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Abstract

In this note, we study Fibonacci-like sequences that are defined by the recurrence
Sk = a, Sk+1 = b, Sn+2 ≡ Sn+1 + Sn (mod n + 2) for all n ≥ k, where k, a, b ∈ N,
0 ≤ a < k, 0 ≤ b < k + 1, and (a, b) 6= (0, 0). We will show that the number
α = 0.SkSk+1Sk+2 · · · is irrational. We also propose a conjecture on the pattern of the
sequence {Sn}n≥k.

1 Introduction

Given a sequence of natural numbers a1, a2, . . ., the question of determining the irrationality
of the number α = 0.a1a2 · · · is a classical and interesting question. For example, if a1, a2, . . .

is the sequence of all prime numbers, then α is irrational ([5]). Another well-known example
is the set of generalized Mahler sequences. Let m ≥ 1, h ≥ 2 be integers, and

(m)h = m1h
r−1 + m2h

r−2 + · · · + mr

for some integer r > 0 and 0 ≤ mi < h for all 1 ≤ i ≤ r. Mahler [6] showed that for t ≥ 2
then the number

a(t) = 0.(t0)10(t
1)10(t

2)10 · · ·

is irrational. Bundschuh [4] generalized this result to arbitrary bases. More precisely, he
showed that for any t, r ≥ 2 then the number

ar(t) = 0.(t0)r(t
1)r(t

2)r · · ·

is irrational. Readers can find several proofs of this result in [7, 9]. In the most general form,
one studies the number

ar(t) = a(ni)
r (t) = 0.(tn0)r(t

n1)r(t
n2)r · · ·
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for given r, t ≥ 2 and sequence (ni)i≥0 of non-negative integers. In [10], Shan and Wang
showed that ar(t) is irrational if (ni) is an unbounded sequence. Several criteria for irra-
tionality of ar(t) for bounded (ni) were obtained by Sander [8], and Shorey and Tijdeman
[11]. Motivated by these papers, we will study an analogous result for some Fibonacci-like
sequences.

Recall that the Fibonacci sequence is defined by the following recurrence:

F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn for all n ≥ 0.

In this note, we will study some properties of Fibonacci-like sequences that are defined by
the following recurrence:

Sk = a, Sk+1 = b, Sn+2 ≡ Sn+1 + Sn (mod n + 2 ) for all n ≥ k, (1)

for some k, a, b ∈ N, 0 ≤ a < k and 0 ≤ b < k+1. For any triple (k, a, b) ∈ N
3 with 0 ≤ a < k

and 0 ≤ b < k + 1, we denote Sk
a,b = {Sk

a,b(n)}∞n=k the sequence defined by recurrence (1).
The main result of this note is the following theorem.

Theorem 1. Suppose that a, b, k are natural numbers with 0 ≤ a < k, 0 ≤ b < k + 1. Then

αk
a,b = 0.Sk

a,b(k)Sk
a,b(k + 1)Sk

a,b(k + 2) . . . (2)

is irrational. Here expression (2) means that the decimal expansion of αk
a,b is obtained by the

concatenation of the integers Sk
a,b(n) written in decimal form.

It is worth noticing that most of papers inspired by Mahler deal with exponentially
increasing sequences, while Sk

a,b is always less than n. Furthermore, while the Fibonacci
sequence is well-known and has been studied extensively in the literature, it seems that the
sequence Sk

a,b has not been studied before. The only reference we found about these sequences
refers to S0

0,1. This sequence is known as sequence A056542 in Sloane’s Online Encyclopedia
of Integer Sequences [12].

2 Irrationality

In order to give a proof for Theorem 1, we first need some lemmas.

Lemma 2. Suppose that a, b, k ∈ N such that 0 ≤ a < k, 0 ≤ b < k +1, (a, b) 6= (0, 0). Then
the sequence Sk

a,b is not bounded.

Proof. Suppose that Sk
a,b is bounded for some a, b, k. Let M = maxn≥k{S

k
a,b(n)}. Then, for

every n > 2M , we have Sk
a,b(n) = Sk

a,b(n − 1) + Sk
a,b(n − 2), since Sk

a,b(n − 1) ≤ M and

Sk
a,b(n− 2) ≤ M . Thus, the sequence Sk

a,b eventually coincides with a usual linear recurrence

sequence taking non-negative values. Since Sk
a,b is bounded it immediately follows that

Sk
a,b(n − 1) = Sk

a,b(n − 2) = 0.

By backward induction, we have Sk
a,b(n) = 0 for all n, which is a contradiction. This

concludes the proof of the lemma.
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Lemma 3. For any sufficiently large m, there exists n such that Sk
a,b(n) has exactly m digits.

In other words, there exists n such that 10m−1 ≤ Sk
a,b(n) < 10m.

Proof. From Lemma 2, the sequence {Sk
a,b(n)}n≥k is unbounded. Hence there exists n such

that Sk
a,b(n) ≥ 10m−1. We choose n as small as possible. Then Sk

a,b(n−1), Sk
a,b(n−2) < 10m−1.

This implies that

Sk
a,b(n) ≤ Sk

a,b(n − 1) + Sk
a,b(n − 2) < 2 × 10m−1 < 10m.

This concludes the proof of the lemma.

Using Lemma 2 and Lemma 3, we get the following proof of Theorem 1.

Proof. (of Theorem 1) Suppose that αk
a,b is a rational number for some a, b, k. Then it has

an eventually periodic decimal expansion. Thus we can write

αk
a,b = 0.a1 . . . asb1 . . . btb1 . . . bt . . .

We choose n large enough such that Sk
a,b(n) starts from a position after as. Then for any

r ≥ n, the number αr = Sk
a,b(r)S

k
a,b(r+1)Sk

a,b(r+2) . . . is periodic of period wt for any positive

integer w. We choose m = vt for some large positive integer v such that 10m−1 > Sk
a,b(i) for

all i ≤ n. From Lemma 3, there exists l such that Sk
a,b(l) has exactly m digits. We choose l

to be as small as possible; then l > n.
If Sk

a,b(l− 1) = 0, then Sk
a,b(l− 2) = Sk

a,b(l) has exactly m digits, which is a contradiction.

Hence 0 < Sk
a,b(l − 1) < 10m−1. Similarly, we have 0 < Sk

a,b(l − 2) < 10m−1. Hence

Sk
a,b(l) ≤ Sk

a,b(l − 2) + Sk
a,b(l − 1) < 2 × 10m−1,

Sk
a,b(l + 1) ≤ Sk

a,b(l − 1) + Sk
a,b(l) < 3 × 10m−1.

Therefore, Sk
a,b(l + 1) has no more than m digits. We have two separate cases.

1. Suppose that Sk
a,b(l + 1) ≡ Sk

a,b(l − 1) + Sk
a,b(l) (mod l + 1) has m digits. But αl =

Sk
a,b(l)S

k
a,b(l + 1)Sk

a,b(l + 2) . . . is periodic of period m = vt so Sk
a,b(l + 1) = Sk

a,b(l). This

implies that Sk
a,b(l − 1) = 0 which is a contradiction.

2. Suppose that Sk
a,b(l + 1) ≡ Sk

a,b(l − 1) + Sk
a,b(l) (mod l + 1) has less than m digits. Let

p = Sk
a,b(l + 1). Since αl = Sk

a,b(l)S
k
a,b(l + 1)Sk

a,b(l + 2) . . . is periodic of period m = vt

so Sk
a,b(l) = p ∗ q for some q where p ∗ q denotes the concatenation of p and q. We have

Sk
a,b(l + 2) ≤ Sk

a,b(l + 1) + Sk
a,b(l) < 10m−1 + 2 × 10m−1 < 3 × 10m−1.

So Sk
a,b(l + 2) has no more than m digits. We have two subcases.

(a) Suppose that Sk
a,b(l + 2) has exactly m digits. Then by the periodicity of αl we

have Sk
a,b(l)S

k
a,b(l + 1)Sk

a,b(l + 2) = p ∗ q ∗ p ∗ q ∗ p. If Sk
a,b(l) + Sk

a,b(l + 1) ≥ l + 2
then

Sk
a,b(l) + Sk

a,b(l + 1) < l + 10m−1 < l + 2 + 10m−1,
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which implies that Sk
a,b(l + 2) < 10m−1 which is a contradiction. Hence

Sk
a,b(l) + Sk

a,b(l + 1) < l + 2.

This implies that q ∗ p = Sk
a,b(l + 2) = Sk

a,b(l) + Sk
a,b(l + 1) = p ∗ q + p. Suppose

that p ∗ q = 10hp + q and q ∗ p = 10zq + p. Then q(10z − 1) = 10hp. Thus, 10h | q.
But p ∗ q = 10hp + q so q < 10h. Hence q = 0 and p = 0 which is a contradiction.

(b) Suppose that Sk
a,b(l + 2) has less than m digits. Then we can replace k by l + 1.

And we choose l′ to be the smallest l′ > l such that Sl
a,b(l

′) has exactly m digits.

Apply the above argument for the new sequence Sl
a,b until either we come up with

a contradiction or we can choose l′ large enough such that l′ +1 > 3×10m−1. But
in this case

Sk
a,b(l

′ + 1) ≤ Sk
a,b(l

′ − 1) + Sk
a,b(l

′) < 3 × 10m−1 < l′ + 1.

So Sk
a+b(l

′ + 1) has exactly m digits. And we go to the case 1 which implies a
contradiction.

This concludes the proof of the theorem.

We close this section by an open question.

Open Problem 1. For a, b, k are natural numbers with 0 ≤ a < k, 0 ≤ b < k + 1. Is αk
a,b

an algebraic or transcendental number?

3 Occurrence of zeros

By examining several sequences for small values of a, b and k, we notice a curious property
of the sequence Sk

a,b: this sequence always contains many zeros. We are unable to prove this
statement. Precisely, we propose the following conjecture.

Conjecture 4. Let a, b, k be natural numbers with 0 ≤ a < k, 0 ≤ b < k + 1. Then the
sequence Sk

a,b contains infinitely many zero elements.

Suppose that the sequence Sk
a,b contains only finitely many zero elements for some a, b, k.

Let v be the largest index such that Sk
a,b(v) = 0. Let c = Sk

a,b(v + 1) and d = Sk
a,b(v + 2).

Then the sequence Sv+1
c,d contains no zero element. Therefore the conjecture is equivalent to

the statement “there exists n such that Sk
a,b(n) = 0 for any a, b, k”.

If Conjecture 4 holds, let vk(a, b) be the index of the first zero element in sequence Sk
a,b.

We define
vk = max

0≤a<k,0≤b<k+1
vk(a, b).

For any 0 ≤ a < k and 0 ≤ b < k + 1 then Sk
a,b = {a} ∪ Sk+1

b,c for some 0 ≤ c < k + 2. Thus,
vk ≤ vk+1 for any k. Furthermore, vvk+1 ≥ vk + 1 > vk for any k. Hence

lim
k→∞

vk = ∞.

Using computer, we computed some values of the sequence {vk}k∈N

{vk}k≥1 = {28, 28, 108, 108, 130, 130, 184, 184, 184, 1523, 1523, . . .}.
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