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ABSTRACT

In this paper we present combinatorial interpretations and polynomials generalizations for sequences including the Fi-
bonacci numbers, the Pell numbers and the Jacobsthal numbers in terms of partitions. It is important to mention that
results of this nature were given by Santos and Ivkovic in two papers published on the Fibonacci Quarterly, Polynomial
generalizations of the Pell sequence and the Fibonacci sequence [1] and Fibonacci Numbers and Partitions [2] , and one,
by Santos, on Discrete Mathematics, On the Combinatorics of Polynomial generalizations of Rogers-Ramanujan Type
Identities [3]. By these results one can see that from the g-series identities important combinatorial information can be
obtained by a careful study of the two variable function introduced by Andrews in Combinatorics and Ramanujan’s lost
notebook [4].
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1. Introduction

In this paper following some ideas introduced by An- n:O(q4§q4)
drews [4] and results given by Santos [5] we give poly- ( a; qz) ©)
nomial generalizations and combinatorial interpretations :2—2(”( q’:q ) (q ;g ) (q ;0 )
for sequences, including Fibonacci numbers, the Pell (q 39 )oc
numbers and the Jacobsthal numbers in terms of parti- 2\ nten
tions. To do this we use identities 12, 16, 20, 28, 44, 66, i( q’;q ) q
67, 80 and 81, listed below, that are among the 130 = (%:a),.,
g-series identities given by Slater in [6]. ( 2) 4)
- ST ) (gt (—asa).
i(—l;q)n q[ zlj (q;q )w ( ) ( )w( )w
n=0 (qu)n 1) i q%”(“”)
GO, (gg) (ohsa') w(aa),, (@), 5)
(q’q)w :(q.lq) (qlo;qlo)w<q8;q10)w (qz;qlo)w'
© qn2+2n > Voo i
é(q4;q4) © (— q4)n(—q,q ) q2
(_Q‘ qz) n @ ; (qZ;qz )Zn
== (-¢q) (a%a°) (ds0°) - —qq
(qz;qz)oO ( )w( )oc( )w :((qz'qz))w (qm;qm)w(qlo;qm)w(qo;qm)w (6)
"Partially supported by FAPESP (Fundagdo de Amparo a Pesquisa do +q (q"’; qT6 )w (q“‘; q“’ )Oc (qz;qm)w )

Estado de Sdo Paulo).
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n(n+1)
< (-99),9 °
Zaa), (o),

w qzl;qzl)oO (_q13;q21)w (_qx;qﬂ)w ®)

(q,q)w
- (o"s9”)_(-a™s9”") (-a:9™)
n(n+1)
& (-%9),9 °
2(0:7) (7).
:(_q’q)w <q21’q21) ( q11 qzl)w( q°:q ) )

—q(a™;a) (-a"q™) (-a%a). .

Here we are using the standard notation of g-series

(a), - (za), - [T =)

o (1-aq"™") (10)

:(1—a)(1—aq)-~~(1—aq”’1).

when n is a positive integer, and

(q), =(a), =ﬁ(1—aqj). (11)

j=0

2. Background

Before explaining how to get the combinatorial inter-
pretation for the sequences mentioned above we need a
few definitions.

Definition 2.1 The Pell numbers 1, 2, 5, 12, 29, -,
defined by the recurrence relation p, =1, p, =2;
P, =2P, + P.,,N>2 are the denominators of the se-

guence of rational numbers
13717 41 99

1'2°5°12°29°70"

that are the continued fraction convergent to V2.
Definition 2.2 The Fibonacci numbers 0, 1, 1, 2, 3, 5,
8, 13, -+, are defined by
F,=0, F=1 F,=F_ +F_,

Definition 2.3 The Jacobsthal numbers 1, 1, 3, 5, 11,

n>2.
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21,43, -+ are defined by

Jo=1 J =1L J,=J,,+23,,,n=2.

n-2>

Definition 2.4 The Gaussian polynomials are defined
as follows:

0, otherwise.

Definition 2.5 The coefficientsof x! in the expanded
formof (1+x+x )n are given by:

R s NS

We call these numbers trinomial coefficients.
The following two expressions are (-analog for the
trinomial coefficients.

T(mAg)=3(- l)j{rq [;szl} (14)

j=0 J q2
T =Y (-q)’ m} {2m—2j} 15
(mAQ) Z( a) L Amoac (15)

Finally we define:

Definition 2.6
U(mA)=T,(mAq)+T,(mA+1q). (16)
CT(mA)=T,(mAq"). (17)

3. The Resultsfrom Equations (12) and (16)

In [1-3] we have presented a number of results of the
same nature as the ones given is this paper. For this
reason we are not describing all the steps needed in the
process but just a general description. In a series of two
papers [6,7], Slater gave a list of 130 identities of the
Rogers-Ramanujan type. In [4] Andrews introduced a
two variable function in order to look for combinatorial
interpretations for those identities. In [5] one of us, San-
tos, gave conjectures for explicit formulas for families of
polynomials that can be obtained using Andrews’ method
for more than 70 identities of Slater’s list. The con-
jectures listed there can be proved as we did in [3] for
identity 20, by doing a lot of calculations, or with the
help of packages given by Sills in [8].

Then, following Andrews [4] one can introduce a para-
meter t in the left hand side of (1) to get

() )
flz(qst)zg(t,(i);—;q

from which a functional equation can be obtained:

, (18)
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(1-t) f, (a.t) =1+ (1+t)taf, (9.tq).

Knowing that the coefficient of t"
of (18) is a polynomial in q, i.e, that

fa (6= 2R (@)
it is easy to see that
R (a)=LR(aq)=1+q;
R.(a)=(1+a")P. (@) +a" 'R, (). (19)

Santos gave in [5] the following conjecture for an
explicity formula for this family of polynomials:

P.(q)= iq"jZCT(n,l+8j)

j=—0

in the expansion

. (20)
-3 gfI2CT (n,3-8]),
j=—o0
where CT(n, m) , defined by Equation (17), is a g-ana-
log of the trinomial coefficient in the same way that the
Gaussian polynomial is a g-analog of the binomial co-
efficient, that is, its limit, when q approaches 1, is equal
to the trinomial coefficient given by (13).
To explain how to get a combinatorial interpretation
for (18) we write it in the following form:
n+1
3 (£Ea), U q( )

n=0 t;
( q)n+1 . (21)

(1+t)(1+tq)-(1+tg™" Jt"q >

(1-tq)(1-tq’)---(1-tq")

2

Considering that n_ 1+2+---+n and looking

just to the term inside the sum we can see that the coe-
fficient of t" in that sum is the generating function for
overpartitions where every (non-overlined) integer from
one to the largest part appears at least once, the overlined
parts are less than the largest non-overlined part and the
number of parts is either n or n—1. We call those
overpartitions of type n.

Now, by making =1 in (19), one can see that we
get the sequence of the Pell numbers which allows us,
taking into consideration the factor 1/(1-t) outside the
sum, to state the following theorem:

Theorem 3.1 The total number of overpartitions of
type n forall n upto N isequal to p,.

In Table 1 we present the overpartitons for a few
values of N . For example, in the third line, second
column we have all overpartitions of type 3, i.e., the ones
with either 3 or 2 parts. 12 is the total up to that line.

Copyright © 2013 SciRes.
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Table 1. Partitionsasin Theorem 3.1.

N Partitions Py
1 1,9 2
2 2+1;1+1;51 5
3 34241324241, T+2+1

241+1;1+1+1;

2+1;1+1 12
4 44+34241;3+3+2+1;3+2+2+1;

34241+ 1,243+ 2+ 5 T+3+2+1;

2424241 24241+1;24+1+1+1;

T+1+1+ 1 T+2+14+ 1 T+242+1;

342412+ 24+ 1 T+2+1;

241+1;1+1+1 29

For Equation (2) we have, with the parameter t:

o tnqn2+2n
O ), (),
_ L vgt
I-tig(t'a%at) -
From this sum one can get
(l—t)(l+tq2)fm(q,t):l+tq2+tq3f16(q,tq2).

Knowing that the coefficient of t"
of (22) is a polynomial in q, i.e, that:

fis (q:t) = antna
n=0

(22)

in the expansion

we get:
R (a)=LR(q)=1+q"
P.(a)=(1-" +a™" )P, (a)+ R, (q).

It is ease to see that at =1 the sequence above is
the Fibonacci sequence.
An explicity formula for this sequence is given bellow:

P (a)= Zq“" U (2n.54)

=—0

(23)

(24)
_ Z q10j2+13j+4U (2n,5j +3).
j=—x
We explain now how to get a combinatorial inter-
pretation for

1 © tnqn +2n
=— 25
(@)= t;(ﬁq“,q) @
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28 C.P.DE ANDRADE ET AL

We consider the exponent n(n+2) of g as the sum
3+5+4---+2n+1 which means that the largest part is
odd and every odd from 3 up to 2n+1 appears exactly
once. In the denominator we will see a number of the
form 4n as 2n+2n which implies that each even
number appears an even number of times. With these
observations and taking into consideration the factor
1/(1-t) we can state the following theorem.

Theorem 3.2 The total humber of partitions into at
most N parts where the largest part is odd, every odd
from 3 up to the largest part appears exactly once and
each even part appears an even number of times is equal
to Fy,,-

Table 2 has, as an illustration, a few partitions as des-
cribed in this theorem.

For identities 20, 28, 44, 66, 67, 80 and 81 we are
going to list, for each one of them, the two variable func-
tion, the functional equation, the recurrence relation for
the family of polynomials associated to it, the formula
for this family and the corresponding theorem that it is
possible to get with the combinatorial interpretation at
g=1. A table to illustrate the result for small values of
n is also given.

4. The Resultsfrom Equation (20)

The two variable function:

The functional equation:

(1=1)(1+10”) 5y (1) =1+ 10" +tafy, (gt ),

0

fo(a.t) =D Pt"

n=0

The recurrence relation:

R(a)=LR(q)=1+q;

. 27)
P.(a)=(1-a"+g™" )R, (a)+a’P., (q).
An explicit formula for this family:
R(a)= 3" U (2n5])
J:’“’ (28)

- i qoi By (20,5 +2).

j=—0

Here we will see a number of the form 4n as
2n+2n as we have done for Equation (2).

Theorem 4.1 The total number of partitions into at
most N parts where every odd from one up to the
largest appears exactly once, every even appears an even
number of times and the largest even is at most one plus
thelargest odd isequal to F,, .

Table 3 has, as an illustration, a few partitions as des-
cribed in this theorem.

(D=3 t"g" 5. The Results from Equation (28)

n=0 (t; 9 )n+1 (—tq2 9 )n 26) The two variable function:

1 & g " _tqz;qz tnqn2+n

_:g(t2q4;q4)n f28(q’t):nz_o(t(;qz) ()—ntq;qz) ' )
n+l n+l

Table2. Partitionsasin Theorem 3.2. Table 3. Partitionsasin Theorem 4.1.
N Partitions Fy.» N Partitions Fuo
0 & 1 0 & 1
1 3 2 1 1 2
2 3+5 3 2 3+1 3
3 7+5+3 3 5+3+1

3+2+2 5 24+2+1 5
4 9+7+5+3 4 7+5+3+1

5+4+4+3 3+2+2+1

5434242 8 4+4+3+1 8
5 11+9+7+5+3 5 9+7+5+3+1

7+6+6+5+3 242424241

T+5+3+4+4 S5+3+2+2+1

T+5+3+2+2 S5+4+4+3+1

342424242 13 6+6+5+3+1 13
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The functional equation:

(1-t)(1-tq) fy (a.t) =1+ (1+1q” )t fo (atq’ ),

0

f(a,t) =D Pt"

n=0

The recurrence relation:
R(a)=LR(a)=1-a+0";
R.(a)=(1-a+a™)R (a)+(a+a™") R, (a).(30)

An explicit formula for this family:

P.(q)= i g2 CT (2n+1,1+6j)
j=—0

. 31
+3 g2 T (2n+1,2-6).
j=—w

Before stating the corresponding theorem we need a
definition.

We call a green-yellow partition as the one where the
parts may be of two colors, green or yellow, where the
green parts are even and appear at least once and at most
twice. For the yellow parts the only restriction is that the
largest part is at most one plus twice the largest green
part.

Theorem 5.1 The total number of green-yellow par-
titions into at most N parts with an even number of
odd parts minus the number of those having an odd num-
ber of odd partsisequal to J, .

Table 4 has, as an illustration, a few partitions as des-
cribed in this theorem.

6. The Results from Equation (44)

The two variable function:

Table 4. Partitions asdescribed in Theorem 5.1.

Partitions

N Even number of odd parts ~ Odd number of odd parts Jy

0 9 1
1 2 1 1

9 y
2 4252 +2.;
2 T 2,412, 43, 3
1, +1,;4,+2,

6,+4,+2,;4 +2 +2; 4. +2,+1;4 +2 +3;

3
4,+2,+2; 4, +2,45,;
2,42,+2,;2 42 +2; 2,+2,+152,42 +3;
2,+1,+1; L+1,+1;

2,+3,+352,+3 +1;

y> <9

2 +3 +2;2 +2 +1
4g+4g+2g; 9 y y g y y

4,42, +4, 5

Copyright © 2013 SciRes.

3
t}ﬂqan(ml)

(32)

fu(at)= i( 3

= (faq’)  (ta),,
The functional equation:
(1-t)(1-tq) f,, (a.t) =1+ f,, (a1ta),
f44 (Q»t) = antn'
n=0
The recurrence relation:
Ri(a)=1R(a)=LR(a)=1+q
P.(4) =P () + AR (a)—(a-a") s ().

An explicit formula for this family:

(33)

P.(q)= 3 g " 2n+1n-10]

j=—o

— > GBI 4 In-1410]

':"” (34)
-3 g 204+ 1n-3-10]

j=—o0

+3 g SN 1 In-4+10j.

j=—w

We need a definition before stating the next theorem.

We call a black-white partition as the one where the
parts may be of two colors, black or white, each black
part from one up to the largest part appears at least three
times, each white part is odd and counted twice and the
largest white part is at most one plus twice the largest
black part.

Theorem 6.1 The total number of black-white par-
titionsintoat most N partsisequal to F,, .

Table 5 has, as an illustration, a few partitions as des-
cribed in this theorem.

7. The Resultsfrom Equation (66)
The two variable function:

(), 00"
w(6ar),, (twa), (—a'sa),

(35)
1l v
I-tis (tg0’) (t'a'a’)
The functional equation:
(1_t)(l_tq)(l+t2q) f66 (q,t) (36)
=(1—tq)(1+tq2)+(l+t2)tqf66 (q,tqz),
foo (0Lt) = iat“.
n=0
OJDM
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Table 5. Partitions as described in Theorem 6.1.

N Partitions Fuo.
0 ] 1

1 1

2 1, 2

3 1, +1,+1, 3

4 1, +1; 1+ 1 +1, +1, 5

5 L +1, +1, +1,+1;

1 +1,+1, +1,;

I +1,+1, +3, 8
6 1, +1,+1,;

L+, +1 +1, +1,;

I +1,+1, +1,+3,;

2,42, +2, +1, +1, +1;

L+ +1 +1 +1 +1,. 13

The recurrence relation:
R (a)=1R(a)=1+qP (a)=1+q+q’+q";
R (a)=(1+a-a*+™" )R (a)
~(a-9"-d’)P., () (37)
~(a =) P4 (q).

An explicit formula for this family:

R(a)= > 0% U (2n-18])

j=—

—i g2y (2n+1,3-8)
j=—0

: (38)
+q > g2 Y (2n+1,1+8])

j=—0
> g2y (2n-1,2-8).
j=—0

We define a yellow-white partition as the one where
the parts may be of two colors, yellow or white, where
the white parts are odd and every odd from 1 up to the
largest odd part (2n—l) appears at least once, the yel-
low parts are even, appearing in pairs, with the largest
one being one plus the largest odd (2n) and for each
pair of even up to the largest odd minus one there is a
overlined part, i.e., for those parts (pairs of even from 2
up to 2n-2) actually we do have an overpartition.

Theorem 7.1 If we consider for each n the yellow-
white partitions with n or n-2 part then the total
number of all such partitions with n< N is egual to
Yy, where Y, denote the general term for sequence

Copyright © 2013 SciRes.

A052542 from The On-Line Encyclopedia of Integer
Sequences. This sequence, apart form the inicial 1, is
simply twice the Pell numbers.

Table 6 has, as an illustration, a few partitions as des-
cribed in this theorem.

8. The Results from Equation (67)

The two variable function:

(_t2;q4)tnqn2+2n

39
(1+t2)(_t2q4;q4)n_]tnqn2+2n (39)
(ta:a”) (Pa%at),
The functional equation:

(1-t)(1-ta)(1-t” ) f,, (at)
=(1-tq)(1+tg” )~ (141" )tq’ f; (qut),

fe; (a,t) = nioF’nt”.

The recurrence relation:
R(a)=LR(a)=1+q R (a)=1+q’+q’ +q,
P.(a)=(1+q-a*+¢"™" )R, (q)

~(a-a’-a’)P.,(a) (40)
~(o’ =) Ps (a).

An explicit formula for this family:

R(a)= Y¢U (2n8))

j=—0

-3 (2n-2,3-8))

j=—0

(41)
0 2 i i
-q>.g”"""?u (2n,1+38))
j=—o0
o0 2 i i
+0 . g 0"y (2n-2,2-8]).
j=—o0
Table 6. Partitions as described in Theorem 7.1.
N Partitions Y,
%] 1
1 1, 2
2 3,+1: 1, +1, 4
3 S, +3,+1:3,+1, +1;
3,+3,+1:1, +1, +1,;
L,+2,+2,1, 10
OJDM
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We define a blue-red partition as the one where the
parts may be of two colors, blue or red, where the red
parts are odd, the largest red part (2n+1) appears only
once and every odd from 3 up to the largest odd part
(2n—1) appears at least once, the blue parts are even,
appearing in pairs, with the largest blue part (Zn) been
one plus the largest odd and for each pair of even up to
the largest odd minus one there is a overlined part, i.e.,
for those parts (pairs of even from 2 up to 2n—-2) ac-
tually we do have an overpartition.

Theorem 8.1 If we consider for each n the blue-red
partitionswith n or n—2 parts then the total number
of all such partitionswith n<N isequal to B, where
B, denote the general term for sequence A052542 from
The On-Line Encyclopedia if Integer Sequences.

Table 7 has, as an illustration, a few partitions as des-
cribed in this theorem.

9. The Results from Equation (80)

The two variable function:

-3 (-t:9),, vee

i), (o)

The functional equation:
(1-t)(1-t°q) fy, (a,t) =1 +tof, (a.tq),

fo(a,t) =D Pt"

n=0

n(n+1)
(42)

fSO (qat)

n+1

The recurrence relation:
R (a)=LR(q)=1+q;R,(q)=1+2g+0" +0’;
R.(a)=(1+a")P., (a)+dR,, —aR,,(q).

An explicit formula for this family:

P.(q)= iq“"z*“CT(n,lJer)

j=—

(43)

+ 3 qPPICT (n,6-14])

j=—0

. (44)
—qz( > q42"2”°"CT(n,3+14j)

j=—

+ iq4212'231+ICT(n,4—14j)].

j=-

We need a definition before stating the next theorem.

We call a green-black partition as the one where the
parts may be of two colors, green or black, each green
part from one up to the largest part appears at least once
and at most twice, each black part is counted twice and
the largest black part is at most one plus twice the largest
green part.

Copyright © 2013 SciRes.

Theorem 9.1 The total number of green-black par-
titions into at most N parts is equal to Gy, where
G, denotethe general term for sequence A006054 from
The On-Line Encyclopedia if Integer Sequences.

Table 8 has, as an illustration, a few partitions as des-
cribed in this theorem.

10. The Results from Equation (81)

The two variable function:

1
f (o) =3 8D v , 45
W R ), e,

The functional equation:

(1-t)(1-t°q) f, (a.t) = 1-t'q+tof, (q.ta),
fo(at)= ni)Pnt”.

The recurrence relation:
R(a)=LR(a)=1+qPR(a)=1+q+q +q"; .
R.(a)=(1+a")P. (@) +AP, , ()R, (q). o

An explicit formula for this family:

Table7. Partitions as described in Theorem 8.1.
N Partitions B,
0 %) 1
1 1, 2
2 3, +1;1 +1; 4
3 5. +3,+1;3 +3 +1;
3,+1L +151 +1 +1;
1 +2,+2;1 10
Table 8. Partitions as described in Theorem 9.1.
N Partitions G,
0 %) 1
I 1, 2
2 Il +152,+2 5
3 I +1,51,+2,;
1,432, +2,+1;
2,41 +153, 42 +1 11
OJDM
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P.(q)= iq“““"CT(n,Mj)

j =—00

+ i qPIIOCT (n,7-14)
j=—0

) @7)
—q{ 3 qRIRICT (n,2+14])

j=—x

j=—0

- i q42j2’291*4CT (n,5-14j )]

We need a definition before stating the next theorem.

We call a red-black partition as the one where the parts
may be of two colors, red or black, each red part from
one up to the largest part appears at least once and at
most twice, each black part is counted twice and the
largest black part is at most twice the largest red part.

Theorem 10.1 The total number of red-black par-
titions into at most N parts is equal to G, where
G, denotethe general term for sequence A052534 from
The On-Line Encyclopedia of Integer Sequences.

Table 9 has, as an illustration, a few partitions as des-
cribed in this theorem.

Table 9. Partitions asdescribed in Theorem 10.1.

Partitions as described in the theorem

N G,
0 ] 1
1 L 2
2 2, +151 +1, 4
3 3.4+2 4152, +2 +1;

2, +1 +1;1 +1;

1, +2, 9
4 L+1 +1:2 +1 +1;

2,41, +2,,2 +1 +3,;

L+1+252 +1 +4;

342 +1 +1;3 +2 +2 +1;

3,+3,+2, +1,

4 43 +2 +152 +2 +1 +1, 20

Copyright © 2013 SciRes.

11. Conclusion

It is our believe that more results of similar type may be
obtained following the ideas used in this paper. The
computer algebra packages available today are a power-
ful tool in the study of g-series identities of the Rogers-
Ramanujan type.
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