauer-Humbert polynomial values such as the formulas shown
in the example after Corollary 2.3.
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