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Abstract

This paper formulates a definition of Fibonacci polynomials which is
slightly different from the traditional definitions, but which is related to the
classical polynomials of Bernoulli, Euler and Hermite. Some related congru-
ence properties are developed and some unanswered questions are outlined.
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1. Introduction

The purpose of this paper is to consider some congruences associated with a gener-
alized Fibonacci polynomial which is defined in the next section in relation to two
generalized arbitrary order (r ≥ 2) Fibonacci sequences, {un} and {vn}:

un =
∑r

j=1(−1)j+1Pjun−j n > 0

un = 1 n = 0
un = 0 n < 0

(1.1)
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and
vn =

∑r
j=1(−1)j+1Pjvn−j n ≥ r

vn =
∑r

j=1 α
n
j 0 ≤ n < r

vn = 0 n < 0

(1.2)

where the Pj are arbitrary integers and the αj are the roots, assumed distinct, of
the auxiliary equation for the recurrence relations above, namely,

0 = xr −
r∑

j=1

(−1)j+1Pjx
r−j .

For example, when r = 2 we have un = P1un−1 − P2un−2 with u0 = 1, u1 = P1,
u2 = P 2

1 −P2, and so on. These are referred to as the Lucas fundamental numbers
(see [8]). When r = 2 the {vn correspond to the Lucas primordial numbers with
v0 = 2, v1 = α1 + α2 = P1, v2 = α2

1 + α2
2 = P 2

1 − 2P2 and so on (see [5], Table 1).

n 0 1 2 3 · · ·
un 1 P1 P 2

1 − P2 P 3
1 − 2P1P2 + P3 · · ·

vn r P1 P
2
1 − 2P2 P

3
1 − 3P1P2 + rP3 · · ·

Table 1: First four terms of {un} and {vn}

In [11] the ordinary generating function

∞∑

n=0

unx
n =

r∏

j=1

(1− αjx)
−1 (1.3)

is used to show that
∞∑

n=0

unx
n = exp

( ∞∑

m=1

vm
xm

m

)
(1.4)

thus suggesting a generalized Fibonacci polynomial un(x) defined formally as

∞∑

n=0

un(x)
tn

n!
= exp

(
xt+

∞∑

m=1

vm
tm

m

)
. (1.5)

Then from (1.4) and (1.5) we get (1.6) and (1.7)

un(0) = unn! (1.6)

and thus ∞∑

n=0

un(x)
tn

n!
= ext

∞∑

n=0

un(0)
tn

n!
(1.7)

by analogy with the polynomials of Bernoulli, Euler and Hermite (see [2, 9]). Other
analogies with these polynomials can also be obtained in [12].
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We also note that there are many other ways of defining Fibonacci polynomials
and their generalizations in literature, (see [1, 3, 6]). The aim in this paper is to
extend some of the results associated with (1.5) to congruences (see [7]). Some of
these properties for Fibonacci numbers were explored in [13]. Daykin, Dresel and
Hilton also obtained some similar results by combining the roots of the auxiliary
equation to aid their study of the structure of a second order recursive sequence in
a finite field (see [4]).

2. Fibonacci polynomials

We emphasize that the concern here is with the formal aspects of the theory and in
the term-by-term differentiation of series we assume that conditions of continuity
and uniform convergence are satisfied in the appropriate closed intervals. Thus a
result we shall find useful is a recurrence relation for these Fibonacci polynomials

un+1(x) = xun(x) +
n∑

j=0

njvj+1un−j(x) (2.1)

in which nj is the falling factorial coefficient.

Proof of (2.1). Since

∞∑

n=0

un(x)
tn

n!
= exp

(
xt+

∞∑

m=1

vm
tm

m

)

and
∂

∂t

∞∑

n=0

un(x)
tn

n!
=
∞∑

n=0

un+1(x)
tn

n!

and

∂

∂t

(
exp

(
xt+

∞∑

m=1

vm
tm

m

))
=

(
x+

∞∑

m=0

vm+1t
m

)
exp

(
xt+

∞∑

m=1

vm
tm

m

)
,

we have that
∞∑

n=0

un+1(x)
tn

n!
=

(
x+

∞∑

m=0

vm+1t
m

) ∞∑

n=0

un(x)
tn

n!

=
∞∑

n=0

xun(x)
tn

n!
+

( ∞∑

m=0

vm+1t
m

)( ∞∑

n=0

un(x)
tn

n!

)

=
∞∑

n=0

xun(x)
tn

n!
+
∞∑

n=0

n∑

j=0

njvj+1un−j(x)
tn

n!

which yields the required result on equating coefficients of t.
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When x = 0 this becomes

(n+ 1)un+1 =
n∑

j=0

vj+1un−j (2.2)

since n! = nj(n− j)!. When r = 2 and P1 = −P2 = 1, equation (2.2) becomes the
known (see [5])

nFn+1 =
n−1∑

j=0

Lj+1Fn−j .

Now from (1.5) it follows that

∞∑

n=0

un(x)
tn

n!
= exp(xt) exp

( ∞∑

m=1

vm
tm

m

)

=
∞∑

k=0

xk
tk

k!

∞∑

j=0

ujt
j

=
∞∑

n=0

n∑

k=0

n!

k!
un−kx

k t
n

n!
.

So that on equating coefficients of t we get

un(x) =

n∑

k=0

n!

k!
un−kx

k (2.3)

and with (1.6)

un(x) =
n∑

k=0

n!

k!

un−k(0)
(n− k)!x

k

so that

un(x) =
n∑

k=0

(
n
k

)
un−k(0)x

k. (2.4)

Then
u0(x) = u0 = 1.

It is of interest to note another connection between these Fibonacci polynomials
and the classical polynomials. We can write equation (2.4) in the suggestive form

un(x) = (x+ un(0))
n (2.5)

which is analogous to the well-known

Bn(x) = (x+Bn(0))
n (2.6)

for the Bernoulli polynomials, and in which it is understood that after the expansion
of the right hand sides of (2.1)and (2.2), terms of the form ak are replaced by ak
as in the umbral calculus (see [10]).
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3. Fibonacci polynomial congruences

We now use induction on t and n to prove that

un+tm(x) ≡ un(x) (um(x))
t

(mod m) (3.1)

Proof of (3.1). When t = 0, the result is obvious for all n. When t = 1 and n = 1,
we note from (2.1) that u1(x) = x+ v1, and

um+1(x) = (x+ v1)um(x) +
m∑

j=1

mjvj+1um−j(x)

≡ (x+ v1)um(x) (mod m)

≡ u1(x)um(x) (mod m).

Assume the result is true for t = 1, and n = 1, 2, · · · , s; that is,

um+n(x) ≡ um(x)un(x) (mod m), n = 1, 2, · · · , s.

Then

um+s+1(x) = (x+ v1)um+s(x) +

m+s∑

j=1

(m+ s)jvj+1um+s−j(x)

≡ (x+ v1)um+s(x) +

s∑

j=1

sjvj+1um+s−j(x) (mod m)

since

(m+ s)j = (m+ s)(m+ s− 1) · · · (m+ s− j + 1)

≡ s(s− 1) · · · (s− j + 1) (mod m).

Thus

um+s+1(x) ≡ (x+ v1)um(x)us(x) +
s∑

j=1

sjvj+1us−j(x)um(x) (mod m)

= um(x)


(x+ v1)us(x) +

s∑

j=1

sjvj+1us−j(x)


 (mod m)

= um(x)us+1(x) (mod m).

So when t = 1, for all n,

un+m(x) ≡ un(x) (um(x))
1

(mod m),

when t = 2, for all n,

un+2m(x) ≡ un(x) (um(x))
2

(mod m).
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Assume the result holds for t = 3, 4, · · · , k:

un+(k+1)m(x) ≡ un+km(x)um(x) (mod m)

≡
(
un(x) (um(x))

k
)
um(x) (mod m)

≡ un(x) (um(x))
k+1

(mod m)

and this completes the proof of (3.1).

As a simple illustration of (3.1), if r = 2, m = 2, n = 3, and t = 1, then from
(2.3)

u5(x) =

5∑

k=0

5!

k!
u5−kx

k

≡ 5!

4!
u1x

4 +
5!

5!
u0x

5 (mod 2)

≡ 5x4 + x5 (mod 2)

≡ x4 + x5 (mod 2)

and similarly,

u3(x) ≡ 3x2 + x3 (mod 2)

≡ x2 + x3 (mod 2)

u2(x) ≡ x2 (mod 2)

or
u5(x) ≡ u3(x) (u2(x)) (mod 2).

It follows that for n = 2, 3, · · · ,

un(x) (um(x))
t − un+tm(x) =

tn∑

j=−ntm
Bj(n)un+j(x) (3.2)

in which the Bj(n) = Bj(n; t,m) are also polynomials in n with integer coefficients
modulo m. We may also assume that in the summation Bj(n) = 0 (−ntm ≤ j <
−n).

4. Conclusion

The {us(0)} satisfy recurrence relations with variable coefficients:

un(0) = n!un

= n!

r∑

j=1

(−1)j+1Pjun−j
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=
r∑

j=1

(−1)j+1Pj
n!

(n− j)!un−j(0).

This may be worthy of further separate investigation, as may two-dimensional
polynomials of the form {um,n(x)} to correspond with horizontal and vertical tilings
of Fibonacci numbers.
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