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Abstract

We study certain polynomials Pm (x, y; t) and Qm (x, y; t) of the variable t whose
coefficients involve bivariate Fibonacci polynomials Fj (x, y) or bivariate Lucas poly-
nomials Lj (x, y). By working with Pm (x, y; tx) and Qm (x, y; tx), together with the
generating functions for Bernoulli polynomials Bi (t) and Euler polynomials Ei (t), we
obtain a list of eight identities connecting Fj (x, y) or Lj (x, y) with Bi (t) or Ei (t). We
present also some consequences of these results.

1 Introduction

We use N for the natural numbers and N
′ for N ∪ {0}.

We recall now some definitions and basic facts of the main mathematical objects involved
in this work, namely Fibonacci and Lucas numbers and polynomials (see [6] and [8]), and
Bernoulli and Euler numbers and polynomials (see [4]).

We follow the standard notation Fn (x, y) and Ln (x, y) for the sequences of bivariate
Fibonacci and Lucas polynomials, defined by the recurrences Fn+2 (x, y) = xFn−1 (x, y) +
yFn (x, y), F0 (x, y) = 0, F1 (x, y) = 1, and Ln+2 (x, y) = xLn−1 (x, y)+yLn (x, y), L0 (x, y) =
2, L1 (x, y) = x, respectively, and extended to n ∈ Z as F−n (x, y) = − (−y)−n

Fn (x, y)
and L−n (x, y) = (−y)−n

Ln (x, y). Plainly we have Fn (1, 1) = Fn and Ln (1, 1) = Ln, the
Fibonacci and Lucas number sequences (A000045 and A000032 of Sloane’s Encyclopedia).
Some bivariate Fibonacci polynomials are F2 (x, y) = x, F3 (x, y) = x2 + y, F4 (x, y) =
x3 +2xy, F5 (x, y) = x4 +3x2y+y2,. . . , and some bivariate Lucas polynomials are L2 (x, y) =
x2 + 2y, L3 (x, y) = x3 + 3xy, L4 (y) = x4 + 4x2y + 2y2, L5 (y) = x5 + 5x3y + 5xy2, . . . . We
will use extensively Binet’s formulas (without further comments):

Fn (x, y) =
1

√

x2 + 4y
(αn (x, y) − βn (x, y)) and Ln (x, y) = αn (x, y) + βn (x, y) , (1)
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where

α (x, y) =
1

2

(

x +
√

x2 + 4y
)

and β (x, y) =
1

2

(

x −
√

x2 + 4y
)

, (2)

together with the basic facts α (x, y) + β (x, y) = x and α (x, y) β (x, y) = −y. We will use
also the following explicit formulas for bivariate Fibonacci and Lucas polynomials:

Fn (x, y) =

⌊n−1

2 ⌋
∑

k=0

(

n − 1 − k

k

)

xn−1−2kyk and Ln (x, y) =

⌊n

2 ⌋
∑

k=0

n

n − k

(

n − k

k

)

xn−2kyk, (3)

(the first formula is valid for n ∈ N
′, and the second one is valid for n ∈ N).

We will be working with Bernoulli and Euler polynomials, which can be defined as

Bn (t) =
n
∑

j=0

(

n

j

)

Bjt
n−j and En (t) =

n
∑

j=0

(

n

j

)

Ej

2j

(

t −
1

2

)n−j

, (4)

where Bj and Ej are the Bernoulli and Euler numbers, respectively, defined by the generating
functions

z

ez − 1
=

∞
∑

j=0

Bj

zj

j!
and

2ez

e2z + 1
=

∞
∑

j=0

Ej

zj

j!
, (5)

The corresponding generating functions for Bernoulli and Euler polynomials are

zezt

ez − 1
=

∞
∑

j=0

Bj (t)
zj

j!
and

2ezt

ez + 1
=

∞
∑

n=0

En (t)
zn

n!
. (6)

It is not difficult to see that for j ∈ N, one has B2j+1 = 0 and E2j−1 = 0 (odd Bernoulli
numbers are zero, except B1 = −1

2
, and odd Euler numbers are zero). Also we have B0 =

E0 = 1. Some other values are B2 = 1
6
, B4 = − 1

30
, B6 = 1

42
, B8 = − 1

30
, . . . and E2 = −1,

E4 = 5, E6 = −61, E8 = 1385, . . . . The first Bernoulli polynomials are B0 (t) = 1,
B1 (t) = t− 1

2
, B2 (t) = t2 − t + 1

6
, B3 (t) = t3 − 3

2
t2 + 1

2
t, B4 (t) = t4 − 2t3 + t2 − 1

30
, . . . , and

the first Euler polynomials are E0 (t) = 1, E1 (t) = t− 1
2
, E2 (t) = t2− t, E3 (t) = t3− 3

2
t2 + 1

4
,

E4 (t) = t4 − 2t3 + t, . . . . One can see easily that for n ∈ N, one has B′

n (t) = nBn−1 (t) and
E ′

n (t) = nEn−1 (t).
Besides the trivial fact Bn (0) = Bn, we will use that

Bn

(

1

2

)

=
(

21−n − 1
)

Bn , En

(

1

2

)

= 2−nEn. (7)

En (0) = −
2 (2n+1 − 1)

n + 1
Bn+1. (8)

There are interesting papers in the literature pursuing relations among Bernoulli and Eu-
ler numbers and/or polynomials (see the 2006 works of Sun and Pan [11, 12] and references
therein). On the other hand, there are certainly much research establishing relations among
Fibonacci and Lucas numbers or polynomials (see references in the books of Koshy [6] and
Vajda [8]). But also there has been interest in finding connections between the mathematics
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of Bernoulli and Euler and the mathematics of Fibonacci and Lucas, and this interest is not
new: in 1975 P. F. Byrd [1] obtains some nice formulas connecting Bernoulli, Fibonacci and
Lucas numbers. We also have to mention the 1957 work of Kelisky [5], the 2005 work of
T. Zhang and Y. Ma [10], and the nice papers of J. Cigler [2, 3], which contains some of
the results of our corollary 3 in section 3. This article responds to the interest in exploring
more about these kind of connections. We work with certain kind of Appel sequences of
polynomials Pn (x, y; t) and Qn (x, y; t) in the variable t, whose coefficients are in turn bivari-
ate Fibonacci polynomials Fm (x, y) or bivariate Lucas polynomials Lm (x, y). By working
with generating functions of Bernoulli and Euler polynomials, we establish some identities
involving the polynomials Pn (x, y; xt) and Qn (x, y; xt) together with Bernoulli polynomials
Bj (t), Euler polynomials Ej (t), bivariate Fibonacci Fk (x, y) and bivariate Lucas Lk (x, y)
polynomials. These identities are the main results of the work (proposition 2). In section 3
we obtain some corollaries from identities of section 2.

2 The main results

We begin with a lemma with two easy identities that we will need in the proof of the main
results of this work.

Lemma 1. The following identities hold

(

1 − e−xz
)

∞
∑

n=0

Ln (x, y)
zn

n!
= 2

∞
∑

n=0

L2n+1 (x, y)
z2n+1

(2n + 1)!
. (9)

(

1 + e−xz
)

∞
∑

n=0

Ln (x, y)
zn

n!
= 2

∞
∑

n=0

L2n (x, y)
z2n

(2n)!
. (10)

Proof. We have

eα(x,y)z + eβ(x,y)z = e(x−β(x,y))z + e(x−α(x,y))z = exz
(

e−α(x,y)z + e−β(x,y)z
)

,

and then

e−xz

∞
∑

n=0

Ln (x, y)
zn

n!
=

∞
∑

n=0

Ln (x, y)
(−z)n

n!
.

Thus

(

1 − e−xz
)

∞
∑

n=0

Ln (x, y)
zn

n!
=

∞
∑

n=0

Ln (x, y)
zn

n!
−

∞
∑

n=0

Ln (x, y)
(−z)n

n!

= 2
∞
∑

n=0

L2n+1 (x, y)
z2n+1

(2n + 1)!
,

which proves (9), and

(

1 + e−xz
)

∞
∑

n=0

Ln (x, y)
zn

n!
=

∞
∑

n=0

Ln (x, y)
zn

n!
+

∞
∑

n=0

Ln (x, y)
(−z)n

n!

= 2
∞
∑

n=0

L2n (x, y)
z2n

(2n)!
,
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which proves (10).

Let us consider the polynomials

Qn (x, y; t) =
n
∑

k=0

(

n

k

)

(−1)k
Lk (x, y) tn−k, (11)

which can be written as

Qn (x, y; t) = (t − α (x, y))n + (t − β (x, y))n
. (12)

Observe that

∞
∑

n=0

Qn (x, y; tx)
zn

n!
=

∞
∑

n=0

(tx − α (x, y))n zn

n!
+

∞
∑

n=0

(tx − β (x, y))n zn

n!

= e(tx−α(x,y))z + e(tx−β(x,y))z

= e(tx−x+β(x,y))z + e(tx−x+α(x,y))z

= e(t−1)xz
(

eβ(x,y)z + eα(x,y)z
)

= e(t−1)xz

∞
∑

n=0

(αn (x, y) + βn (x, y))
zn

n!
.

That is, we have

∞
∑

n=0

Qn (x, y; tx)
zn

n!
= e(t−1)xz

∞
∑

n=0

Ln (x, y)
zn

n!
. (13)

We can use (9) to write (13) as

∞
∑

n=0

Qn (x, y; tx)
zn

n!
= 2

etxz

exz − 1

∞
∑

n=0

L2n+1 (x, y)
z2n+1

(2n + 1)!
. (14)

By using the generating function for Bernoulli polynomials (6) we can write (14) as

∞
∑

n=0

Qn (x, y; tx)
zn

n!
= 2

∞
∑

j=0

∞
∑

n=0

(

2n + j

j

)

Bj (t) xj−1L2n+1 (x, y)

2n + 1

z2n+j

(2n + j)!
. (15)

By equating the coefficients of similar powers of z in (15) we get

Q2m (x, y; tx) = 2
m
∑

j=0

(

2m

2j

)

B2j (t)
x2j−1

2m + 1 − 2j
L2m+1−2j (x, y) , (16)

and

Q2m+1 (x, y; tx) = 2
m
∑

j=0

(

2m + 1

2j + 1

)

B2j+1 (t)
x2j

2m + 1 − 2j
L2m+1−2j (x, y) . (17)
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Similarly, observe that

∞
∑

n=0

Qn (x, y; tx)
(−z)n

n!
=

∞
∑

n=0

(−tx + α (x, y))n zn

n!
+

∞
∑

n=0

(−tx + β (x, y))n zn

n!

= e(−tx+α(x,y))z + e(−tx+β(x,y))z

= e−txz
(

eα(x,y)z + eβ(x,y)z
)

= e−txz

∞
∑

n=0

(αn (x, y) + βn (x, y))
zn

n!
.

That is, we have

∞
∑

n=0

Qn (x, y; tx)
(−z)n

n!
= e−txz

∞
∑

n=0

Ln (x, y)
zn

n!
. (18)

We can use (10) to write (18) as

∞
∑

n=0

Qn (x, y; tx)
(−z)n

n!
=

2e−txz

1 + e−xz

∞
∑

n=0

L2n (x, y)
z2n

(2n)!
. (19)

By using the generating functions of Euler polynomials (6), we can write (19) as

∞
∑

n=0

Qn (x, y; tx)
(−z)n

n!
=

∞
∑

j=0

∞
∑

n=0

(

2n + j

j

)

Ej (t) (−x)j
L2n (x, y)

z2n+j

(2n + j)!
. (20)

By equating the coefficients of similar powers of z in (20) we obtain

Q2m (x, y; tx) =
m
∑

j=0

(

2m

2j

)

E2j (t) x2jL2m−2j (x, y) , (21)

and

Q2m+1 (x, y; tx) =
m
∑

j=0

(

2m + 1

2j + 1

)

E2j+1 (t) x2j+1L2m−2j (x, y) . (22)

Thus, (16) and (21) give us

Q2m (x, y; tx) = 2
m
∑

j=0

(

2m

2j

)

B2j (t)
x2j−1

2m + 1 − 2j
L2m+1−2j (x, y) (23)

=
m
∑

j=0

(

2m

2j

)

E2j (t) x2jL2m−2j (x, y) ,

and (17) and (22) give us

Q2m+1 (x, y; tx) = 2
m
∑

j=0

(

2m + 1

2j + 1

)

B2j+1 (t)
x2j

2m + 1 − 2j
L2m+1−2j (x, y) (24)

=
m
∑

j=0

(

2m + 1

2j + 1

)

E2j+1 (t) x2j+1L2m−2j (x, y) .

5



If we consider now the polynomials

Pn (x, y; t) =
n
∑

k=0

(

n

k

)

(−1)k+1
Fk (x, y) tn−k (25)

= −
1

√

x2 + 4y
((t − α (x, y))n − (t − β (x, y))n) ,

it is possible to establish similar results to (23) and (24) (involving Fibonacci polynomials
Fk (x, y) instead of Lucas polynomials Lk (x, y)). We describe the main steps of the procedure
to obtain these new results and leave the reader to complete the details of the proofs. Firstly
one proves that

(

1 − e−xz
)

∞
∑

n=0

Fn (x, y)
zn

n!
= 2

∞
∑

n=0

F2n (x, y)
z2n

(2n)!
. (26)

(

1 + e−xz
)

∞
∑

n=0

Fn (x, y)
zn

n!
= 2

∞
∑

n=0

F2n+1 (x, y)
z2n+1

(2n + 1)!
. (27)

(Similar to (9) and (10).) Secondly one proves that

∞
∑

n=0

Pn (x, y; tx)
zn

n!
= e(t−1)xz

∞
∑

n=0

Fn (x, y)
zn

n!
, (28)

then uses (26) to write this expression as

∞
∑

n=0

Pn (x, y; tx)
zn

n!
= 2

etxz

exz − 1

∞
∑

n=0

F2n (x, y)
z2n

(2n)!
, (29)

and finally uses the generating function for Bernoulli polynomials (6) to write (29) as

∞
∑

n=0

Pn (x, y; tx)
zn

n!
=

∞
∑

n=0

∞
∑

j=0

(

2n + 1 + j

j

)

Bj (t)
F2n+2 (x, y)

n + 1
xj−1 z2n+j+1

(2n + 1 + j)!
. (30)

By equating the coefficients of similar powers of z in (30) one obtains that

P2m+1 (x, y; tx) =
m
∑

j=0

(

2m + 1

2j

)

B2j (t)
x2j−1

m + 1 − j
F2m+2−2j (x, y) , (31)

and

P2m (x, y; tx) =
m−1
∑

j=0

(

2m

2j + 1

)

B2j+1 (t)
x2j

m − j
F2m−2j (x, y) . (32)

On the other hand, one proves first that

∞
∑

n=0

Pn (x, y; tx)
(−z)n

n!
= −e−txz

∞
∑

n=0

Fn (x, y)
zn

n!
, (33)
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then uses (27) to write (33) as

∞
∑

n=0

Pn (x, y; tx)
(−z)n

n!
= −

2e−txz

1 + e−xz

∞
∑

n=0

F2n+1 (x, y)
z2n+1

(2n + 1)!
, (34)

and finally uses the generating function of Euler polynomials (6) to write (34) as

∞
∑

n=0

Pn (x, y; tx)
(−z)n

n!
= −

∞
∑

j=0

∞
∑

n=0

(

2n + 1 + j

j

)

Ej (t) (−x)j
F2n+1 (x, y)

z2n+j+1

(2n + 1 + j)!
.

(35)
By equating the coefficients of similar powers of z in (35) one gets that

P2m (x, y; tx) =
m−1
∑

j=0

(

2m

2j + 1

)

E2j+1 (t) x2j+1F2m−1−2j (x, y) , (36)

and

P2m+1 (x, y; tx) =
m
∑

j=0

(

2m + 1

2j

)

E2j (t) x2jF2m+1−2j (x, y) . (37)

Thus, we have identities (32) and (36) similar to (23), namely

P2m (x, y; tx) =
m−1
∑

j=0

(

2m

2j + 1

)

B2j+1 (t)
x2j

m − j
F2m−2j (x, y) (38)

=
m−1
∑

j=0

(

2m

2j + 1

)

E2j+1 (t) x2j+1F2m−1−2j (x, y) ,

and identities (31) and (37) similar to (24), namely

P2m+1 (x, y; tx) =
m
∑

j=0

(

2m + 1

2j

)

B2j (t)
x2j−1

m + 1 − j
F2m+2−2j (x, y) (39)

=
m
∑

j=0

(

2m + 1

2j

)

E2j (t) x2jF2m+1−2j (x, y) .

In the following proposition we collect the main identities (23), (24), (38) and (39) ob-
tained in this section, which are the main results of this work.

Proposition 2. The following identities hold

2m
∑

k=0

(

2m

k

)

(−1)k+1
Fk (x, y)(tx)2m−k =

m−1
∑

j=0

(

2m

2j + 1

)

B2j+1 (t)
x2j

m − j
F2m−2j (x, y) (40)

=
m−1
∑

j=0

(

2m

2j + 1

)

E2j+1 (t) x2j+1F2m−1−2j (x, y) .
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2m+1
∑

k=0

(

2m+1

k

)

(−1)k+1
Fk(x, y)(tx)2m+1−k =

m
∑

j=0

(

2m+1

2j

)

B2j(t) x2j−1

m+1−j
F2m+2−2j(x, y) (41)

=
m
∑

j=0

(

2m + 1

2j

)

E2j (t) x2jF2m+1−2j (x, y) .

2m
∑

k=0

(

2m

k

)

(−1)k
Lk(x, y)(tx)2m−k = 2

m
∑

j=0

(

2m

2j

)

B2j (t) x2j−1

2m + 1 − 2j
L2m+1−2j (x, y) (42)

=
m
∑

j=0

(

2m

2j

)

E2j (t) x2jL2m−2j (x, y) .

2m+1
∑

k=0

(

2m+1

k

)

(−1)k
Lk(x, y)(tx)2m+1−k = 2

m
∑

j=0

(

2m+1

2j+1

)

B2j+1(t) x2j

2m+1−2j
L2m+1−2j(x, y) (43)

=
m
∑

j=0

(

2m + 1

2j + 1

)

E2j+1 (t) x2j+1L2m−2j (x, y) .

We want to mention that (40) and (41) can be obtained as consequences of (43) and (42),
respectively. Indeed, if we use the well-known fact that ∂

∂y
Ls (x, y) = sFs−1 (x, y) (see [9])

and take the derivative with respect to y in (43), we get

2m+1
∑

k=1

(

2m + 1

k

)

(−1)k
kFk−1 (x, y) (tx)2m+1−k

= 2
m−1
∑

j=0

(

2m + 1

2j + 1

)

B2j+1 (t) x2jF2m−2j (x, y)

=
m−1
∑

j=0

(

2m + 1

2j + 1

)

E2j+1 (t) x2j+1 (2m − 2j) F2m−1−2j (x, y) ,

which is (40) (after some easy simplifications). Similarly, the derivative with respect to y of
(42) is

2m
∑

k=1

(

2m

k

)

(−1)k
kFk−1 (x, y) (tx)2m−k = 2

m−1
∑

j=0

(

2m

2j

)

B2j (t) x2j−1F2m−2j (x, y)

=
m−1
∑

j=0

(

2m

2j

)

E2j (t) x2j (2m − 2j) F2m−1−2j (x, y) ,

which, after some simplifications, becomes (41).
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3 Some Corollaries

In this section we obtain some other identities that are contained in our main results (40)
to (43).

Corollary 3. The following identities hold

F2m (x, y) =
m−1
∑

j=0

(

2m

2j + 1

)

(4j+1 − 1) B2j+2

j + 1
x2j+1F2m−1−2j (x, y) . (44)

F2m+1 (x, y) =
m
∑

j=0

(

2m + 1

2j

)

B2j

m + 1 − j
x2j−1F2m+2−2j (x, y) . (45)

L2m (x, y) = 2
m
∑

j=0

(

2m

2j

)

B2j

2m + 1 − 2j
x2j−1L2m+1−2j (x, y) . (46)

L2m+1 (x, y) =
m
∑

j=0

(

2m + 1

2j + 1

)

(4j+1 − 1) B2j+2

j + 1
x2j+1L2m−2j (x, y) . (47)

Proof. If we set t = 0 in (40) we obtain (by using (8))

− F2m (x, y) =
m−1
∑

j=0

(

2m

2j + 1

)

B2j+1
x2j

m − j
F2m−2j (x, y)

= −

m−1
∑

j=0

(

2m

2j + 1

)

2 (22j+2 − 1)

2j + 2
x2j+1F2m−1−2j (x, y) .

The first equality is trivial. The second one is (44). Similarly, by setting t = 0 in (41),
(42) and (43), and using (8), we obtain (45), (46) and (47), respectively.

Formulas (44) to (47) express even (odd) indexed bivariate Fibonacci and Lucas poly-
nomials as linear combinations of odd (even, respectively) indexed polynomials of the same
kind. Some versions of these results appear in [2] (see also [3]).

Corollary 4. The following identities hold
m
∑

j=0

(

2m + 1

2j

)

(

21−2j − 1
) B2j

m + 1 − j
x2j−1F2m+2−2j (x, y)

=
m
∑

j=0

(

2m

2j

)

(

21−2j − 1
) B2j

2m + 1 − 2j
x2j−1L2m+1−2j (x, y)

=
m
∑

j=0

(

2m + 1

2j

)

2−2jE2jx
2jF2m+1−2j (x, y)

=
1

2

m
∑

j=0

(

2m

2j

)

2−2jE2jx
2jL2m−2j (x, y)

=
1

22m

(

x2 + 4y
)m

. (48)
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Proof. Observe that (from (25))

Pn

(

x, y;
x

2

)

= −
1

√

x2 + 4y

((x

2
− α (x, y)

)n

−
(x

2
− β (x, y)

)n)

=
1 − (−1)n

2n

(

x2 + 4y
)

n−1

2 ,

and (from (12))

Qn

(

x, y;
x

2

)

=
(x

2
− α (x, y)

)n

+
(x

2
− β (x, y)

)n

=
1 + (−1)n

2n

(

x2 + 4y
)

n

2 .

Then, by setting t = 1
2

in (41) and (42) (and using (7) and (8)) we obtain that

P2m+1

(

x, y;
x

2

)

=
1

22m

(

x2 + 4y
)m

=
m
∑

j=0

(

2m + 1

2j

)

(

21−2j − 1
) B2j

m + 1 − j
x2j−1F2m+2−2j (x, y)

=
m
∑

j=0

(

2m + 1

2j

)

2−2jE2jx
2jF2m+1−2j (x, y) ,

and

Q2m

(

x, y;
x

2

)

=
2

22m

(

x2 + 4y
)m

= 2
m
∑

j=0

(

2m

2j

)

(

21−2j − 1
) B2j

2m + 1 − 2j
x2j−1L2m+1−2j (x, y)

=
m
∑

j=0

(

2m

2j

)

2−2jE2jx
2jL2m−2j (x, y) ,

respectively. These are identities (48). (Note that identities (40) and (43) produce only
trivial cases with t = 1

2
.)

In the rest of this section we write ξ (x, y) to denote any of α (x, y) or β (x, y). When we
write an expression involving ξ (x, y) together with the plus-minus sign ±, we understand
that the plus sign corresponds to the case ξ = α, and the minus sign corresponds to the case
ξ = β.

10



Corollary 5. The following identities hold

m
∑

j=0

(

2m + 1

2j

)

B2j

(

ξ (x, y)

x

)

x2j−1

m + 1 − j
F2m+2−2j (x, y)

= 2
m
∑

j=0

(

2m

2j

)

B2j

(

ξ (x, y)

x

)

x2j−1

2m + 1 − 2j
L2m+1−2j (x, y)

=
m
∑

j=0

(

2m + 1

2j

)

E2j

(

ξ (x, y)

x

)

x2jF2m+1−2j (x, y)

=
m
∑

j=0

(

2m

2j

)

E2j

(

ξ (x, y)

x

)

x2jL2m−2j (x, y)

=
(

x2 + 4y
)m

. (49)

(

x2 + 4y
)

m−1
∑

j=0

(

2m

2j + 1

)

B2j+1

(

ξ (x, y)

x

)

x2j

m − j
F2m−2j (x, y)

= 2
m
∑

j=0

(

2m + 1

2j + 1

)

B2j+1

(

ξ (x, y)

x

)

x2j

2m + 1 − 2j
L2m+1−2j (x, y)

=
(

x2 + 4y
)

m−1
∑

j=0

(

2m

2j + 1

)

E2j+1

(

ξ (x, y)

x

)

x2j+1F2m−1−2j (x, y)

=
m
∑

j=0

(

2m + 1

2j + 1

)

E2j+1

(

ξ (x, y)

x

)

x2j+1L2m−2j (x, y)

= ±
(

x2 + 4y
)

2m+1

2 . (50)

Proof. If we set t = α (x, y) in (25) and (12) we get

Pn (x, y; α (x, y)) =
(

x2 + 4y
)

n−1

2 ,

and
Qn (x, y; α (x, y)) =

(

x2 + 4y
)

n

2 .

Similarly, with t = β (x, y) we get

Pn (x, y; β (x, y)) = (−1)n+1 (
x2 + 4y

)
n−1

2 ,

and
Qn (x, y; β (x, y)) = (−1)n

(

x2 + 4y
)

n

2 .

Thus, we have

P2m+1 (α (x, y)) = P2m+1 (β (x, y)) = Q2m (α (x, y)) = Q2m (β (x, y)) =
(

x2 + 4y
)m

,

11



and then identity (49) is obtained by setting t = α(x,y)
x

and t = β(x,y)
x

in (41) and (42).

In the same way we obtain (50) by setting t = α(x,y)
x

and t = β(x,y)
x

in identities (40) and
(43).

Corollary 6. (a) For r = 0, 1, . . . ,m, the following identities hold

m−1−r
∑

j=0

(

2m

2j + 1

)(

2m − 2j − 1 − r

r

)

1

m − j
B2j+1 (t) (51)

=
m−1−r
∑

j=0

(

2m

2j + 1

)(

2m − 2j − 2 − r

r

)

E2j+1 (t)

=
2m−1−r
∑

j=0

(

2m

j

)(

2m − j − 1 − r

r

)

(−1)j+1
tj.

m−r
∑

j=0

(

2m + 1

2j

)(

2m − 2j + 1 − r

r

)

1

m + 1 − j
B2j (t) (52)

=
m−r
∑

j=0

(

2m + 1

2j

)(

2m − 2j − r

r

)

E2j (t)

=
2m−r
∑

j=0

(

2m + 1

j

)(

2m − j − r

r

)

(−1)j
tj.

(b) For r = 1, 2, . . . ,m, the following identities hold

2
m−r
∑

j=0

(

2m

2j

)(

2m + 1 − 2j − r

r

)

1

2m + 1 − 2j − r
B2j (t) (53)

=
m−r
∑

j=0

(

2m

2j

)(

2m − 2j − r

r

)

2m − 2j

2m − 2j − r
E2j (t)

=
2m
∑

j=2r

(

2m

j

)(

j − r

r

)

(−1)j
j

j − r
t2m−j.

2
m−r
∑

j=0

(

2m + 1

2j + 1

)(

2m + 1 − 2j − r

r

)

1

2m + 1 − 2j − r
B2j+1 (t) (54)

=
m−r
∑

j=0

(

2m + 1

2j + 1

)(

2m − 2j − r

r

)

2m − 2j

2m − 2j − r
E2j+1 (t)

=
2m+1
∑

j=2r

(

2m + 1

j

)(

j − r

r

)

(−1)j
j

j − r
t2m+1−j.

12



Proof. (a) First substitute the explicit formula (3) for Fn (x, y) in (40) and (41), then equate
the coefficients of similar terms x2m+1−2ryr, r = 0, 1, . . . ,m to obtain (51) and (52), respec-
tively.

(b) First substitute the explicit formula (3) for Ln (x, y) in (42) and (43), then equate the
coefficients of similar terms x2m+1−2ryr, r = 1, 2, . . . ,m to obtain (53) and (54), respectively.

Fibonacci and Lucas polynomials are hidden in identities (51) to (54). To let them appear
we just have to write the right-hand side polynomials of these identities in a special form.
The following lemma tells us how to do this.

Lemma 7. (a) For r = 0, 1, . . . ,m we have

2m−1−r
∑

j=0

(

2m

j

)(

2m − j − 1 − r

r

)

(−1)j+1
tj (55)

= (−1)r+1
r
∑

j=0

(

2m

j

)(

2r − j

r

)

(

(t − 1)2m−j + (−1)j+1
t2m−j

)

,

and

2m−r
∑

j=0

(

2m + 1

j

)(

2m − j − r

r

)

(−1)j
tj (56)

= (−1)r+1
r
∑

j=0

(

2m + 1

j

)(

2r − j

r

)

(

(t − 1)2m+1−j + (−1)j+1
t2m+1−j

)

.

(b) For r = 1, 2, . . . ,m we have

2m
∑

j=2r

(

2m

j

)(

j − r

r

)

(−1)j
j

j − r
t2m−j (57)

= (−1)r
r
∑

j=1

(

2m

j

)(

2r − j − 1

r − 1

)

j

r

(

(t − 1)2m−j + (−1)j
t2m−j

)

,

and

2m+1
∑

j=2r

(

2m + 1

j

)(

j − r

r

)

(−1)j
j

j − r
t2m+1−j (58)

= (−1)r
r
∑

j=1

(

2m + 1

j

)(

2r − j − 1

r − 1

)

j

r

(

(t − 1)2m+1−j + (−1)j
t2m+1−j

)

.

Proof. We present only the proof of (55). The corresponding proofs of (56), (57) and (58)
are similar and left to the reader.
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We have
r
∑

j=0

(

2m

j

)(

2r − j

r

)

(

(t − 1)2m−j + (−1)j+1
t2m−j

)

=
r
∑

j=0

(

2m

j

)(

2r − j

r

)2m−j
∑

k=0

(

2m − j

k

)

(−1)k
t2m−j−k +

r
∑

j=0

(

2m

j

)(

2r − j

r

)

(−1)j+1
t2m−j

=
2m
∑

j=0

min(r,j)
∑

i=0

(

2m

i

)(

2r − i

r

)(

2m − i

j − i

)

(−1)j−i
t2m−j +

r
∑

j=0

(

2m

j

)(

2r − j

r

)

(−1)j+1
t2m−j

=
r
∑

j=0

(

2m

j

)

(

j
∑

i=0

(

2r − i

r

)(

j

i

)

(−1)i −

(

2r − j

r

)

)

(−1)j
t2m−j

+
2m
∑

j=r+1

(

2m

j

)

(

r
∑

i=0

(

2r − i

r

)(

j

i

)

(−1)i

)

(−1)j
t2m−j. (59)

For j = 0, 1, . . . , r we have

j
∑

i=0

(

2r − i

r

)(

j

i

)

(−1)i =

(

2r − j

r

)

,

and for j = r + 1, . . . , 2m we have

r
∑

i=0

(

2r − i

r

)(

j

i

)

(−1)i =

(

j − 1 − r

r

)

(−1)r
.

(See [7], identity (3.50), p. 65.) Thus (59) can be written as

r
∑

j=0

(

2m

j

)(

2r − j

r

)

(

(t − 1)2m−j + (−1)j+1
t2m−j

)

=
2m
∑

j=r+1

(

2m

j

)(

j − 1 − r

r

)

(−1)r+j
t2m−j,

and finally we can write the right-hand side of (55) as

(−1)r+1
r
∑

j=0

(

2m

j

)(

2r − j

r

)

(

(t − 1)2m−j + (−1)j+1
t2m−j

)

= (−1)r+1
2m
∑

j=r+1

(

2m

j

)(

j − 1 − r

r

)

(−1)r (−1)j
t2m−j

=
2m
∑

j=r+1

(

2m

j

)(

j − 1 − r

r

)

(−1)j+1
t2m−j

=
2m−1−r
∑

j=0

(

2m

j

)(

2m − j − 1 − r

r

)

(−1)j+1
tj,

as wanted.
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Corollary 8. (a) For r = 0, 1, . . . ,m we have that

m−1−r
∑

j=0

(

2m

2j + 1

)(

2m − 2j − 1 − r

r

)

1

m − j
B2j+1

(

ξ (x, y)

x

)

(60)

=
m−1−r
∑

j=0

(

2m

2j + 1

)(

2m − 2j − 2 − r

r

)

E2j+1

(

ξ (x, y)

x

)

= ± (−1)r+1
√

x2 + 4y
r
∑

j=0

(

2m

j

)(

2r − j

r

)

(−1)j+1

x2m−j
F2m−j (x, y) ,

and

m−r
∑

j=0

(

2m + 1

2j

)(

2m − 2j + 1 − r

r

)

1

m + 1 − j
B2j

(

ξ (x, y)

x

)

(61)

=
m−r
∑

j=0

(

2m + 1

2j

)(

2m − 2j − r

r

)

E2j

(

ξ (x, y)

x

)

= (−1)r+1
r
∑

j=0

(

2m + 1

j

)(

2r − j

r

)

(−1)j+1

x2m+1−j
L2m+1−j (x, y) .

(b) For r = 1, 2, . . . ,m we have that

2
m−r
∑

j=0

(

2m

2j

)(

2m + 1 − 2j − r

r

)

1

2m + 1 − 2j − r
B2j

(

ξ (x, y)

x

)

(62)

=
m−r
∑

j=0

(

2m

2j

)(

2m − 2j − r

r

)

2m − 2j

2m − 2j − r
E2j

(

ξ (x, y)

x

)

=
(−1)r

r

r
∑

j=1

(

2m

j

)(

2r − j − 1

r − 1

)

j (−1)j

x2m−j
L2m−j (x, y) ,

and

2
m−r
∑

j=0

(

2m + 1

2j + 1

)(

2m + 1 − 2j − r

r

)

1

2m + 1 − 2j − r
B2j+1

(

ξ (x, y)

x

)

(63)

=
m−r
∑

j=0

(

2m + 1

2j + 1

)(

2m − 2j − r

r

)

2m − 2j

2m − 2j − r
E2j+1

(

ξ (x, y)

x

)

= ±
(−1)r

r

√

x2 + 4y
r
∑

j=1

(

2m + 1

j

)(

2r − j − 1

r − 1

)

j (−1)j

x2m+1−j
F2m+1−j (x, y) .

Proof. By using (55), (56), (57) and (58), rewrite identities (51), (52), (53) and (54), respec-

tively. Set t = α(x,y)
x

and t = β(x,y)
x

in the resulting identities, to obtain (60), (61), (62) and
(63), respectively.

15



4 Acknowledgements

The first version of this work contained some versions of identities (40) to (43), which were
demonstrated by means of Fourier expansions of certain periodic extensions of certain re-
strictions of the polynomials Pn (x, 1; t) and Qn (x, 1; t). In this version we present a larger
list of identities, and the main ideas of the corresponding proofs are different (now the proofs
follow to Cigler [2]). I thank the referee for call my attention to this way of proving those
identities. I also thank him/her for the additional comments in his/her report, that certainly
helped me to present a more readable version of the article.

References

[1] Paul F. Byrd, New relations between Fibonacci and Bernoulli numbers, Fib. Quart. 13

(1975), 59–69.

[2] Johann Cigler, Fibonacci polynomials, generalized Stirling numbers, and Bernoulli,
Genocchi and tangent numbers, http://arxiv.org/abs/1103.2610.

[3] Johann Cigler, q-Fibonacci polynomials and q-Genocchi numbers,
http://arxiv.org/abs/0908.1219.

[4] Karl Dilcher, Bernoulli and Euler Polynomials, Digital Library of Mathematical Func-
tions, Ch. 24, http://dlmf.nist.gov/24.

[5] Richard P. Kelisky, Congruences involving combinations of the Bernoulli and Fibonacci
numbers, Proc. Nat. Acad. Sci. USA, 43 (1957), 1066–1069.

[6] Thomas Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons,
Inc., 2001.

[7] Renzo Sprugnoli, Riordan Array Proofs of Identities in Gould’s Book, 2006. Available
at http://www.dsi.unifi.it/∼resp/GouldBK.pdf.

[8] S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section, Dover, 1989.

[9] Hongquan Yu and Chuanguang Liang, Identities involving partial derivatives of bivariate
Fibonacci and Lucas polynomials, Fib. Quart. 35 (1997), 19–23.

[10] Tianping Zhang and Yuankui Ma, On generalized Fibonacci polynomials and Bernoulli
numbers, J. Integer Seq., 8 (2005), Article 05.5.3.

[11] Zhi-Wei Sun and Hao Pan, Identities concerning Bernoulli and Euler polynomials, Acta
Arith. 125 (2006), 21–39.

[12] Zhi-Wei Sun and Hao Pan, New identities concerning Bernoulli and Euler polynomials,
J. Comb. Theory A. 113 (2006), 156–175.

16

http://arxiv.org/abs/1103.2610
http://arxiv.org/abs/0908.1219
http://dlmf.nist.gov/24
http://www.dsi.unifi.it/~resp/GouldBK.pdf


2010 Mathematics Subject Classification: Primary 11B39; Secondary 11B68.
Keywords: Fibonacci polynomial, Lucas polynomial, Bernoulli polynomial, Euler polyno-
mial.

(Concerned with sequence A0xxxxx.)

Received September 9 2011; revised versions received December 8 2011; January 13 2012.
Published in Journal of Integer Sequences, January 14 2012.

Return to Journal of Integer Sequences home page.

17

http://oeis.org/A0xxxxx
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	The main results
	Some Corollaries
	Acknowledgements

