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6-FIBONACCI NUMBERS
Roman Wituta, Damian Stota

The scope of the paper is the definition and discussion of the polynomial
generalizations of the FIBONACCI numbers called here §-FIBONACCI numbers.
Many special identities and interesting relations for these new numbers are
presented. Also, different connections between J-FIBONACCI numbers and
FiBoNAcct and LUCAS numbers are proven in this paper.

1. INTRODUCTION

RABINOWITZ in [9] and GRzZYMKOWSKI and WITUEA in [4] independently
discovered and studied the following two identities:

(1.1) (I+E+EN" =Fop + Fu(6+ &Y
and
(1.2) (1+&+&)" = Fpp1 + Fo (62 + 6%,

where F),, n € N denotes the FIBONACCI numbers (see, for example [7]) and £ € C,
& # 1, &5 = 1. Corresponding to these identities, many classical identities and
relations for FiBoNAccCI and LucAs numbers could be proved in a new elegant way
(see for example [12]).

In this paper we generalize the identities (1.1) and (1.2) to the following
forms:

(1.3) (146 +€Y)" = an(0) + ba(0) (£ + &%)
and
(1.4) (146(82+€%)" = an(6) + bn(6)(&* + &%)
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¢-Fibonacci numbers 311

for § € C, n € N. Simultaneously with these new identities, we introduce the
polynomials a,,(9),b,(5) € Z[d], which by (1.1) and (1.2), can be treated as the
generalization of the FIBONACCI numbers and, therefore, which are called here the
d-FiBoNAccCI numbers. The scope of this paper is to investigate basic properties
of these new kinds of numbers. For example, BINET’s formulae for §-FIBONACCI
numbers and formulae connecting a,,(§) and b,(6), n € N, with FiBoNACCI and
LucAs numbers are presented.

It is important to emphasize that our J-FIBONACCI numbers belong to the
family of the so called quasi-FIBONACCI numbers of (k-th, d-as) orders for k €
2N — 1, 6 € C. These numbers are, by definition, the elements of the following
sequences of polynomials:

{ani()knen C 2P, 6€C, i=1,2,..., 7 (k)

where ¢ is the EULER’s totient function. If k£ is an odd prime number, then the
quasi-FIBONACCI numbers of (k-th, d-as) order are determined by the following
identities:

(k—3)/2
(15) (I ) = ana@)+ Y anin(9) (£ +ETY),
i=1

for £ =1,2,...,(k—1)/2, n € N and where £ := exp(2mi/k). More information
and general definitions of the quasi-FIBONACCI numbers are given in papers [12,
14].

We note that §-FIBONACCI numbers, are the simplest members of the family
of the quasi-FIBONACCI numbers of (k-th, §-as) order. Moreover, in paper [12] and
[4] the basic properties of the quasi-FIBONACCI numbers of the (7-th, d-as) and (11-
th, d-as) order, respectively, are presented. In paper [14], which is a continuation
of paper [12], the applications of the quasi-FIBONACCI numbers of the (7-th, d-as)
order to the decomposition of some polynomials of the third degree are studied.
They make it possible to generate new RAMANUJAN-type trigonometric identities!

REMARK 1.1. Most identities and relations discussed in the paper are proved by an
immediate application of identities (1.3) and (1.4). The use of BINET’s formulae for ¢-
FIBONACCI numbers (which were proved in Section 4) is restricted in this paper only to
some cases. By doing so, we want to promote an alternative, more creative method of
generating and verifying the identities for J-FIBONACCI numbers.

Our paper is divided into seven sections. In the second section, the definitions
and notations are given. In the third section, the basic formulae and properties of
0-F1BONACCI numbers are derived. In the fourth section of the paper, the BI-
NET formulae for §-FIBONACCI numbers are proven. The relationships between
0-F1BONACCI numbers for different values of §’s are studied in the fifth section of
the paper. In the sixth section, the reduction formulae for indices are given. Some
summation and convolution type formulae for §-FIBONACCI numbers are derived
in the last section of the paper.



312 Roman Wituta, Damian Slota

2. DEFINITIONS AND NOTATIONS

Let £ = exp(i27/5). Let us start with the following basic result:

Lemma 2.1. a) Any two among the following numbers:

2 -1 - 5+1
L, *53:§+§4:2C08g:\/32 , fa::§2+§5:72cosg:—\/_2+

are linearly independent over Q. Moreover, we have [6, T]:
at+B=af=-1, o=a+l and p2=p0+1

b) Let fr € Q[d] and gr € Q[d], k = 1,2. Then, for any a,b € R linearly
independent over Q, if

f1(0)a+g1(6)b = f2(d)a+ g2(0)b,  for 6€Q

then
f1(6) = f2(6) and  g1(6) = g2(0), for d€C.

Now, let us set

(2.1) (L+6(E+€Y)" = an(d) +ba(0) (€ + €Y

for 6 € C, n € N. Then by Lemma 2.1 the following recurrence relations hold true:

a0(5) = 1, bo(é) = 0,
(2.2) an4+1(0) = an(0) + 0b,(0),
(2.3) bt1(6) = dan(0) + (1 — 6)by,(9),
ant1(9) 1 46 an(9)
(24) [ bosa (6) ] = [ 5 1-6 } [ b (6) } '

The elements of sequences {a,(d)} and {b,(0)} will be called the d-Fibonacci
numbers.

Table 1: The most important cases (for Azzzzzx see [10])

J -2 -1 1/2 2/3 1 2
an(8) | A015448 | A001519 | 27" Fopi1 | 37" F3pi1 | Fusa 5Ln/2]
bn (5) —F3n —Foy 27" Fop 37" Fsn F, (1 — (_1)n)5|-n/2J
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REMARK 2.2. We note that, also by Lemma 2.1, the following identity holds:
(2:5) (146 +€%)" = an(d) +ba(8) (€ +€7).

Hence, by (2.1) we get the identity:

(2.6) (L+6(E+E)"+ (1467 +9))" =2an(8) — ba(8) := An(9).

The new auxiliary sequence {A,(d)} shall be used in many applications of numbers {a.(d)}
and {b,(0)}, especially for the decomposition of certain polynomials.

REMARK 2.3. Let us highlight that from definition (2.2) and (2.3) the previously men-
tioned fact can be inferred that a,(d),bn(d) € Z[0], n=10,1,2,...

Thus, in view of Lemma (2.1), it may be concluded that, if F;,G; € Q[zo, z1,. ..,
Zont1], ¢ = 1,2, and

F1 [ao(é), a1(6), ey an(é), bo(a), b1(6)7 ey bn(é)]
+ (é- + 64) F [a0(5)7 a1(6)7 cee 70"”(6)7 b0(6)7 61(6)7 ceey bn(é)]
=G1 [a0(6)7 a1(6)7 [ CLn((S), 60(5)7 b1(5)7 LR bn(é)]
+ (é- + 64) G2 [a0(6)7 a1(6)7 ceey CLn((S), 60(5)7 b1(5)7 B bn(é)]v
for 6 € Q, then
Filao(8),...,bn(8)] = Gi[ao(6),...,ba(6)],
for every i = 1,2 and 6 € R. A similar fact holds when & + £* is replace by &2 + £3.

The two facts discussed above and referred to as reduction rules, constitute a
principal technical trick used almost throughout our paper. Once again, it should
be emphasized that this method of proving the identities for elements of recurrence
sequences “practically” has not been used in the literature. It is our hope that this
paper shall contribute to the popularization of this method, because of its clarity

and ease of operation (in contrast to the generating functions based method and
BINET’s formulae based method).

3. BASIC FORMULAE AND PROPERTIES

Lemma 3.1. The following relations hold:
a) bn(0) =0,

(3.1)  an(2) =5 by, (2) =0, boni1(2) =2-5" and  by(0)|ban(6).
b) We have (for the proof see Corollary 6.3) :

By

(3.2) L an(m> = Fony1  and  FP, bn( ) — Fin.

Fis1
)
(3:3) b1 (8) — ba(8) = 8(a,(8) — b (9)):
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(34) antk(8) = ar(8)an(d ) + b1 (6)bn (0);
(3.5) btk (8) = b (8)an(8) + [ar(8) — bk(8)]bn(0);
(3.6)  ant1(8) — bng1(8) = [a2(8) — b2(8)] (an—1(8) — bp_1(8)) + ba(8)bp_1(9)
(3.7) =[(1—=6)%+ 0] (an-1(6) — bp—1(8)) + (2 — 8)br_1(5)
and
(3.8) Obns1(0) = (1 = 0)ant1(8) 4 (82 + 6 — 1)a, ().
d) The recurrence formulae for elements of {a,(8)}-as and {b,(6)}-as:
(3.9) ant2(8) + (5 = 2)ant1(6) + (1 =8 — 6%)an(8) =0
and
(3.10) bnt2(8) + (0 — 2)bnr1(8) + (1 — 6 — 6%)bu(8) = 0.
e) For a,b,c,d € C, c+d(E+ &) #0 and d> —c* +cd #0:
R R e O

Proof. a) We have

So, by (2.4) we get:
[ ]|

KRRt

Since by(d) = ¢ (2 — J), we have

[N
—= N
—_
| —|
o> Q
(g
/NN
[NRN )
NN
—_
I
| —|
[\
ot
(S, B
3
—_

and

(5)‘%(5) = bon(0) = ban(2) = 0.

¢) Identity (3.3) follows from (2.3).
For the proof of (3.4) and (3.5) first, we note that:

(3.12) (1+8E+ED)™™ = amin(8) + bnin(8) (€ + Y.

Next, the following decomposition could be generated:

(3.13) (L+8E+e))™ ™M = (1+0E+eN" (1+o(E+Y)"
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= (am(8) + bm(8) (€ + &) (an(8) + bn(8) (€ +£Y)) = am () an(d)
+ b1 (6) bn () + (am(5) bn(6) + @n(8) b (6) — by (0) b (5)) &+ 54)-

Comparing (3.12) with (3.13) we see that by reduction rules, identities (3.4) and
(3.5 hold.

Identity (3.7) is derived from (3.4) and (3.5).
Next, by (2.2) and (2.3) again, we get:

6bn41(8) = 6%an(8) + (1 — 6)0b,, (8) = 6%an(8) + (1 — 8) (an+1(8) — an(9))
which implies (3.8).
d) By (3.8) and (2.2) we obtain:
an+2(8) = ant1(8) = (1 = 8)an+1(8) + (9% + 6 — L)an(9),
which implies (3.9). On the other hand, by (3.3) we obtain:
bu2(6) + (65— 2)bus1(6) + (1 — 6 — 62)b(6) =
= bn+2(5) - bn+1(5) + (5 - 1)(bn+1 bn 5)) - 52

= §(an+1(8) — buy1(8)) + (6 — 1)5(an(6) n<6)—62 <6>
= 5[ (ans1(6) — 4 (8) — ba(8)) + (6an(8) + (1 — 8)bu(8) — by (6))].

which is equal to zero, by (2.2) and (2.3) again. O
The 6-FIBONACCI numbers are described in an explicit form in the following;:

Theorem 3.2. The following decompositions hold (Fy41 = F, + Fr—1, k € Z);

(3.14) an(8) = 3 (o) Fuer (-0)*
k=0
and
(3.15) by (8) = - ( (—1)* 1 F 6",
e (k) k

(see also (5.6) and (5.7) where alternative formulae are given).

Proof. Both formulae follow from (2.2) and (2.3). O
Corollary 3.3. We have:

(3.16) ) =3 (1) -0 L

where L, denotes the k-th Lucas number.
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REMARK 3.4. The following formulae could easily be derived:

@ (6) = nbn-1(8), b(8) = n(an—1(6) — ba_1(8)), (ZZ(((;D _n(l (aé(a)(;f .

Hence, the following relations could be deduced:

(3.17) agn((S) >
(3.18) b (8)b2n (8) > 0,

(3.19) agn(é) > bgn((S),

(3.20) b2n+1(5) > bgn((;) for § >0
and

(3.21) bant+1(9) < ban(d) for § < 0;
(3.22) an+1(0) > an(d) >0 for 6 < 0;
(3.23) 0ban+1(0) = 0,

but b2n+1(5) =0&40= ;

(3.24) aznt1(8) >0 ford e {\/5 — 1,2}.

2
4. BINET FORMULAE FOR J§-FIBONACCI NUMBERS

The characteristic equation of recurrence formulae (3.9) and (3.10) has the
following decomposition:

(41) X2+ (6-2)X+(1-0-0%) = (X—1+61_2\/5)(X_1+51+2\/5)

- (X125 cos (%))(X“F”COS (9)

Hence, the following two identities follow:

Theorem 4.1 (BINET formulae for a,(d)-as and b,(d)-as). We have:

S et )
and
(4.3) bn(6) = g (L;“/gé)n _ g (%—‘/55)"

for everyn =1,2,....
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Corollary 4.2. Using formulae (4.2) and (4.3) the following identities can be
generated:

(4.4) (V5 + 1) an(6) + 2bn(5) = (V5 + 1)(L2+\/55)n,
(4.5) 20,(8) — (V5 — 1) a,(6) = (1 — V/5) (%\/56) :

The next identity is derived by multiplying (4.4) and (4.5) :
(4.6) b2 (6) — a; (8) + an(8) bn(8) = —(1 = 6 — 6*)".

Furthermore from (4.2) and (4.3) we get:

(4.7) a,2(8) +b,2(6) = agn(6),
and
(4.8) 5an(8) bp(8) = a2n(8) + 2bo, () — (1 — 6 — 62)™.

Corollary 4.3. We have:
(4.9) 1) antx(8) = a,7(8) = b (8) = bu—1(0) b+1(6)

=b2(8)(1 =6 — )" (the Catalan’s-type formula),

AN C e o L for k =1 (the Simson’s-type formula),
T 622 -554+5)(1—86—-6%)""2 fork=2.

Furthermore, the Tagiuri’s-type formula [3] holds:

an1k(6) Ante(8) — an(9) anyrte(8) = b5(0) bntrk+e(0) — by k(0) bnte(6)
= — (1 =6 —68%)"bk(6) be(6)-

Moreover, we note that the following expression:
tn—2(8) an—1(8) @n11(9) an+2(8) — a, ()

is independent from a,?(8) iff § = 0 or § = 1. For § = 1 we get the Gelin-Cesdro
identity (see [3, 5, 8]):

Fn—QFn—an+1Fn+2 _Fn4 =-1
Proof. Let us set z,(d) = ru™ 4+ sv™, n € N. Then, we obtain:
2,2(0) — Tp_1(0) Tpyr(0) = —rs (u* —vF)? (o)L

Hence, using (4.2) and (4.3) the formula (4.9) follows. O



318 Roman Witula, Damian Slota

Corollary 4.4. We have:

(4.10) 5a,2(8) = 3azn(6) + ban(8) + 2 (1 — 6 — 62)m,

(4.11) 552(6) = 2a2,(6) — ban(6) —2(1 — 6 — 82)",

(4.12) 5a,2(8) = 2a3,(0) + b3n(6) +3 (1 — 8§ — 6%)" a,(9),

(4.13) 553(6) = bsn(8) — 3 (1 — 6 — 62)" b, (6),

and .

(4.14) 502 = 3 (2 (1) (1= 6 = )" Qasu—pyn — ba—iyn)
£=0

REMARK 4.5. From (3.14) and Corollaries 3.3 and 4.3 the following identities (for every
0 < 'm < 2n) can be derived:

53 (1) " )Pt i = (o) ies -2 SR oy
S (1) )= (a2 S s
S (0, o= (o2 S ]
S ()" )= () S s
S () " ) e = () e

Also, see papers [1, 2] for interesting recurrence relations for the coefficients of polynomials
(1+6+6)", neN.

5. THE RELATIONSHIP BETWEEN §-FIBONACCI NUMBERS
FOR DIFFERENT VALUES OF §’s

Let us start with the following fundamental formulae, which make it possible
to define numbers a,, () and b, (d) by a given a,(A) and b, (A) with A # §.

Theorem 5.1. The following identities hold:

6.1 cran(2) =3 ()6 - 1 Fasto)
k=0

and

(5.2) cnbn@ =3 ()¢ - o)
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for#1 N CH#0 AN JF#O.
Proof. By (2.1) we have (for ¢ # 0):

(5:3) (C+d(€+€Y)" <"(1+ <(5+54)> C"an<g>+cnbn<é

<> (€+¢).

On the other hand, we obtain:

(CH+oE+eM)" =((C-D+1+0E+EM)"
=Y (vt araere)”

k=0
(5.4) (7)€ = 1" Fan() + <Z (7)< - 1)nkbk(5)) (€ +€Y).

k=0 k=0
Using (5.3), (5.4) and the reduction rules identities (5.1) and (5.2) follow. O
Corollary 5.2. For ( =2, 6 = —2 we obtain (a new identity — as it seems) :
(5.5) 2" Fopyp = Z (Z) Fap_, for every r € Z.

k=0

Corollary 5.3. For 6 =1 and { = 1/n we get:

5:9) onl) =3 ()0 - 0" 0
and _
(5.7) bu() = Z (})a=m " n* Fi.
Hence, for n = —1, the following t;o known formulae follow:
P =2 X ()(-]) R R Y ()(-) A

REMARK 5.4. Comparing formulae (5.6) and (5.7) with formulae (3.14) and (3.15) respec-
tively, two new interesting identities can be observed:

(58) > (D)0 B =30 () B,

k=0 k=0

and

n

(5.9) i (=m0 m==> () (=n)* R,

k=0 k=0
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ie.,

(5.10) 0= (1)l =n"" + (10" Fi.

k=0

Theorem 5.5. The following four identities hold:

(5.11) an(8) Fuir + bn(8) Fo = (14 6)" an(%)
(5.12) n(8) Fp + bp(8) Fpy = (1 + )" bn(ﬁ)
(5.13) Foet an(8) — Foyabn(0) = (1— 25)" an(11:265)
and

(5.14) Fpan(6) — Foy bp(6) = (1—206)" bn(11:255).
Proof. Immediately from the identity (5 # —1):

(5.15) (L+E+EMH(1+6(E+¢&Y) = (1+5)(1+ 1—41r<5(5+54))
we obtain:

n
Y

(1+€+ €N (140 +€Y)" = (1 +0)" (14 (6 +€Y)
(Fn+1 + Fn (f + 54)) (an((s) + bn(a) (f + 54))
= 0 (o0 () + 00 (7775) (€ +€9)
an(8) Fpgr 4 b (8) Fyy + (an(0) Fy — b, (8) Fy) (€ + €Y
1

=146 “”(1-1%—5) +(1+4)" b"(1—+5) (E+¢Y),

and, by applied the reduction rules identities (5.11) and (5.12) follow.
The following identity can be obtained in a similar way:
(5.16)  (L+E+EN(1+8(2+€%) =140+ +E+¢" -6

:1f25+(176)(£+£4):(1*25)(1+ 11:255

(€+¢€Y).
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Raising both sides of the above identity to the n-th power and applying (2.1), we
obtain:

(Fn+1 + 5, (f + 54)) (an((S) + bn(‘s) (52 + 53)) =
— (1 26)" (an(11:255) + bn(ll%;a) (€+€Y)

which, after some calculations, yields (5.3) and (5.14). O

Theorem 5.6. We have:
(5.17) an(1=e%) = (1= )" (an(e) an (7= ) + ba(e) bu (1)

1

(5.18) bn(1—€2) = (1—&)" (an(s) bn(ﬁ>+an(:) br(€)—bn (<) by

1—¢
(5.19) (1—¢—ed)" an( 65‘1%) = an(8) an(2) — an(6) bu(e) — bu(6) bu (),

and

(5.20) (1—c—c8)"by, ( E(ﬁ%) = an(€) bn(8) — an(8) b (€).

Proof. Immediately from identity:
(1+Q-e)(E+€h)) =(1+eE+M)) (1 -+ (E+8Y),

we obtain:

an(1l— 52) +0n(1 — 52) &+ 54)
= (1= 2)" (an(e) + ba(e) (€ +€9) (an(722) +ba (=) (€ +€Y),

which, after easy calculations implies (5.17) and (5.18).
Next, we note that

(T+pE+e))" 1+ +)" " =(1-0—pd+(u—20)(E+&H)"
=== (oo 7250 ) + 0o T ) (€ 6D):

On the other hand, we get:

(1+u<s+£4>)”<1+5(52+53))"
(an(p) + bulp) (€ +€*)" (an ba(9) (€% +&%)"
= an (1) an(9) bnw)bn(é) an (1) b (8) + ( <6>b(u>—an( ) b (8)) (€ +€*).

Comparing both of these decompositions by the reduction rules formulae (5.19)
and (5.20) can be deduced. O
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6. REDUCTION FORMULAE FOR INDICES

Theorem 6.1 The following reduction formulae for indices hold:
a) Formulae (3.4) and (3.5) from Section 3;

b)
(6.1) Um—n(0) = an((;)"+ b (3) a:(5) ‘
an(0) bn(6)
and
L
(6.2) bm—n(0) = an((;)n+ bn((;)n an(9) }
c)
(6.3) am.n(0) = ap,(9) an( Z:((g )
6 bon(8) = a(5) 0 23],
. bm(a))
np D b (9) ! (am(5)
(6 5) am-n~p(5) - a‘m (6) an( am(é) ) ap < a (bm(é)) )7
" am(0)
b, (bm)
69 bopl8) = a3 (9) o ( 2201 ) bp< (ZZ%) )
n ( am(a))

Proof. b) We have:

- (0) + b (8) (€ +€") = (L + 5 (€ +€)" " =
_ (U H0E+ED)"  aml() +bm(d) (€ +€Y)
(L+6(E+€4)"  an(0) +ba(d) (§+£*)
and formulae b) from Lemma 3.1 e) follows.

c) We have:
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which yields identities (6.3) and (6.4). Similarly, identities (6.5) and (6.6) can be
deduced. d

Corollary 6.2. The following identity holds:

6.7)  (an(0) = bn(0)) anyk(8) — bn(8) by x(8) = (1 — 6 — 62)™ ax(5).

Proof. The identity follows from (3.4), (3.5) and (4.6). O
Corollary 6.3. From (6.3) — (6.6) and (3.2) we get, for d =1:

F,, 3.14 ~ kE e
(6.8)  Frnsr = F",, an (F—> ) P =Y (Z) Py (=) Fnk,

m+1 b—0
F; (3.15) " n _ e
(6.9) anFern(Fil) — an:Z(k)(*l)k 1FkFr]ZFm+lia
m k=0
b Fon
mn Fm " Fm+1
" Fm+1

Fm+1

Fin
(6.11)  Fppp = FT? af;( >b,,<

and, next, for 6 = —1:

Fom 3.14 "\ /n n—
(6.12) Forpn_1 = FQnmfl (079 (_F 2 ) (<:>) Fomn—1 = Z (k) Fk—1F2km F2mfl7

2m—1
=0

k
n
Fory \ (3.15) n .
(6.13)  —Fapn = F by, (—F 2 ) & Fomn = Y (k) Fy By, Fky
k=0

2m—1
etc.

REMARK 6.4. All formulae from Corollary 6.3 are simultaneously generalizations and
variations of the known CHURCH and BICKNELL’s identities [7, p. 238].

REMARK 6.5. Professor W. WEBB asked on the 13th International Conference on Fi-
bonacci Numbers and Their Applications in Patras (july 2008) on closed formulae for the

sums
N
E Fr,
k=1

where 7 is a fixed positive integer. Admittedly, formulae (6.9), (6,11), etc., do not imply
such closed formulae, but allow for the reduction the problem to the sum of the powers of
the FIBONACCI numbers with indices not greater than N. For example, we have:

k

al (6.9) al Fy al k ) y) )
. k -1 k—
OO S () =22 (§) o mE R

F
k1 k=1 ¢=0
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Fry1

bk(FfL))

@k (Fl:jl)

al 6.11) 2 F;
(6.15) S R 20 3 R az( : )b(
k=1 k=1

REMARK 6.6. From (1.1) we obtain:

(I4+e+e" T+ (14 6+6N" = Log1 + La (€ + €Y,

ie.,
(14206 +€")) (1 +€+6)" = Lusa + La (g +€%).
Hence, by (1.1) and (1.3) we get:

(ax(2) +0(2) (€ +€")) (Finsa + Fin (€ +€")) =

Ly, Ly
= LZ+1 <ak <m) + bk (Ln+1) (é‘ + 54)>7

which, after some manipulations, gives us two new formulae:

L,
ax(2) Fint1 + bx(2) Fin = Lfl-i,-lak( )
Ln+1

and

Ln
ar(2) Fin + bi(2) (Fint1 — Frn) = ar(2) Fin + bk(2) Frn—1 = Lﬁﬂbk(L 1).
n+

Finally, taking into account equalities (3.1) we obtain:

(6.16) 5% Fopnss = L2y s [ —22 ) = i (%) Froa(=La)" L2
. 2kn+1 n+1 42k Ln+1 Z r r— n n+1 >

L okt
(6.17) 5" Liapsrynin = LoH! a2k+1(L 11) = ( r )Fr_l(_L”)TLiﬁl_r’
m =0

I 2%k ok
G = (g2 ) =30 () Rt
and
2k+1
» 2t Ln § r—1(2k+1 rop2ktlor
(619) ’ Lan N LTH:E b2k+1 (Ln+1 - ) (71) ( T ) FTL” Ln++1 .

7. SOME SUMMATION AND CONVOLUTION TYPE FORMULAE

Theorem 7.1. a) Let 4,8 € C and N € N. Then, we have:

N-1

Z " an(9)

n=0

po+p—1 p—1

(7.1) PSR
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= (845 1) a1 (8) + 1N an(8) + (- b — 1)

and
pé+p—1 p—1 |~ N an(@) =1 pNon(5)
(7.2) e 16 n;u bn(d)‘ P 18 .
In the sequel, we obtain:
(7.3) ) Z an = aN )+ bN((S) -1
n=0
and
N-1
(7.4) 5 bu(6) =an(8) — 1.
n=0

Vot arN(éa%l))i(la)—l arjvb(?()s)l‘
(7.5) ;::Oam(é): a7(5’)“+b7‘ o ar(é)r—1‘
ar(6) — 1 by (6
and
o1 o |
o 2,00 = TG T arlo) -

1 ‘ '
ar(6) — 1 b(0)

Proof. We have:

N-1 4 rn 1-— 1+5(£+£4) o
(7.7) ;(1+5(€+€)) - 1_((1+6<£+€4§)"

_l—an( )—brN( )(E+&Y
1 —a,(0) = br(6) (€ + &%)
(3.11) b (8) (brn(6) + arn(6) ) (ar(8) = 1) (arn(6) — 1)
b2(6) — (1 — ar(8))” +b:(8) (ar(8) — 1)
b-(0) (arN( )_1)_brN( )(a,«( ) — ) 4
§+¢°).
b2(8) — (1= an(8))” +b,(6) (ar(8) — 1) ( )
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On the other hand, we have:

N-—1 N-1
Z (1 +90 (§ + 54)> = Z (arn(é) + bra(6) (€ + 54))
=D arm(8) + (E+EY) D bm(0),
=0 n=0

which, by (7.7), implies (7.5) and (7.6).
Theorem 7.2. Let pu,0,w € C and k, £, N € N. Then, we have:

a) 2V an (S(u+0)) = i (™) (@) ax—n(8) + ba(10) b —n(9)).

n=0

2 b (50 +9)) = 37 () (@00 b3v-00) + -0 bu(10) = bul10)bv-a(0) )

)54 Zan an—n(8) = (N +1)8 (3an(6) +bn(8)) + 2bn+1(0),
56 Zb )bn—n(8) = (N + 1) (2an(8) — bn(8)) — 2bn+1(6),

56 Z an(8) by—n(3) = (N +1)8 (an(8) + 2bn(5)) — by+1(9).
¢) In addition, if w + as(0) # 0,
N
(78) > (]T\Z) wN " a4k (6)
N ¢(0) be(9)
= (vt a(9) ( K)a (w+a(5))+bk() (erag(é)))’
N N N—n N
(7.9) Z (n) w by o4k (0) = w+a4 [
be(

n=0
+bk(6>( ( 6)(>)‘bN(wfi)<6>>)}

Proof. c) First, we note that

S(E;w) = (1+8(E+E) (w+ (1+6E+e)HY
— (ar(8) + b (8) (€ +€Y)) (w + ae(8) + be(8) (€ + €)™
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= (w+a(d)" {(ak(a) +b(8) (€ +¢7)) (Wv(ﬂ)

w + a¢(0)

oy (2N er e
= (ot ) [ o (S200) + o) o (20
+ (w + ag(8)~ [ak(é) e (a‘?(é))
o) (an (S 2905) - (205) )] €6+ ).

On the other hand, by an application of the binomial formula to S(d;w), we get

N
SEw) =3 ()N (s eh)

n=0
NN N
— N-—n 4 N—n
= Z(n)w ane+k(0) + (§+E7) Z( ) b o41(6).
n=0 n=0
Comparing two decompositions of S(J;w) formulae c) follows. O

REMARK 7.3. The formulae ¢) of Lemma 7.2 are, in some sense, the generalizations of the
following variations of the DE VRIES’ identities (see [11], where only the case of w =¢ =1
is discussed):

N
(7.10) 3 (JT\Z) W Frogyi = g (o (w+ ") =5 (w+897),
n=0
TNy Nen i 0NN i o\N
(7.11) Z<n>w Lneri =o' (w+ )N + 8 (w+ 89
n=0

where o and 3 in Lemma 2.1 are defined. The proof of (7.10) and (7.11) can be obtained by
an immediate application of the BINET’s formula for the FIBONACCI and LUCAS numbers.

Moreover, from (7.8) and (7.9) both for 6 = 1 and from (7.10) and (7.11) we deduce
the formulae:

(7.12) (1 + Fijl> (Fz azv(%}éﬂ) + Fi1 bN(#))

_ g w N (o (w+ Y _ g (w+ ﬁz)N)7

(713)  (1+ %)N (Li aN(%f}M) tLia bN(%lfhl))

—w N (ai (w+ O/)N + Bi (w—i— ﬁZ)N)7

which implies the following relations:
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(7.14) (-2)' (w+F4+1)N“N(%§m)
= (Fi,l - ? Ll;l) a' (w+ O/)N + (Fi’l + ? Li*l) B w J”GZ)N
(7.15) (-2)"! (W+Fl+1)NbN(%lﬁ“m>

= (R - ?L) o' (w+a")" + (R + ?L) 8 (w+ 89N

At the end of this section, two convolution identities will be presented.

Theorem 7.4. We have:

(7.16) 1+Z()5”kbk6) k=

(7.17) En:( )5n B byo(8) Fopor

k=0 k=0

FINAL REMARKS. As noticed by one of the reviewers, identities (1.1) and (1.2) have
a corresponding form for a general second order recurrence uop = 0, u1 = 1, upy1 =
Aup +Bun—1,n € N. Then we have A" = up A+ Bup—1 and A" = up A+ Bu,—1, where

A= (A+ VAT 14B)/2 and A = (A — VAZ +4B)/2.
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